Two Types of Strike‐Slip Fault Zones and Their Tectonic Deformation Patterns in the Central Junggar Basin
-
摘要: 走滑断裂带对中国西部压扭性叠合盆地大中型油气田形成与分布具有重要的控制作用,也是研究难点之一.基于高密度三维地震资料,本文采用多种地震构造解析技术,瞄准噶尔盆地腹部侏罗系开展了精细走滑断裂带解释和变形样式分析.在燕山Ⅱ幕构造活动期,侏罗系发育了NWW向左行压扭性和NE向左行张扭性两类走滑断裂带.它们都是由4组剪切断层复合而成,共同遵从左行简单剪切模式,但几何学特征和构造属性差异很大.NWW和NE向走滑断裂带不存在共轭剪切关系,而是在钝夹角区(135°左右)普遍具有弧形联合与归并趋势.在构造变形中,两类同期左行走滑断裂带弧形联合控制了变形区域旋扭形变和剪切破裂,构成了一个大尺度“面”状旋扭构造体系.旋扭构造变形样式对中亚陆内造山带研究具有一定借鉴意义,也为压扭盆地的油气勘探实践提供了新思路.Abstract: The strike-slip fault zone plays an important role in controlling the formation and distribution of large and medium oil and gas fields in the compressional superimposed basins in western China, which is also one of the difficult problems in the study. Based on the high-density 3D seismic data, a fine strike-slip fault zone interpretation and deformation pattern analysis of the Jurassic in the central Junggar basin using a variety of structural analysis techniques are conducted in this study. During the second episode of Yanshan tectonic movement, two types of strike-slip fault zones of NWW left-lateral compression-torsion and NE left-lateral tension-torsion were developed in the Jurassic. They were both composed of four groups of shear faults, which followed the simple left-lateral shear mode, but they were very different in their geometric characteristics and structural attributes. There is no conjugate shear relationship between NWW and NE strike-slip fault zones, but arc-shaped joint and merge in the blunt angle zone (about 135°). In the tectonic deformation, the arc-shaped joint action of two types of left-lateral strike-slip faults controlled torsion deformation and shear fracture in the deformation area, forming a large scale clockwise torsional structural system. The deformation pattern of torsional structure can be used as a reference for the study of intracontinental orogenic belts, and also provides a new idea for oil and gas exploration in compression-torsional basins.
-
图 3 NWW向压扭性断裂带沿层相干切片(a)和等时间切片(b)解释成果
切片位置见图 1
Fig. 3. Interpretation map of NWW compressive strike-slip fault zone with 3D seismic-coherent slice along layer (a) and isotime slice (b)
图 6 NE向张扭性断裂带沿层相关切片(a)及地震剖面(b)解释成果
切片位置见图 1
Fig. 6. Interpretation results of coherent section (a) and seismic section (b) along the NE tensional strike-slip fault zone
-
[1] Chen, F. J., Wang, X. W., Wang, X. W., 2005. Prototype and Tectonic Evolution of the Junggar Basin, Northwestern China. Earth Science Frontiers, 12(3): 77-89 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.03.010 [2] Chen, Y. B., Cheng, X. G., Zhang, H., et al., 2018. Fault Characteristics and Control on Hydrocarbon Accumulation of Middle‐Shallow Layers in the Slope Zone of Mahu Sag, Junggar Basin, NW China. Petroleum Exploration and Development, 45(6): 985-994 (in Chinese with English abstract). [3] Cheng, C. L., 2018. Characteristics of Strike‐Slip Faults in No. 4 Blocks in Central Junggar Basin and Its Significance of Petroleum Geology. Journal of Shengli College China University of Petroleum, 32(1): 8-10 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5935.2018.01.002 [4] Cloos, H., 1928. Experimente zur Inneren Tektonik. Zentralblatt für Mineralogie, Geologie and Paläontologie, (5): 609-621. [5] Cui, S. Q., 1999. On Global