Effects of Poisson Ratio on In-Situ Stress Field near the Jiali Fault along the Sichuan-Tibet Railway
-
摘要:
川藏铁路在波密跨越嘉黎断裂,研究其周边地应力场对认识嘉黎断裂对川藏铁路廊道地应力场的影响至关重要.通过数值模型计算了通古地区及其邻近鲁朗、多康地区地应力场,通过对比3个模型的加载条件和力学参数差异,分析了沿嘉黎断裂带地应力场与周边区域地应力场的不同.结果表明:(1)总体来看,随深度变化的泊松比,能更好地拟合实测地应力数据;(2)地应力场区域差异明显,多康地区地应力较高,挤压明显,而鲁朗地区挤压程度仅为多康地区1/3左右,通古地区跨越嘉黎断裂带,应力场显示挤压很弱,可能应力已经释放;(3)基于实测数据和合适的地质力学参数,可以较为有效地预测地壳浅层的局部应力场,而预测地壳深部应力场则需要精确的泊松比上限值.
Abstract:The Sichuan-Tibet Railway crosses the Jiali fault in Bomi. Therefore, studying the in-situ stress field around the Jiali fault is very important to understanding the influence of Jiali fault on the in-situ stress field along the Sichuan-Tibet Railway corridor. In this study, the in-situ stress field of Tonggu area and its neighboring areas of Lulang and Duokang are studied via numerical models. The loading conditions and geomechanical parameters of three models are analyzed. The results show that: (1) Poisson ratio that varies with depth is more suitable for fitting the measured data of in-situ stress. (2) The in-situ stress field shows obvious regional differences. The in-situ stress in the Duokang area is relatively high, demonstrating a strong compressional state, while the compression in the Lulang area is only about 1/3 of that in the Duokang area. The field in Tonggu area shows that the compression is very weak. It means that the stress along the Jiali fault zone may have been released. (3) Based on the measured data and appropriate geomechanical parameters, the local stress field in the shallow part of the crust can be effectively predicted, whereas the accurate upper limit of Poisson's ratio is needed to predict the stress field in the deeper part.
-
Key words:
- Sichuan-Tibet Railway /
- in-situ stress field /
- Jiali fault /
- Poisson ratio /
- engineering geology
-
图 1 区域构造和地形概图
a. 研究区域周边主要构造简图,据赵远方等(2021)修改,其中红框内为研究区域;b. 研究区域地形概况,其中黑色实线为嘉黎断裂,虚线为川藏铁路,黑框从左到右分别为鲁朗模型、通古模型、多康模型的范围;白色圆圈表示地应力钻孔位置
Fig. 1. Overview of regional tectonic map and topographical map
表 1 地应力测孔数据概况
Table 1. Information of boreholes and in-situ stress data
模型名称 测孔序号 最深测段(m) 岩性 数据段数 方向 多康 1 653.20 灰岩 5 NE75°~84° 2 572.70 灰岩、大理岩 5 NE80°~94° 鲁朗 3 307.98 花岗岩 3 NE49°~60° 4 301.12 花岗岩 5 NE45°~59° 通古 5 182.97 片麻岩 3 NE69°~80° 6 296.72 花岗岩、大理岩 3 NE71°~79° 表 2 实测和计算应力值对比
Table 2. Comparison of the calculated and measured stress values
模型 测点 测深范围
(m)实测值
(SH)计算值
(SH_cal)实测值
(Sh)计算值
(Sh_cal)差值
SH-SH_cal差值
Sh-Sh_cal多康 1# 546.65 24.09 21.65 15.53 16.63 2.44 -1.1 565.43 25.25 22.07 16.33 16.98 3.18 -0.65 595.70 25.55 22.72 16.63 17.46 2.83 -0.83 631.92 26.92 23.48 18.46 18.06 3.44 0.4 653.20 28.10 23.92 18.70 18.41 4.18 0.29 2# 347.22 20.76 25.09 13.14 14.90 -4.33 -1.76 482.22 20.59 26.66 13.46 16.65 -6.07 -3.19 547.22 25.66 27.36 16.16 17.46 -1.7 -1.3 562.22 27.79 27.52 17.83 17.65 0.27 0.18 572.70 29.36 27.63 18.46 17.78 1.73 0.68 鲁朗 3# 256.10 10.27 11.33 6.84 5.72 -1.06 1.12 280.20 10.34 11.70 6.52 6.22 -1.36 