Petrogenesis and Geological Significance of Quartz Diorite Porphyry in Narong Mining Area, Tibet
-
摘要:
纳茸矿区位于南羌塘南缘东段,是认识班公湖‒怒江成矿带构造‒岩浆‒成矿作用的理想窗口.以纳茸矿区内出露的石英闪长玢岩为研究对象,对其进行了系统的锆石U-Pb定年、全岩地球化学、锆石原位Hf同位素及全岩Sr-Nd同位素研究.结果显示纳茸矿区石英闪长玢岩形成于晚侏罗世(158~155 Ma),属于钙碱性系列,具有高Sr(178×10-6~1 086×10-6)含量以及高Sr/Y(15~82)和(La/Yb)N(17~34)比值,亏损重稀土元素(如Yb=1.05×10-6~1.45×10-6,Y=10.50×10-6~14.78×10-6),整体呈现出与埃达克质岩石相似的地球化学特征.石英闪长玢岩样品低MgO、Cr、Ni,高Th和Th/U,锆石εHf(t)值在-1.7~4.3之间,(87Sr/86Sr)i比值为0.705 93~0.706 81,εNd(t)值在-2.67~-0.49之间.结合区域地质资料,指示其是俯冲背景下加厚下地壳部分熔融的产物.将本文研究结果与南羌塘中西段的同期岩浆作用相结合,表明班公湖‒怒江洋向北俯冲至羌塘地体之下,在晚侏罗世形成了超过1 200 km的近东西向岩浆弧.纳茸矿区与多龙矿集区内成矿岩体具有相似的锆石Hf同位素组成,锆石微量元素具有高Ce/Ce*、Eu/Eu*比值,全岩微量元素具有较高的Sr/Y、V/Sc比值,显示纳茸矿区具有较好的成矿潜力.
Abstract:Narong mining area is located in the southern margin of southern Qiangtang Block, providing an ideal window for understanding the tectonic-magmatic activities and mineralization of Bangong Co-Nujiang metallogenic belt. In this case study, we focus on the quartz diorite porphyries in the Narong mining area and report new zircon U-Pb ages, geochemical, zircon Hf and whole-rock Sr-Nd isotopic data. The results show that the Narong quartz diorite porphyries were emplaced during the Late Jurassic (158-155 Ma). Geochemically, the quartz diorite porphyry samples belong to calc-alkaline series. They are characterized by high Sr (178×10-6-1 086×10-6) contents, and high Sr/Y (15-82), (La/Yb)N (17-34) ratios with depletions of heavy rare earth elements (such as Yb=1.05×10-6-1.45×10-6, Y=10.50×10-6-14.78×10-6). These geochemical features are generally consistent with those of typical adakitic rocks. Additionally, the studied samples have lower MgO, Cr, Ni but higher Th and Th/U. Their zircon εHf(t) values are between -1.7 to +4.3, initial (87Sr/86Sr)i values are between 0.705 93-0.706 81 and the εNd(t) are between -2.67 to -0.49. These features, along with regional geological information, indicate that they are products of partial melting of thickened lower crust during slab subduction process. In combination with data from the middle and western segments of South Qiangtang, we infer that the Bangong Co-Nujiang Ocean subducted northward beneath the Qiangtang Block, forming a nearly E-W direction magma arc (> 1 200 km) during the Late Jurassic. The ore-forming intrusions in the Narong mining area and the Duolong ore concentration area have similar zircon Hf isotopic compositions, and zircon trace elements have high Ce/Ce* and Eu/Eu* ratios, and whole rock trace elements have high Sr/Y and V/Sc ratios, showing positive mineralization potential.
-
Key words:
- Tibetan Plateau /
- Narong mining area /
- Late Jurassic /
- petrogenesis /
- mineralization potential /
- geochemistry
-
图 1 青藏高原构造单元划分(a);班公湖‒怒江成矿带主要矿床(点)分布(b);纳茸矿区地质简图及采样位置(c)
图c据李宏伟和赵鹏(2019);1.第四系;2.捷布曲组二段;3.捷布曲组一段;4.早白垩世花岗岩类;5.中晚侏罗世花岗岩类;6.矽卡岩;7.铜矿体;8.石英闪长玢岩;9.蛇绿混杂岩带;10断层;11.金沙江缝合带;12.龙木错‒双湖缝合带;13.班公湖‒怒江缝合带;14.雅鲁藏布江缝合带;15.主中央断裂;16.采样位置
Fig. 1. Tectonic subdivision of the Tibetan Plateau (a); distribution map of major ore deposits (spots) in the Bangong Co-Nujiang metallogenic belt (b); simplified geological map of the Narong mining area, Tibet and sample locations (c)
图 4 锆石稀土元素球粒陨石标准化分配模式图(a);Ce/Ce*-(Sm/La)N元素图解(b;据蒋修未等,2020)
Fig. 4. Chondrite-normalized REE pattern diagram of zircon (a); Ce/Ce*-(Sm/La)N diagram (b; by Jiang et al., 2020)
图 6 稀土配分模式图(a);微量元素蛛网图(b;底图据Sun and McDonough, 1989)
Fig. 6. Chondrite-normalized REE pattern diagram (a); primitive mantle-normalized trace element diagram (b; modified by Sun and McDonough, 1989)
图 7 纳茸矿区石英闪长玢岩Sr-Nd同位素组成