Meso Cenozoic Intracontinental Orogenesis and Orogenic Belts. Earth Science Frontiers, 6(4): 283-293 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.011 [6] Dong, S. W., Wu, X. H., Wu, Z. H., et al., 2000. On Tectonic Seesawing of the East Asia Continent‐Global Implication of the Yanshanian Movement. Geological Review, 46(1): 8-13 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2000.01.002 [7] Ge, X. H., 1989. The History of Formation of Intraplate Orogenic Belts in the North China Paleoplate. Geological Review, 35(3): 254-261 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1989.03.009 [8] He, D. F., Chen, X. F., Kuang, J., et al., 2008. Development and Genetic Mechanism of Chepaizi‐Mosuowan Uplift in Junggar Basin. Earth Science Frontiers, 15(4): 42-55 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60038-X [9] He, D. F., Zhang, L., Wu, S. T., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract). [10] Jia, Q. S., Yin, W., Chen, F. J., et al., 2007. The Role of Che‐Mo Palaeohigh in Controlling Hydrocarbon Accumulation in Central Juggar Basin. Oil & Gas Geology, 28(2): 257-265 (in Chinese with English abstract). [11] Jiang, Y. J., Yang, B. Z., Wang, X. Y., et al., 2002. Structural Feature and Evolution in Northeast Part of Junggar Basin. Acta Geologica Sinica, 76(4): 462-468 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.04.005 [12] Johnson, A. M., 1977. Styles of Folding: Mechanics and Mechanisms of Folding of Natural Elastic Materials. Elservier, Amsterdam. [13] Li, D. X., 1999. Intraplate Transpressional Orogenic Mechanism. Earth Science Frontiers, 6(4): 317-322 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.014 [14] Lin, H. X., Wang, J. W., Cao, J. J., et al., 2019. Jurassic Compression‐Torsion Fault Patterns of the Central Junggar Basin and Their Controlling Role on Reservoir. Acta Geologica Sinica, 93(12): 3259-3268 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.12.017 [15] Liu, J. B., Li, P. J., Hu, Z., et al., 2014. Hydrocarbon Accumulation Mechanisms Controlled by Yanshanian Faults in Eastern Junggar Basin. Xinjiang Petroleum Geology, 35(1): 5-11 (in Chinese with English abstract). [16] Liu, Y. H., Liu, X. W., Zheng, J. J., et al., 2011. Coupling Dynamic Mechanisms between Plate Tectonics Evolution and Mantle Convection of South and North Tianshan. Progress in Geophysics, 26(5): 1544-1556 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2011.05.006 [17] Martin, H., 1983. Alternative Geodynamic Models for the Damara Orogeny. In: Martin, H., Eder, F. W., eds., Intracontinental Fold Belts. Springer‐Verlag, Berlin. [18] Peng, X. L., 2007. Query of Chepaizi‐Mosuowan Paleo‐Uplift in Junggar Basin. China Petroleum Exploration, 12(6): 63-71, 77 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2007.06.014 [19] Price, N. J., Cosgrave, J. W., 1990. Analysis of Geological Structures. Cambridge University Press, Cambridge. [20] Ridel, W., 1929. Zur Mechanic Geologischer Brucherscheinungen. Zentralblatt für Mineralogie, Geologie and Paläontologie, (8): 345-368. [21] Shu, L. S., 2021. Principal Features of Intracontinental Orogenic Belt and Discussions on Its Dynamics. Acta Geologica Sinica, 95(1): 98-106 (in Chinese with English abstract). [22] Song, H. L., 1999. Characteristics of