0.3 284.88 12.75 11.77 7.84 6.32 0.98 1.52 4# 127.27 9.25 10.57 5.55 5.48 -1.32 0.07 182.17 12.38 11.68 7.29 6.69 0.7 0.6 242.35 12.97 13.29 7.88 8.44 -0.32 -0.56 290.44 18.44 14.79 10.85 10.04 3.65 0.81 301.12 18.55 15.12 10.95 10.40 3.43 0.55 通古 5# 173.71 9.97 11.05 5.58 5.63 -1.08 -0.05 178.34 6.78 11.06 3.78 5.68 -4.28 -1.9 182.97 8.91 11.06 4.97 5.73 -2.15 -0.76 6# 187.22 8.98 9.10 5.83 6.46 -0.12 -0.63 258.72 9.58 9.85 5.34 6.99 -0.27 -1.65 296.72 10.55 10.25 5.91 7.27 0.3 -1.36 注:表中实测数据来源于川藏铁路地应力测试报告;SH为最大水平主应力,Sh为最小水平主应力,SH_cal为模型计算的最大水平主应力,Sh_cal为模型计算的最小水平主应力,应力值单位为MPa. 表 3 通古模型不同参数下实测值与计算值对比
Table 3. Comparison between measured stress values and calculated ones under different parameters in the Tonggu model
测点 实测值 计算值 计算值(纯地形) 计算值(加断层) SH Sh SH_cal Sh_cal SH-SH_cal SH_cal1 Sh_cal1 SH-SH_cal1 SH_cal2 Sh_cal2 SH-SH_cal2 5# 9.97 5.58 11.05 5.63 -1.08 7.68 3.77 2.29 10.52 5.66 -0.55 6.78 3.78 11.06 5.68 -4.28 7.68 3.83 -0.90 10.55 5.73 -3.77 8.91 4.97 11.06 5.73 -2.15 7.68 3.88 1.23 10.58 5.80 -1.67 6# 8.98 5.83 9.10 6.46 -0.12 5.22 5.05 3.76 9.25 7.42 -0.27 9.58 5.34 9.85 6.99 -0.27 6.01 5.55 3.57 9.97 7.95 -0.39 10.55 5.91 10.25 7.27 0.30 6.43 5.82 4.12 10.36 8.24 0.19 注:SH为最大水平主应力,Sh为最小水平主应力,SH_cal、SH_cal1和SH_cal2为模型计算的最大水平主应力,Sh_cal、Sh_cal1和Sh_cal2为模型计算的最小水平主应力,应力值单位为MPa. -
[1] Bird, P., 1996. Computer Simulations of Alaskan Neotectonics. Tectonics, 15(2): 225-236. https://doi.org/10.1029/95tc02426 [2] Cai, M. F., 2000. Principle and Technology of Geostress Measurement. Science Press, Beijing (in Chinese). [3] Chen, X. Q., 2022. Influence of Fault Fracture Zone on Initial In-situ Stress Field in Tongmai Tunnel of the Sichuan-Tibet Railway. Earth Science, Online (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.P.20220110.1554.014.html [4] Ding, L., Zhong, D. L., 2013. The Tectonic Evolution of the Eastern Himalaya Syntaxis since the Collision of the Indian and Eurasian Plates. Chinese Journal of Geology, 48(2): 317-333 (in Chinese with English abstract). [5] Dwivedi, S. K., Hayashi, D., 2010. Modeling the Contemporary Stress Field and Deformation Pattern of Eastern Mediterranean. Journal of Earth Science, 21(4): 365-381. https://doi.org/10.1007/s12583-010-0100-6 [6] Gao, R., Wu, G. J., 1995. Geophysical Model and Geodynamic Process of Yadong-Ge'ermu Geosciece Transect in Qinghai-Tibet Plateau. Journal of Jilin University (Earth Science Edition), 25(3): 241-250 (in Chinese with English abstract). [7] Gong, F. Q., Li, X. B., 2007. A Distance Discriminant Analysis Method for Prediction of Possibility and Classification of Rockburst and Its Application. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1012-1018 (in Chinese with English abstract). [8] Guo, F. X., Xiao, Y., Miao, Y. W., 2015. Inversion of Tectonic Stress Field in Sichuan-Yunnan Area Using EGM 2008 Model and Ground Gravity Observation. Journal of Geodesy and Geodynamics, 35(3): 445-448 (in Chinese with English abstract). [9] Guo, M. W., Li, C. G., Wang, S. L., et al., 2008. Study on Inverse Analysis of 3-D Initial Geostress Field with Optimized Displacement Boundaries. Rock and Soil Mechanics, 29(5): 1269-1274 (in Chinese with English abstract). [10] He, M. C., Jing, H. H., Sun, X. M., 2000. Research Progress of Soft Rock Engineering Geomechanics in China Coal Mine. Journal of Engineering Geology, 8(1): 46-62 (in Chinese with English abstract). [11] Hu, B., Li, B. Y., Zhang, M., et al., 2011. Deformation Characteristics and Evolution of Jiali Fault Belt in Menba Area, Tibet. Global Geology, 30(4): 585-592 (in Chinese with English abstract). [12] Jiang, Q., Feng, X. T., Chen, J. L., et al., 2008. Nonlinear Inversion of 3D Initial Geostress Field in Jinping Ⅱ Hydropower Station Region. Rock and Soil Mechanics, 29(11): 3003-3010 (in Chinese with English abstract). [13] Jin, C. Y., Ma, Z. Y., Zhang, Y. L., et al., 2006. Application of Neural Network to back Analysis of Mechanical Parameters and Initial Stress Field of Rock Masses. Rock and Soil Mechanics, 27(8): 1263-1266, 1271 (in Chinese with English abstract). [14] Jing, F., Sheng, Q., Zhang, Y. H., et al., 2008. Statistical Analysis of Geostress Distribution Laws for Different Rocks. Rock and Soil Mechanics, 29(7): 1877-1883 (in Chinese with English abstract). [15] Li, F., Zhou J. X., Wang, J. A., 2019. Back-Analysis and Reconstruction Method of In-Situ Stress Field Based on Limited Sample Data. Journal of China Coal Society, 44(5): 1421-1431 (in Chinese with English abstract). [16] Li, H. R., Bai, L., Zhan, H. L., 2021. Research Progress of Jiali Fault Activity. Reviews of Geophysics and Planetary Physics, 52(2): 182-193 (in Chinese with English abstract). [17] Li, S. J., Liu, Y. X., Wang, D. G., 2001. Inversion Procedure of Initial Stress Fields in Rock Masses Based on Genetic Algorithm. Journal of China Coal Society, 26(1): 13-17 (in Chinese with English abstract). [18] Li, Y. H., Tian, X. B., Wu, Q. J., et al., 2006. The Poisson Ratio and Crustal Structure of the Central Qinghai-Xizang Inferred from INDEPTH-Ⅲ Teleseismic Waveforms: Geological and Geophysical Implications. Chinese Journal of Geophysics, 49(4): 1037-1044 (in Chinese with English abstract). [19] Liu, B., Xi, D. Y., Ge, N. J., et al., 2002. Anisotropy of Poisson's Ratio in Rock Samples under Confining Pressures. Chinese Journal of Geophysics, 45(6): 880-890 (in Chinese with English abstract). [20] Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract). [21] Qiu, X. B., Li, S. C., Li, S. C., 2003. 