多龙地区砂岩数据引自Li et al.(2016a);班公湖‒怒江缝合带蛇绿岩及玄武岩数据引自Bao et al.(2007)、Zhang et al.(2014)、Liu et al.(2016);高宝约矿区侵入岩数据引自Li et al.(2016b)、笔者未刊数据;多龙矿集区侵入岩数据引自陈华安等(2013)、祝向平等(2015a,2015b)、林彬等(2019);聂荣微陆块数据引自刘敏(2012)
Fig. 7. Sr-Nd isotopic data of quartz diorite porphyry in Narong mining area
图 10 锆石Ce*-Eu*图解(a);锆石10 000Eu*/Y-(Ce/Nd)/Y图解(b);全岩Sr/Y-SiO2图解(c);全岩V/Sc-SiO2图解(d;据杨昕等,2021)
Fig. 10. Ce*-Eu* diagram of zircon (a); 10 000Eu*/Y-(Ce/Nd)/Y diagram of zircon (b); Sr/Y-SiO2 diagram (c); V/Sc-SiO2 diagram (d; by Yang et al., 2021)
表 1 LA⁃ICP⁃MS锆石U⁃Th⁃Pb同位素分析结果
Table 1. LA-ICP-MS zircon isotopic U-Th-Pb analyses
测点 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ NR2001-04 1 054 867 1.22 0.053 9 0.002 8 0.178 2 0.008 6 0.023 8 0.000 4 365 119 167 7 151 2 NR2001-05 1 428 1 352 1.06 0.053 0 0.002 4 0.174 6 0.006 3 0.023 6 0.000 3 328 97 163 5 150 2 NR2001-06 1 304 1 174 1.11 0.053 2 0.002 0 0.183 9 0.006 8 0.024 9 0.000 3 345 82 171 6 158 2 NR2001-07 1 229 1 348 0.91 0.054 1 0.003 3 0.186 3 0.008 3 0.024 9 0.000 3 376 135 173 7 158 2 NR2001-08 678 657 1.03 0.050 6 0.003 1 0.169 0 0.008 6 0.024 0 0.000 3 220 142 159 8 153 2 NR2001-09 1 175 1 132 1.04 0.051 2 0.002 4 0.174 1 0.008 3 0.024 3 0.000 3 250 114 163 7 155 2 NR2001-10 1 930 1 272 1.52 0.053 3 0.002 5 0.182 7 0.007 9 0.024 4 0.000 3 343 104 170 7 156 2 NR2001-12 361 405 0.89 0.051 1 0.003 1 0.174 4 0.010 0 0.024 7 0.000 4 243 139 163 9 157 3 NR2001-13 580 608 0.95 0.048 2 0.002 2 0.166 5 0.007 6 0.024 8 0.000 3 109 104 156 7 158 2 NR2001-16 792 667 1.19 0.050 2 0.003 0 0.164 9 0.008 2 0.023 9 0.000 3 211 144 155 7 152 2 NR2001-18 548 517 1.06 0.052 0 0.003 0 0.169 5 0.009 2 0.023 7 0.000 4 287 131 159 8 151 2 NR2001-01 510 542 0.94 0.050 1 0.002 7 0.255 2 0.012 8 0.037 5 0.000 7 198 121 231 10 237 5 NR2001-19 528 801 0.66 0.051 1 0.002 0 0.251 4 0.009 6 0.035 4 0.000 4 243 97 228 8 224 2 NR2001-17 68.1 154 0.44 0.158 4 0.004 4 7.114 7 0.192 0 0.322 2 0.003 9 2 439 48 2 126 24 1 801 19 NR2012-02 436 773 0.56 0.048 9 0.002 5 0.173 7 0.008 7 0.025 6 0.000 4 143 122 163 8 163 2 NR2012-03 421 465 0.90 0.046 7 0.003 2 0.157 0 0.010 1 0.024 5 0.000 5 31.6 159 148 9 156 3 NR2012-04 1 345 1 149 1.17 0.052 9 0.002 4 0.177 9 0.007 7 0.024 3 0.000 3 324 108 166 7 155 2 NR2012-05 1 815 1 300 1.40 0.049 5 0.002 2 0.168 0 0.007 0 0.024 5 0.000 3 169 134 158 6 156 2 NR2012-06 1 065 906 1.18 0.051 5 0.002 5 0.173 7 0.008 2 0.024 2 0.000 3 265 111 163 7 154 2 NR2012-07 996 917 1.09 0.048 3 0.002 3 0.166 8 0.007 7 0.024 9 0.000 3 122 98 157 7 158 2 NR2012-09 822 757 1.09 0.047 3 0.002 3 0.166 4 0.007 6 0.025 5 0.000 3 64.9 111 156 7 163 2 NR2012-10 1 524 1 223 1.25 0.047 5 0.001 9 0.161 7 0.006 5 0.024 5 0.000 3 72.3 93 152 6 156 2 NR2012-11 1 966 1 331 1.48 0.048 9 0.002 0 0.169 1 0.006 7 0.025 0 0.000 3 146 92 159 6 159 2 NR2012-12 607 816 0.74 0.051 5 0.002 6 0.182 2 0.008 9 0.025 5 0.000 4 265 115 170 8 163 2 NR2012-14 416 394 1.06 0.052 9 0.003 4 0.189 9 0.011 4 0.025 6 0.000 4 324 144 177 10 163 3 NR2012-15 359 387 0.93 0.047 8 0.003 6 0.159 0 0.009 8 0.024 3 0.000 4 100 161 150 9 155 2 NR2012-16 369 522 0.71 0.052 9 0.003 1 0.176 8 0.009 7 0.024 4 0.000 4 324 133 165 8 155 2 NR2012-17 1 061 1 179 0.90 0.051 1 0.002 2 0.173 1 0.007 2 0.024 6 0.000 3 243 100 162 6 157 2 NR2012-18 176 280 0.63 0.046 5 0.003 8 0.163 1 0.012 6 0.025 3 0.000 4 20.5 189 153 11 161 3 NR2012-19 1 509 1 232 1.23 0.051 6 0.002 2 0.173 2 0.007 1 0.024 2 0.000 3 265 98 162 6 154 2 NR2012-20 1 092 1 096 1.00 0.053 4 0.002 6 0.180 3 0.007 5 0.024 5 0.000 3 343 109 168 6 156 2 NR2012-01 98.6 287 0.34 0.065 6 0.002 5 1.214 5 0.045 1 0.133 2 0.001 7 792 81 807 21 806 10 NR2012-08 136 130 1.04 0.070 6 0.003 2 1.444 6 0.063 8 0.148 4 0.002 1 946 94 908 27 892 12 表 2 锆石Hf同位素特征