Yanshan Type Intraplate Orogenic Belts and a Discussion on Its Dynamics. Earth Science Frontiers, 6(4): 309-316 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.013 [23] Song, J. Y., Qin, M. K., Cai, Y. Q., et al., 2019. Uplift‐Denudation of Orogenic Belts Control on the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications from Apatite Fission Track (AFT). Earth Science, 44(11): 3910-3925 (in Chinese with English abstract). [24] Sui, F. G., 2015. Tectonic Evolution and Its Relationship with Hydrocarbon Accumulation in the Northwest Margin of Junggar Basin. Acta Geologica Sinica, 89(4): 779-793 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.04.010 [25] Tong, D. J., Ren, J. Y., Ren, Y. P., 2006. Evolution of the Che‐Mo Palaeo‐Uplift in Junggar Basin and Control on the Oil and Gas Reservoir. Petroleum Geology and Recovery Efficiency, 13(3): 39-42 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2006.03.012 [26] Wang, T. F., 2019. A Review of Geotectonics. Earth Science, 44(5): 1526-1536 (in Chinese with English abstract). [27] Weng, W. H., 1927. Crustal Movements and Igneous Activities in Eastern China since Mesozoic. Journal of the Geological Society of China, 6(1): 9-36 (in Chinese). [28] Wu, Q. F., 1986. Structural Evolution and Prospects of Junggar Basin. Xinjiang Geology, 4(3): 1-19 (in Chinese with English abstract). [29] Wu, X. Z., Zhang, N. F., Shi, X., et al., 2006. Characteristics and Reservoiring Mode of Chepaizi‐Mosuowan Paleo‐Uplift in Junggar Basin. China Petroleum Exploration, 11(1): 65-68, 84 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2006.01.010 [30] Xiao, W. J., Song, D. F., Brian, F. W., 2019. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science in China (Series D), 49(10): 1512-1545 (in Chinese). [31] Yu, F. S., Amu, G., Yang, G. D., et al., 2008. Tectonic Evolution and Mechanism Analysis of Che‐Mo Palaeo‐Uplift in Junggar Basin. Acta Geoscientica Sinica, 29(1): 39-44 (in Chinese with English abstract). [32] Zhang, C. H., 1999. A Primary Discussion on the Intraplate Orogenic Belt. Earth Science Frontiers, 6(4): 295-308 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.012 [33] Zhao, W. X., 2001. Represented Character and Several Revelations about Yanshan Mode Intraplate Orogenesis Acting on the West‐Hill Beijing. Geological Science and Technology Information, 20(2): 23-26 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2001.02.005 [34] Zheng, Y. D., Wang, T., Ma, M. B., et al., 2004. Maximum Effective Moment Criterion and the Origin of Low‐Angle Normal Faults. Journal of Structural Geology, 26(2): 271-285. https://doi.org/10.1016/S0191-8141(03)00079-8 [35] Zhu, F., Qu, J. H., Yu, B. L., et al., 2017. Recognition of the Reservoir in Well Shinan‐21 of the Hinterland, Junggar Basin. Xinjiang Petroleum Geology, 38(6): 673-677 (in Chinese with English abstract). [36] Zhu, W., Wang, R., Lu, X. C., et al., 2021. Yanshanian Tectonic Activities and Their Sedimentary Responses in Northwestern Junggar Basin. Earth Science, 46(5): 1692-1709 (in Chinese with English abstract). [37] 陈发景, 汪新文, 汪新伟, 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12(3): 77-89. doi: 10.3321/j.issn:1005-2321.2005.03.010 [38] 陈永波, 程晓敢, 张寒, 等, 2018. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用. 