3D Geostress Regression Analysis Method and Its Application. Chinese Journal of Rock Mechanics and Engineering, 22(10): 1613-1617 (in Chinese with English abstract). [22] Qu, C., Liu, X. Y., Yu, C. Q., et al., 2020. S Wave Velocity and Poisson's Ratio Tomography of the Tibetan Plateau. Chinese Journal of Geophysics, 63(10): 3640-3652 (in Chinese with English abstract). [23] Shen, J., Wang, Y. P., Ren, J. W., et al., 2003. Quaternary Dextral Shearing and Crustal Movement in Southeast Tibetan Plateau. Xinjiang Geology, 21(1): 120-125 (in Chinese with English abstract). [24] Song, J., Tang, F. T., Deng, Z. H., et al., 2011. Study on Current Movement Characteristics and Numerical Simulation of the Main Faults around Eastern Himalayan Syntaxis. Chinese Journal of Geophysics, 54(6): 1536-1548 (in Chinese with English abstract). [25] Sun, Y. J., Guo, C. B., Wu, Z. H., et al., 2017. Numerical Study of the Crustal Stress, Strain Rate and Fault Activity in the Eastern Tibetan Plateau. Acta Geoscientica Sinica, 38(3): 385-392 (in Chinese with English abstract). [26] Walsh, J. B., 1965. The Effect of Cracks in Rocks on Poisson's Ratio. Journal of Geophysical Research Atmospheres, 70(20): 5249-5257. https://doi.org/10.1029/jz070i020p05249 [27] Wang, C. H., Guo, Q. L., Ding, L. F., et al., 2009. High In-Situ Stress Criteria for Engineering Area and a Case Analysis. Rock and Soil Mechanics, 30(8): 2359-2364 (in Chinese with English abstract). [28] Wang, J. A., Li, F., Review of Inverse Optimal Algorithm of In-Situ Stress Filed and New Achievement. Journal of China University of Mining & Technology, 44(2): 189-205 (in Chinese with English abstract). [29] Xie, R. H., Qu, T. X., Qian, G. M., 2007. Structural Geology. China University of Mining and Technology Press, Xuzhou, 25-37 (in Chinese). [30] Yang, S. X., Yao, R., Cui, X. F., et al., 2012. Analysis of the Characteristics of Measured Stress in Chinese Mainland and Its Active Blocks and North-South Seismic Belt. Chinese Journal of Geophysics, 55(12): 4207-4217 (in Chinese with English abstract). [31] You, S., Li, F., Ji, H. G., et al., 2020. Linkage Mechanism of Mechanical Response of Deep Granite under High Stress and High Water Pressure. Journal of China Coal Society, 45(S1): 219-229 (in Chinese with English abstract). [32] Yu, B., Cai, M. F., Qiao, L., 1996. Application of Grey Model Theory to Analysis of In-Situ Stress in Ekou Iron Mine. Chinese Journal of Rock Mechanics and Engineering, 15(2): 122-127 (in Chinese with English abstract). [33] Yuan, H. P., Wang, J. A., Cai, M. F., 2011. Geometric Cross-Scale Back-Analysis and Reconstruction Method for Complicated Geo-Stress Field. Journal of Mining & Safety Engineering, 28(4): 589-595 (in Chinese with English abstract). [34] Zang, A., Stephansson, O., 2010. Stress Field of the Earth's Crust. Springer, London. [35] Zhang, J. J., Fu, B. J., 2008. Rockburst and Its Criteria and Control. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042 (in Chinese with English abstract). [36] Zhang, M., Huang, J., Ju, N. P., et al., 2019. Inverse Analysis on In-Situ Stress Field of Super-Long and Deep Buried Tunnel in Chuan-Zang Railway. Chinese Journal of Underground Space and Engineering, 15(4): 1232-1238 (in Chinese with English abstract). [37] Zhang, S. Q., Xing, H. L., Yue, D. A., et al., 2011. Regional Stress Fields under Tibet from 3D Global Flow Simulation. Journal of Earth Science, 22(2): 155-159. https://doi.org/10.1007/s12583-011-0167-8 [38] Zhang, Y. X., 2021. Characteristics of Current In-Situ Stress Field about Sejila Mountain Traffic Corridor. Journal of Engineering Geology, 29(2): 394-403 (in Chinese with English abstract). [39] Zhao, D. A., Chen, Z. M., Cai, X. L., et al., 2007. Analysis of Distribution Rule of Geostress in China. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1265-1271 (in Chinese with English abstract). [40] Zhao, J., Guo, G. T., Xu, D. P., et al., 2020. Experimental Study of Deformation and Failure Characteristics of Deeply-Buried Hard Rock under Triaxial and Cyclic Loading and Unloading Stress Paths. Rock and Soil Mechanics, 41(5): 1521-1530 (in Chinese with English abstract). [41] Zhao, Y. F., Gong, W. B., Jiang, W., et al., 2021. Multi-Stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang-Tongmai Section, South Tibet. Geoscience, 35(1): 220-233 (in Chinese with English abstract). [42] Zheng, Y., Chen, Y., Fu, R. S., et al., 2007. Simulation of the Effects of Faults Movement on Stress and Deformation Fields of Tibetan Plateau by Discontinuous Movement Models. Chinese Journal of Geophysics, 50(5): 1398-1408 (in Chinese with English abstract). [43] Zhu, H. C., Tao, Z. Y., 1994. A Preliminary Analysis on Ground Stress Vs and Topography Morphology. Water Resources and Hydropower Engineering, 25(1): 29-34 (in Chinese with English abstract). [44] 蔡美峰, 2000. 地应力测量原理和技术. 北京: 科学出版社. [45] 陈兴强, 2022. 断层破碎带对川藏铁路通麦隧道初始地应力场影响. 地球科学, 在线出版. https://kns.cnki.net/kcms/detail/42.1874.P.20220110.1554.014.html [46] 丁林, 钟大赉, 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化. 地质科学, 48(2): 317-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302003.htm [47] 高锐, 吴功建, 1995. 青藏高原亚东‒格尔木地学断面地球物理综合解释模型与现今地球动力学过程. 吉林大学学报(地球科学版), 25(3): 241-250. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ503.000.htm [48] 宫凤强, 李夕兵, 2007. 岩爆发生和烈度分级预测的距离判别方法及应用. 岩石力学与工程学报, 26(5): 1012-1018. doi: 10.3321/j.issn:1000-6915.2007.05.021 [49] 郭飞霄, 肖云, 苗岳旺, 2015. 利用EGM2008模型和地面实测重力资料反演川滇地区构造应力场. 大地测量与地球动力学, 35(3): 445-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201503020.htm [50] 郭明伟, 李春光, 王水林, 等, 2008. 优化位移边界反演三维初始地应力场的研究. 岩土力学, 29(5): 1269-1274. doi: 10.3969/j.issn.1000-7598.2008.05.023 [51] 何满潮, 景海河, 孙晓明, 2000. 软岩工程地质力学研究进展. 工程地质学报, 8(1): 46-62. doi: 10.3969/j.issn.1004-9665.2000.01.009 [52] 胡波, 李泊洋, 张明, 等, 2011. 西藏门巴地区嘉黎断裂带变形特征及演化. 世界地质, 30(4): 585-592. doi: 10.3969/j.issn.1004-5589.2011.04.012 [53] 江权, 冯夏庭, 陈建林, 等, 2008. 锦屏二级水电站厂址区域三维地应力场非线性反演. 岩土力学, 29(11): 3003-3010. doi: 10.3969/j.issn.1000-7598.2008.11.020 [54] 金长宇, 马震岳, 张运良, 等, 2006. 神经网络在岩体力学参数和地应力场反演中的应用. 岩土力学, 27(8): 1263-1266, 1271. doi: 10.3969/j.issn.1000-7598.2006.08.007 [55] 景锋, 盛谦, 张勇慧, 等, 2008. 不同地质成因岩石地应力分布规律的统计分析. 岩土力学, 29(7): 1877-1883. doi: 10.3969/j.issn.1000-7598.2008.07.028 [56] 李飞, 周家兴, 王金安, 2019. 