Table 2. Zircon Hf isotopic data
测点 年龄(Ma) 176Yb/
177Hf2σ 176Lu/
177Hf2σ 176Hf/
177Hf2σ (176Hf/
177Hf)iεHf(0) εHf(t) 2σ TDM (Ma) TDMC (Ma) fLu/Hf NR2001-01 237 0.081 001 0.001 497 0.002 811 0.000 063 0.282 714 0.000 036 0.282 701 -2.1 2.7 1.3 802 1 094 -0.92 NR2001-04 151 0.041 947 0.000 445 0.001 526 0.000 015 0.282 748 0.000 027 0.282 744 -0.8 2.3 0.9 725 1 052 -0.95 NR2001-05 150 0.068 462 0.000 923 0.002 609 0.000 037 0.282 742 0.000 024 0.282 735 -1.1 2.0 0.8 756 1 074 -0.92 NR2001-06 158 0.041 541 0.000 816 0.001 524 0.000 030 0.282 795 0.000 018 0.282 790 0.8 4.1 0.7 658 943 -0.95 NR2001-07 158 0.052 634 0.000 332 0.001 831 0.000 009 0.282 771 0.000 019 0.282 765 0.0 3.2 0.7 698 999 -0.94 NR2001-08 153 0.051 694 0.001 272 0.001 887 0.000 033 0.282 674 0.000 080 0.282 669 -3.5 -0.3 2.8 839 1 220 -0.94 NR2001-09 155 0.035 660 0.000 204 0.001 389 0.000 006 0.282 751 0.000 029 0.282 747 -0.8 2.5 1.0 719 1 044 -0.96 NR2001-10 156 0.061 540 0.002 173 0.002 125 0.000 068 0.282 736 0.000 037 0.282 729 -1.3 1.9 1.3 755 1 082 -0.94 NR2001-12 157 0.022 285 0.000 303 0.000 824 0.000 009 0.282 759 0.000 037 0.282 757 -0.5 2.9 1.3 696 1 020 -0.98 NR2001-13 158 0.026 631 0.000 622 0.000 985 0.000 016 0.282 747 0.000 023 0.282 744 -0.9 2.5 0.8 717 1 049 -0.97 NR2001-16 152 0.051 818 0.000 612 0.001 811 0.000 017 0.282 751 0.000 017 0.282 746 -0.7 2.4 0.6 726 1 047 -0.95 NR2001-17 1 801 0.021 112 0.000 537 0.000 766 0.000 019 0.281 335 0.000 017 0.281 308 -50.8 -11.7 0.6 2 662 3 182 -0.98 NR2001-18 151 0.025 742 0.000 100 0.000 931 0.000 004 0.282 802 0.000 021 0.282 800 1.1 4.3 0.7 637 927 -0.97 NR2012-01 806 0.019 362 0.000 408 0.000 642 0.000 014 0.282 114 0.000 018 0.282 104 -23.3 -5.9 0.7 1 590 2 068 -0.98 NR2012-03 156 0.030 711 0.000 523 0.001 078 0.000 014 0.282 757 0.000 014 0.282 754 -0.5 2.8 0.5 703 1 026 -0.97 NR2012-04 155 0.049 054 0.000 461 0.001 731 0.000 018 0.282 757 0.000 018 0.282 752 -0.5 2.7 0.6 716 1 031 -0.95 NR2012-05 156 0.053 248 0.000 314 0.001 824 0.000 008 0.282 765 0.000 017 0.282 760 -0.2 3.0 0.6 706 1 013 -0.95 NR2012-06 154 0.057 950 0.000 801 0.002 090 0.000 032 0.282 741 0.000 017 0.282 735 -1.1 2.1 0.6 746 1 069 -0.94 NR2012-07 158 0.038 073 0.000 920 0.001 459 0.000 026 0.282 758 0.000 016 0.282 754 -0.5 2.8 0.6 709 1 026 -0.96 NR2012-08 892 0.035 498 0.000 358 0.001 295 0.000 012 0.282 524 0.000 019 0.282 502 -8.8 10.2 0.7 1 039 1 124 -0.96 NR2012-09 163 0.049 367 0.000 196 0.001 715 0.000 009 0.282 759 0.000 017 0.282 754 -0.5 2.9 0.6 713 1 023 -0.95 NR2012-10 156 0.041 864 0.000 251 0.001 535 0.000 004 0.282 776 0.000 016 0.282 771 0.1 3.4 0.6 685 988 -0.95 NR2012-12 163 0.022 091 0.000 209 0.000 733 0.000 004 0.282 761 0.000 016 0.282 758 -0.4 3.1 0.6 692 1 012 -0.98 NR2012-15 155 0.019 745 0.000 067 0.000 667 0.000 003 0.282 746 0.000 013 0.282 744 -0.9 2.4 0.5 711 1 050 -0.98 NR2012-16 155 0.041 566 0.000 408 0.001 408 0.000 014 0.282 764 0.000 014 0.282 759 -0.3 3.0 0.5 701 1 015 -0.96 NR2012-17 157 0.043 940 0.000 603 0.001 458 0.000 017 0.282 745 0.000 013 0.282 741 -0.9 2.3 0.5 728 1 056 -0.96 NR2012-18 161 0.027 977 0.000 874 0.000 930 0.000 032 0.282 628 0.000 016 0.282 625 -5.1 -1.7 0.6 883 1 314 -0.97 NR2012-19 154 0.061 276 0.000 172 0.002 430 0.000 001 0.282 778 0.000 019 0.282 771 0.2 3.3 0.7 700 990 -0.93 表 3 全岩主量(%)、微量元素(10-6)和Sr-Nd同位素分析结果
Table 3. Whole-rock major (%) and trace (10-6) elements data and Sr-Nd isotope data