石油勘探与开发, 45(6): 985-994. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806007.htm [39] 程长领, 2018. 准噶尔盆地中部4区块走滑断裂特征及石油地质意义. 中国石油大学胜利学院学报, 32(1): 8-10. doi: 10.3969/j.issn.1673-5935.2018.01.002 [40] 崔盛芹, 1999. 论全球性中‒新生代陆内造山作用与造山带. 地学前缘, 6(4): 283-293. doi: 10.3321/j.issn:1005-2321.1999.04.011 [41] 董树文, 吴锡浩, 吴珍汉, 等, 2000. 论东亚大陆的构造翘变: 燕山运动的全球意义. 地质论评, 46(1): 8-13. doi: 10.3321/j.issn:0371-5736.2000.01.002 [42] 葛肖虹, 1989. 华北板内造山带的形成史. 地质论评, 35(3): 254-261. doi: 10.3321/j.issn:0371-5736.1989.03.009 [43] 何登发, 陈新发, 况军, 等, 2008. 准噶尔盆地车排子‒莫索湾古隆起的形成演化与成因机制. 地学前缘, 15(4): 42-55. doi: 10.3321/j.issn:1005-2321.2008.04.006 [44] 何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805002.htm [45] 贾庆素, 尹伟, 陈发景, 等, 2007. 准噶尔盆地中部车‒莫古隆起控藏作用分析. 石油与天然气地质, 28(2): 257-265. doi: 10.3321/j.issn:0253-9985.2007.02.018 [46] 姜耀俭, 杨丙中, 王岫岩, 等, 2002. 准噶尔盆地东北缘构造特征、演化及与油气的关系. 地质学报, 76(4): 462-468. doi: 10.3321/j.issn:0001-5717.2002.04.005 [47] 李东旭, 1999. 板内扭压造山机制. 地学前缘, 6(4): 317-322. doi: 10.3321/j.issn:1005-2321.1999.04.014 [48] 林会喜, 王建伟, 曹建军, 等, 2019. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究. 地质学报, 93(12): 3259-3268. doi: 10.3969/j.issn.0001-5717.2019.12.017 [49] 刘俊榜, 李培俊, 胡智, 等, 2014. 准噶尔盆地东部地区燕山运动期断裂控藏机制. 新疆石油地质, 35(1): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201401003.htm [50] 刘玉虎, 刘兴旺, 郑建京, 等, 2011. 天山南北地块构造演化与地幔对流耦合动力机制. 地球物理学进展, 26(5): 1544-1556. doi: 10.3969/j.issn.1004-2903.2011.05.006 [51] 彭希龄, 2007. 准噶尔盆地车莫古隆起质疑. 中国石油勘探, 12(6): 63-71, 77. doi: 10.3969/j.issn.1672-7703.2007.06.014 [52] 舒良树, 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98-106. doi: 10.3969/j.issn.1006-0995.2021.01.020 [53] 宋鸿林, 1999. 燕山式板内造山带基本特征与动力学探讨. 地学前缘, 6(4): 309-316. doi: 10.3321/j.issn:1005-2321.1999.04.013 [54] 宋继叶, 秦明宽, 蔡煜琦, 等, 2019. 准东构造隆升对砂岩型铀成矿作用的制约: 磷灰石裂变径迹证据. 地球科学, 44(11): 3910-3925. doi: 10.3799/dqkx.2018.331 [55] 隋风贵, 2015. 准噶尔盆地西北缘构造演化及其与油气成藏的关系. 地质学报, 89(4): 779-793. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201504010.htm [56] 佟殿君, 任建业, 任亚平, 2006. 准噶尔盆地车莫古隆起的演化及其对油气藏的控制. 油气地质与采收率, 13(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200603011.htm [57] 万天丰, 2019. 论大地构造学的发展. 地球科学, 44(5): 1526-1536. doi: 10.3799/dqkx.2019.033 [58] 翁文灏, 1927. 中国东部自中生代以来的地壳运动及火山活动. 中国地质学会志, 6(1): 9-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE192701001.htm [59] 吴庆福, 1986. 准噶尔盆地构造演化与找油领域. 新疆地质, 4(3): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198603001.htm [60] 吴晓智, 张年富, 石昕, 等, 2006. 准噶尔盆地车莫古隆起构造特征与成藏模式. 中国石油勘探, 11(1): 65-68, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200601009.htm [61] 肖文交, 宋东方, Brian, F. W., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(D辑), 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm [62] 于福生, 阿木古冷, 杨光达, 等, 2008. 准噶尔盆地车‒莫古隆起的构造演化特征及其成因模拟. 地球学报, 29(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200801007.htm [63] 张长厚, 1999. 初论板内造山带. 地学前缘, 6(4): 295-308. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904018.htm [64] 赵温霞, 2001. 燕山式板内造山作用在北京西山的表现特征及若干启示. 地质科技情报, 20(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200102004.htm [65] 朱峰, 瞿建华, 于宝利, 等, 2017. 准噶尔盆地腹部石南21井油藏再认识. 新疆石油地质, 38(6): 673-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201706008.htm [66] 朱文, 王任, 鲁新川, 等, 2021. 准噶尔盆地西北腹部燕山期构造活动与沉积响应. 地球科学, 46(5): 1692-1709. doi: 10.3799/dqkx.2020.118