基于稀少样本数据的地应力场反演重构方法. 煤炭学报, 44(5): 1421-1431. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905014.htm [57] 李鸿儒, 白玲, 詹慧丽, 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202102003.htm [58] 李守巨, 刘迎曦, 王登刚, 2001. 基于遗传算法的岩体初始应力场反演. 煤炭学报, 26(1): 13-17. doi: 10.3321/j.issn:0253-9993.2001.01.003 [59] 李永华, 田小波, 吴庆举, 等, 2006. 青藏高原INDEPTH-Ⅲ剖面地壳厚度与泊松比: 地质与地球物理含义. 地球物理学报, 49(4): 1037-1044. doi: 10.3321/j.issn:0001-5733.2006.04.015 [60] 刘斌, 席道瑛, 葛宁洁, 等, 2002. 不同围压下岩石中泊松比的各向异性. 地球物理学报, 45(6): 880-890. doi: 10.3321/j.issn:0001-5733.2002.06.016 [61] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm [62] 邱祥波, 李术才, 李树忱, 2003. 三维地应力回归分析方法与工程应用. 岩石力学与工程学报, 22(10): 1613-1617. doi: 10.3321/j.issn:1000-6915.2003.10.007 [63] 瞿辰, 刘晓宇, 于常青, 等, 2020. 青藏高原S波和泊松比的层析成像. 地球物理学报, 63(10): 3640-3652. doi: 10.6038/cjg2020N0236 [64] 沈军, 汪一鹏, 任金卫, 等, 2003. 青藏高原东南部第四纪右旋剪切运动. 新疆地质, 21(1): 120-125. doi: 10.3969/j.issn.1000-8845.2003.01.019 [65] 宋键, 唐方头, 邓志辉, 等, 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究. 地球物理学报, 54(6): 1536-1548. doi: 10.3969/j.issn.0001-5733.2011.06.013 [66] 孙玉军, 郭长宝, 吴中海, 等, 2017. 数值模拟探讨青藏高原东部应力应变场及断裂活动性. 地球学报, 38(3): 385-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201703008.htm [67] 王成虎, 郭啟良, 丁立丰, 等, 2009. 工程区高地应力判据研究及实例分析. 岩土力学, 30(8): 2359-2364. doi: 10.3969/j.issn.1000-7598.2009.08.029 [68] 王金安, 李飞, 2015. 复杂地应力场反演优化算法及研究新进展. 中国矿业大学学报, 44(2): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201502001.htm [69] 谢仁海, 渠天祥, 钱光谟, 2007. 构造地质学, 中国矿业大学出版社, 徐州, 25-37. [70] 杨树新, 姚瑞, 崔效锋, 等, 2012. 中国大陆与各活动地块、南北地震带实测应力特征分析. 地球物理学报, 55(12): 4207-4217. doi: 10.6038/j.issn.0001-5733.2012.12.032 [71] 由爽, 李飞, 纪洪广, 等, 2020. 高应力高水压下深部花岗岩力学响应联动机制. 煤炭学报, 45(S1): 219-229. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1023.htm [72] 于波, 蔡美峰, 乔兰, 1996. 灰色建模理论在峨口铁矿地应力分布规律研究中的应用. 岩石力学与工程学报, 15(2): 122-127. doi: 10.3321/j.issn:1000-6915.1996.02.005 [73] 袁海平, 王金安, 蔡美峰, 2011. 复杂地应力场几何跨尺度反演与重构方法研究. 采矿与安全工程学报, 28(4): 589-595. doi: 10.3969/j.issn.1673-3363.2011.04.017 [74] 张镜剑, 傅冰骏, 2008. 岩爆及其判据和防治. 岩石力学与工程学报, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010 [75] 张敏, 黄健, 巨能攀, 等, 2019. 川藏铁路长大深埋隧道地应力场反演分析. 地下空间与工程学报, 15(4): 1232-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904035.htm [76] 张玉玺, 2021. 色季拉山交通廊道现今地应力场特征研究. 工程地质学报, 29(2): 394-403. [77] 赵德安, 陈志敏, 蔡小林, 等, 2007. 中国地应力场分布规律统计分析. 岩石力学与工程学报, 26(6): 1265-1271. doi: 10.3321/j.issn:1000-6915.2007.06.024 [78] 赵军, 郭广涛, 徐鼎平, 等, 2020. 三轴及循环加卸载应力路径下深埋硬岩变形破坏特征试验研究. 岩土力学, 41(5): 1521-1530. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005008.htm [79] 赵远方, 公王斌, 江万, 等, 2021. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220-233. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101025.htm [80] 郑勇, 陈顒, 傅容珊, 等, 2007. 应用非连续性模型模拟断层活动对青藏高原应力应变场的影响. 地球物理学报, 50(5): 1398-1408. doi: 10.3321/j.issn:0001-5733.2007.05.015 [81] 朱焕春, 陶振宇, 1994. 地形地貌与地应力分布的初步分析. 水利水电技术, 25(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ199401006.htm