样品名称 NR2001 NR2002 NR2003 NR2004 NR2005 NR2006 NR2009 NR2010 NR2011 NR2012 样品性质 石英闪长玢岩 SiO2 58.63 59.27 59.92 59.01 59.05 59.23 59.84 59.25 60.96 58.38 TiO2 0.44 0.39 0.41 0.42 0.41 0.45 0.38 0.38 0.40 0.37 Al2O3 18.60 18.96 18.82 18.85 19.03 19.22 17.59 18.18 18.14 18.74 TFe2O3 1.28 1.37 1.71 1.53 1.48 1.28 0.98 1.43 1.01 0.85 MnO 0.03 0.04 0.02 0.04 0.04 0.03 0.02 0.02 0.03 0.02 MgO 1.49 1.63 1.48 1.67 1.56 1.45 0.65 1.16 0.83 1.02 CaO 4.82 4.63 2.90 5.10 4.70 4.22 5.20 4.21 4.06 5.07 Na2O 6.43 5.42 7.57 5.42 5.44 5.77 9.15 9.43 8.78 5.18 K2O 4.09 5.30 2.84 5.04 5.11 5.00 0.35 0.52 0.66 6.08 P2O5 0.24 0.21 0.29 0.24 0.24 0.28 0.22 0.22 0.30 0.20 LOI 3.00 2.20 3.26 2.21 2.08 2.72 4.86 4.67 4.30 3.60 SUM 99.03 99.42 99.21 99.53 99.13 99.64 99.26 99.47 99.46 99.51 Sc 5.28 5.77 5.12 5.99 5.83 6.09 4.94 4.29 5.27 3.62 V 73.4 62.4 74.1 76.7 73.1 64.4 84.7 94.5 77.6 108.0 Cr 3.28 3.93 3.80 7.51 5.71 3.08 4.67 3.18 3.17 2.50 Co 1.88 1.69 1.64 2.21 2.17 1.15 0.81 2.79 1.17 0.77 Ni 4.20 3.64 5.23 4.63 4.08 3.76 3.84 5.12 3.38 2.58 Cu 52.2 22.7 342.0 120.0 83.5 32.5 37.6 92.6 118.0 15.5 Ga 19.4 19.8 19.9 19.4 19.4 19.7 20.0 19.6 18.8 19.2 Rb 101.0 120.0 69.7 111.0 115.0 118.0 18.0 23.4 28.3 135.0 Sr 1 079 875 374 1 087 1 081 1 019 494 423 745 936 Y 13.2 11.7 11.7 13.8 13.9 13.7 11.4 13.2 14.8 13.2 Zr 156 122 150 172 162 161 151 151 176 163 Nb 20.7 18.3 19.2 17.7 18.1 20.3 17.9 19.1 24.2 18.6 Cs 1.29 2.30 0.49 2.62 2.37 1.92 0.29 0.56 0.64 1.77 Ba 2 044.0 2 027.0 867.0 1 934.0 2 028.0 1 957.0 63.7 51.9 170.0 2 538.0 La 52.9 48.7 38.8 50.5 50.8 48.1 48.0 64.7 45.4 59.6 Ce 101.0 89.7 78.8 96.8 97.7 92.4 82.3 107.0 92.7 95.5 Pr 10.40 9.24 8.35 10.70 10.70 9.77 8.35 10.80 10.40 9.52 Nd 33.4 29.5 28.5 35.5 35.4 33.1 26.8 34.1 37.1 30.5 Sm 4.90 4.33 4.20 5.45 5.33 5.12 3.87 4.84 5.83 4.41 Eu 1.25 1.22 1.02 1.32 1.38 1.40 0.86 1.28 1.24 1.47 Gd 3.11 2.83 2.94 3.10 3.58 3.05 2.51 2.88 3.76 2.92 Tb 0.42 0.39 0.39 0.44 0.45 0.45 0.33 0.41 0.55 0.40 Dy 2.41 2.07 2.11 2.46 2.48 2.50 1.98 2.15 2.68 2.24 Ho 0.41 0.38 0.37 0.45 0.47 0.43 0.37 0.41 0.52 0.41 Er 1.23 1.05 1.12 1.42 1.39 1.33 1.07 1.15 1.58 1.32 Tm 0.20 0.16 0.16 0.20 0.19 0.20 0.16 0.19 0.22 0.18 Yb 1.25 1.09 1.06 1.41 1.28 1.25 1.11 1.28 1.44 1.39 Lu 0.19 0.16 0.16 0.20 0.21 0.19 0.18 0.21 0.23 0.21 Hf 4.21 3.34 4.15 4.55 4.57 4.19 4.07 4.13 4.43 4.44 Ta 1.05 1.00 0.92 1.03 1.02 1.06 0.99 1.00 1.10 0.92 Pb 26.40 17.10 3.02 11.70 11.40 13.10 2.55 29.90 60.10 10.10 Th 32.8 33.2 33.5 36.8 33.6 33.6 30.7 30.6 30.6 33.2 U 6.31 5.71 5.60 7.64 7.22 4.85 7.42 7.30 8.00 7.92 (La/Yb)N 28.58 30.25 24.56 24.16 26.83 25.96 29.15 34.14 21.32 28.97 87Rb/86Sr 0.270 8 0.417 3 87Sr/86Sr 0.706 889 0.706 866 (87Sr/86Sr)i 0.706 29 0.705 93 147Sm/143Nd 0.088 7 0.087 4 143Nd/144Nd 0.512 446 0.512 500 εNd(t) -1.61 -0.49 TDMC(Ma) 1 075 986 样品名称 NR2013 NR2014 NR2015 NR2016 NR2017 NR2018 NR2021 NR2022 NR2023 样品性质 石英闪长玢岩 SiO2 58.33 58.80 58.05 58.61 58.78 57.72 60.08 60.20 61.29 TiO2 0.37 0.37 0.36 0.38 0.37 0.37 0.36 0.36 0.37 Al2O3 18.74 18.92 18.76 18.74 18.87 18.61 17.03 16.48 16.63 TFe2O3 0.69 0.86 0.82 0.88 0.85 0.72 1.71 1.47 1.32 MnO 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.03 MgO 0.62 0.92 0.89 1.12 1.04 0.53 1.70 1.92 1.79 CaO 5.20 5.12 4.73 5.34 5.03 5.38 3.79 4.07 3.77 Na2O 5.25 4.97 4.39 4.69 4.90 5.12 9.35 9.09 9.05 K2O 5.72 6.26 7.21 6.45 6.33 5.54 0.42 0.32 0.40 P2O5 0.19 0.17 0.16 0.17 0.17 0.18 0.19 0.19 0.21 LOI 4.39 3.15 3.38 2.98 2.96 4.91 5.17 5.66 5.15 SUM 99.52 99.56 98.78 99.37 99.32 99.10 99.80 99.80 100.00 Sc 3.93 3.69 3.58 4.24 3.89 3.88 4.55 4.94 5.22 V 103.0 103.0 96.8 111.0 106.0 104.0 64.5 63.6 78.2 Cr 2.40 2.46 2.48 2.63 3.57 2.57 11.60 10.80 17.80 Co 1.10 0.71 0.52 0.67 0.58 0.85 3.10 2.31 3.00 Ni 3.27 3.43 3.37 3.06 2.77 2.92 5.97 4.89 4.35 Cu 23.70 115.00 84.10 20.20 29.10 113.00 8.90 4.65 3.86 Ga 19.2 19.7 19.1 19.7 19.8 19.2 18.6 18.3 18.9 Rb 126.0 139.0 163.0 147.0 139.0 128.0 14.9 10.8 13.4 Sr 876 991 955 993 968 813 207 178 204 Y 13.4 13.7 13.9 14.0 13.3 13.5 11.3 11.6 10.5 Zr 160 166 173 173 171 159 147 142 151 Nb 19.3 19.7 19.9 20.5 19.6 19.8 17.6 17.8 17.0 Cs 2.17 1.33 1.86 1.47 1.46 2.19 0.33 0.16 0.21 Ba 3 325.0 2 669.0 3 208.0 2 782.0 2 962.0 4 127.0 61.7 61.8 75.1 La 56.4 58.3 63.8 59.8 57.4 56.4 30.5 28.1 28.6 Ce 94.2 95.0 103.0 98.3 93.5 93.8 63.4 59.6 58.9 Pr 9.53 9.58 10.3 9.84 9.24 9.38 7.12 6.77 6.73 Nd 31.2 30.3 33.1 31.8 29.7 30.2 24.1 23.8 23.0 Sm 4.40 4.57 4.44 4.77 4.32 4.66 3.62 3.86 3.51 Eu 1.47 1.54 1.58 1.53 1.52 1.64 0.83 0.74 0.74 Gd 2.99 2.90 3.14 2.90 2.89 2.98 2.77 2.75 2.39 Tb 0.42 0.42 0.41 0.44 0.41 0.40 0.36 0.39 0.36 Dy 2.41 2.32 2.29 2.37 2.23 2.26 2.08 2.05 1.76 Ho 0.42 0.42 0.43 0.45 0.39 0.42 0.33 0.37 0.36 Er 1.36 1.23 1.40 1.41 1.21 1.29 1.08 1.14 1.01 Tm 0.20 0.20 0.21 0.20 0.20 0.19 0.15 0.16 0.15 Yb 1.34 1.32 1.40 1.45 1.35 1.35 1.07 1.07 1.05 Lu 0.22 0.22 0.24 0.24 0.23 0.21 0.15 0.17 0.16 Hf 4.45 4.52 4.56 4.71 4.47 4.38 3.89 3.93 4.03 Ta 0.90 0.94 0.95 0.97 0.87 0.91 0.84 0.96 0.85 Pb 9.11 9.48 9.07 9.86 10.40 8.50 1.24 1.21 1.43 Th 34.3 32.5 34.0 33.5 32.5 33.9 31.2 29.1 26.5 U 5.95 8.21 9.68 9.50 8.99 7.37 4.25 4.82 5.76 (La/Yb)N 28.39 29.72 30.75 27.78 28.59 28.22 19.16 17.68 18.35 87Rb/86Sr 0.190 0 87Sr/86Sr 0.707 233 (87Sr/86Sr)i 0.706 81 147Sm/143Nd 0.092 3 143Nd/144Nd 0.512 393 εNd(t) -2.67 TDMC(Ma) 1 164 -
[1] Bao, P. S., Xiao, X. C., Su, L., et al., 2007. Petrological, Geochemical and Chronological Constraints for the Tectonic Setting of the Dongco Ophiolite in Tibet. Science China Earth Sciences, 50(5): 660-671. https://doi.org/10.1007/s11430-007-0045-5 [2] Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 [3] Chen, H. A., Zhu, X. P., Ma, D. F., et al., 2013. Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit, Tibet and Its Mineralizing Significance. Acta Geologica Sinica, 87(10): 1593-1611 (in Chinese with English abstract). [4] Chen, S. H., Wang, B., Zhang, J. R., et al., 2014. Lithogeochemical Characteristics and Chronology of Fuye Granitic Pluton from the Western Bangong-Nujiang Metallogenic Belt in China. Journal of East China Institute of Technology (Natural Science Edition), 37(1): 37-44 (in Chinese with English abstract). [5] Chen, Y. L., Zhang, K. Z., Yang, Z. M., et al., 2006. Discovery of a Complete Ophiolite Section in the Jueweng Area, Nagqu County, in the Central Segment of the Bangong Co-Nujiang Junction Zone, Qinghai-Tibet Plateau. Geological Bulletin of China, 25(6): 694-699(in Chinese with English abstract). [6] Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347 (6294): 662-665. https://doi.org/10.1038/347662a0 [7] Fan, J. J., Li, C., Wu, H., et al., 2016. Late Jurassic Adakitic Granodiorite in the Dong Co Area, Northern Tibet: Implications for Subduction of the Bangong-Nujiang Oceanic Lithosphere and Related Accretion of the Southern Qiangtang Terrane. Tectonophysics, 691: 345-361. https://doi.org/10.1016/j.tecto.2016.10.026 [8] Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077 [9] Hou, Z. Q., Wang, T., 2018. Isotopic Mapping and Deep Material Probing (Ⅱ): Imaging Crustal Architecture and Its Control on Mineral Systems. Earth Science Frontiers, 25(6): 20-41 (in Chinese with English abstract). [10] Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribution of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet. Mineralium Deposita, 48(2): 173-192. https://doi.org/10.1007/s00126-012-0415-6 [11] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [12] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012b. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h [13] Jiang, X. W., Gong, D. X., Zou, H., et al., 2020. Geochemical Characteristics and U-Pb Geochronological Significance of the Dusong Monzogranite in the Songpan-Ganzi Orogen. Mineralogy and Petrology, 40(3): 26-41 (in Chinese with English abstract). [14] Li, J. X., Qin, K. Z., Li, G. M., et al., 2014a. Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet: Petrogenetic and Tectonic Implications. Lithos, 198-199: 77-91. https://doi.org/10.1016/j.lithos.2014.03.025 [15] Li, J. X., Qin, K. Z., Li, G. M., et al., 2016a. Petrogenesis of Cretaceous Igneous Rocks from the Duolong Porphyry Cu-Au Deposit, Central Tibet: Evidence from Zircon U-Pb Geochronology, Petrochemistry and Sr-Nd-Pb-Hf Isotope Characteristics. Geological Journal, 51(2): 285-307. https://doi.org/10.1002/gj.2631 [16] Li, S. M., Zhu, D. C., Wang, Q., et al., 2014b. Northward Subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic Intrusive Rocks from Bangong Tso in Western Tibet. Lithos, 205: 284-297. https://doi.org/10.1016/j.lithos.2014.07.010 [17] Li, Y. L., He, J., Han, Z. P., et al., 2016b. Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean Subduction. Lithos, 245: 34-46. https://doi.org/10.1016/j.lithos.2015.10.014 [18] Li, H. W., Zhao, P., 2019. Tectonic Evolution and Research Significance of Iron and Copper Deposits in Narong Mining Area, Anduo County, Tibet Autonomous Region. Sichuan Nonferrous Metals, (3): 27-29 (in Chinese with English abstract). [19] Li, X. K., Li, C., Sun, Z. M., et al., 2015. Zircon U-Pb Geochronology, Hf Isotope, and Whole-Rock Geochemistry of Diorite in the Saijiao Cu-Au Deposit, Tibet, and Its Ore-Forming Significance. Geological Bulletin of China, 34(5): 908-918 (in Chinese with English abstract). [20] Lin, B., Fang, X., Wang, Y. Y., et al., 2019. Petrologic Genesis of Ore-Bearing Porphyries in Tiegelongnan Giant Cu (Au, Ag) Deposit, Tibet and Its Implications for the Dynamic of Cretaceous Mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642-664 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.03 [21] Liu, T., Zhai, Q. G., Wang, J., et al., 2016. Tectonic Significance of the Dongqiao Ophiolite in the North-Central Tibetan Plateau: Evidence from Zircon Dating, Petrological, Geochemical and Sr-Nd-Hf Isotopic Characterization. Journal of Asian Earth Sciences, 116: 139-154. https://doi.org/10.1016/j.jseaes.2015.11.014 [22] Liu, H.Y., Yue, Y.Z., Dunzhu, W., et al., 2019. Petrogenesis and Geological Significance of Late Jurassic Volcanic Rocks in Mami Area, Central Tibetan Plateau. Earth Science, 44(7): 2368-2382 (in Chinese with English abstract). [23] Liu, M., 2012. Petrogenesis and Tectonic Significance of Early Jurassic Alkalic Pluton in Nyainrong Microcontinent, Central Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [24] Liu, R. H., He, B. Z., Zheng, M. L., et al., 2019. Tectonic-Sedimentary Evolution during Late Triassic-Jurassic Period in the Eastern Part of the Qiangtang Basin, Tibet. Acta Petrologica Sinica, 35(6): 1857-1874 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.14 [25] Loader, M. A., Wilkinson, J. J., Armstrong, R. N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010 [26] Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347. [27] Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034 [28] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321 [29] Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257 (in Chinese with English abstract). [30] Ran, H., Wang, G. H., Liang, X., et al., 2015. The Late Jurassic Diorite in Rongma Area, Southern Qiangtang Terrane, Tibetan Plateau: Product of Northward Subduction of the Bangong Co-Nujiang River Tethys Ocean. Geological Bulletin of China, 34(5): 815-825 (in Chinese with English abstract). [31] Song, Y., Tang, J. X., Qu, X. M., et al., 2014. Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition. Advances in Earth Science, 29(7): 795-809 (in Chinese with English abstract). [32] Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351-354. https://doi.org/10.1130/g23286a.1 [33] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [34] Sun, J., 2015. Magmatism and Metallogenesis at Duolong Ore District, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [35] Sun, Z. M., 2015. Copper-Gold Mineralization and Metallogenic Regularity of Duolong Mineralization Area in Western Bangongco-Nujiang Metallogenic Belt, Tibet (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [36] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008 [37] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171. https://doi.org/10.1016/j.epsl.2008.04.034 [38] Wei, S. G., 2017. Study on the Early Cretaceous Magmatism and Tectonic Dynamic Setting of the Duolong Cu Mining District in the Bangong-Nujiang Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [39] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [40] Wu, H., Xie, C. M., Li, C., et al., 2016. Tectonic Shortening and Crustal Thickening in Subduction Zones: Evidence from Middle-Late Jurassic Magmatism in Southern Qiangtang, China. Gondwana Research, 39: 1-13. https://doi.org/10.1016/j.gr.2016.06.009 [41] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). [42] Xie, C. M., 2013. Tectonic Evolution of the Nyainrong Microcontinent, Tibet: Constraints from Geochronology and Geochemistry (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [43] Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 [44] Xu, J. F., Wu, J. B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6-13 (in Chinese with English abstract). [45] Xu, R. K., Zheng, Y. Y., Zhao, P. J., et al., 2007. Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet. Geology in China, 34(5): 768-777 (in Chinese with English abstract). [46] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract). [47] Yang, X., Tang, J. X., Yang, Z. Y., et al., 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612 (in Chinese with English abstract). [48] Yun, X. R., Cai, Z. H., He, B. Z., et al., 2019. Early Paleozoic and Mesozoic Orogenic Records in Amdo Region, Tibet: Zircon U-Pb Geochronology and Hf Isotopic Compositions from the Amdo Micro-Continent and South Qiangtang Terrane. Acta Petrologica Sinica, 35(6): 1673-1692 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.04 [49] Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005 [50] Zeng, Y. C., Xu, J. F., Chen, J. L., et al., 2021. Early Cretaceous (~138-134 Ma) Forearc Ophiolite and Tectonomagmatic Patterns in Central Tibet: Subduction Termination and re-Initiation of Meso-Tethys Ocean Caused by Collision of an Oceanic Plateau at the Continental Margin? Tectonics, 40(3): e2020TC006423. https://doi.org/10.1029/2020tc006423 [51] Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https://doi.org/10.1016/j.lithos.2014.09.004 [52] Zhang, Z., Geng, Q. R., Peng, Z. M., et al., 2011. Geochemistry and Geochronology of the Caima Granites in the Western Part of the Bangong Lake-Nujiang Metallogenic Zone, Xizang. Sedimentary Geology and Tethyan Geology, 31(4): 86-96 (in Chinese with English abstract). [53] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [54] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [55] Zhu, X. P., Chen, H. A., Liu, H. F., et al., 2015a. Geochronology and Geochemistry of Porphyries from the Naruo Porphyry Copper Deposit, Tibet and Their Metallogenic Significance. Acta Geologica Sinica, 89(1): 109-128 (in Chinese with English abstract). [56] Zhu, X. P., Chen, H. A., Liu, H. F., et al., 2015b. Zircon U-Pb Ages, Geochemistry of the Porphyries from the Duobuza Porphyry Cu-Au Deposit, Tibet and Their Metallogenic Significance. Acta Geologica Sinica, 89(3): 534-548 (in Chinese with English abstract). [57] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [58] 陈华安, 祝向平, 马东方, 等, 2013. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义. 地质学报, 87(10): 1593-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm [59] 陈士海, 王斌, 张健仁, 等, 2014. 班公湖‒怒江成矿带西段弗野花岗岩体的岩石地球化学特征及年代学研究. 东华理工大学学报(自然科学版), 37(1): 37-44. doi: 10.3969/j.issn.1674-3504.2014.01.006 [60] 陈玉禄, 张宽忠, 杨志民, 等, 2006. 青藏高原班公湖‒怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面. 地质通报, 25(6): 694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007 [61] 侯增谦, 王涛, 2018. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律. 地学前缘, 25(6): 20-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806004.htm [62] 蒋修未, 龚大兴, 邹灏, 等, 2020. 松潘‒甘孜造山带独松花岗岩体地球化学特征、U-Pb年代学及地质意义. 矿物岩石, 40(3): 26-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202003004.htm [63] 李宏伟, 赵鹏, 2019. 西藏自治区安多县纳茸矿区铁铜矿构造演化及研究意义. 四川有色金属, (3): 27-29. doi: 10.3969/j.issn.1006-4079.2019.03.008 [64] 李兴奎, 李才, 孙振明, 等, 2015. 西藏赛角铜金矿闪长岩LA-ICP-MS锆石U-Pb年龄、Hf同位素和地球化学特征及成矿意义. 地质通报, 34(5): 908-918. doi: 10.3969/j.issn.1671-2552.2015.05.011 [65] 林彬, 方向, 王艺云, 等, 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903003.htm [66] 刘海永, 岳鋆璋, 顿珠旺堆, 等, 2019. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义. 地球科学, 44(7): 2368-2382. doi: 10.3799/dqkx.2018.382 [67] 刘敏, 2012. 青藏高原中部聂荣微陆块侏罗纪早期富碱侵入岩的岩石成因及构造意义(博士学位论文). 北京: 中国地质大学. [68] 刘若涵, 何碧竹, 郑孟林, 等, 2019. 羌塘盆地东部晚三叠世‒侏罗纪构造‒沉积演化. 岩石学报, 35(6): 1857-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906014.htm [69] 莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160 [70] 冉皞, 王根厚, 梁晓, 等, 2015. 青藏高原南羌塘荣玛晚侏罗世闪长岩: 班公湖‒怒江特提斯洋向北俯冲产物. 地质通报, 34(5): 815-825. doi: 10.3969/j.issn.1671-2552.2015.05.002 [71] 宋扬, 唐菊兴, 曲晓明, 等, 2014. 西藏班公湖‒怒江成矿带研究进展及一些新认识. 地球科学进展, 29(7): 795-809. [72] 孙嘉, 2015. 西藏多龙矿集区岩浆成因与成矿作用研究(博士学位论文). 北京: 中国地质大学. [73] 孙振明, 2015. 西藏班‒怒成矿带西段多龙矿集区铜金成矿作用与成矿规律(博士学位论文). 长春: 吉林大学. [74] 韦少港, 2017. 西藏班‒怒成矿带多龙矿集区早白垩世岩浆作用及动力学背景(博士学位论文). 北京: 中国地质大学. [75] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [76] 解超明, 2013. 青藏高原聂荣微陆块构造演化——年代学与地球化学制约(博士学位论文). 长春: 吉林大学. [77] 许继峰, 邬建斌, 王强, 等, 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6-13. doi: 10.3969/j.issn.1007-2802.2014.01.015 [78] 许荣科, 郑有业, 赵平甲, 等, 2007. 西藏东巧北尕苍见岛弧的厘定及地质意义. 中国地质, 34(5): 768-777. doi: 10.3969/j.issn.1000-3657.2007.05.003 [79] 许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm [80] 杨昕, 唐菊兴, 杨宗耀, 等, 2021. 西藏斯弄多地区晚白垩世埃达克岩: 岩石成因及成矿潜力指示. 地球科学, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157 [81] 贠晓瑞, 蔡志慧, 何碧竹, 等, 2019. 西藏安多地区早古生代及中生代造山记录: 来自安多微陆块‒南羌塘锆石U-Pb年代学及Hf同位素研究. 岩石学报, 35(6): 1673-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906004.htm [82] 张璋, 耿全如, 彭智敏, 等, 2011. 班公湖‒怒江成矿带西段材玛花岗岩体岩石地球化学及年代学. 沉积与特提斯地质, 31(4): 86-96. doi: 10.3969/j.issn.1009-3850.2011.04.013 [83] 祝向平, 陈华安, 刘鸿飞, 等, 2015a. 西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义. 地质学报, 89(1): 109-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm [84] 祝向平, 陈华安, 刘鸿飞, 等, 2015b. 西藏多不杂斑岩铜矿斑岩锆石U-Pb年龄、岩石地球化学特征及其成矿意义. 地质学报, 89(3): 534-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201503008.htm