• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东寨港红树林沉积物中微生物群落结构特征及其对环境的响应

    张攀 谢先军 黎清华 甘致远 胡甜 杨渐 邓娅敏 甘义群 张彦鹏

    张攀, 谢先军, 黎清华, 甘致远, 胡甜, 杨渐, 邓娅敏, 甘义群, 张彦鹏, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025
    引用本文: 张攀, 谢先军, 黎清华, 甘致远, 胡甜, 杨渐, 邓娅敏, 甘义群, 张彦鹏, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025
    Zhang Pan, Xie Xianjun, Li Qinghua, Gan Zhiyuan, Hu Tian, Yang Jian, Deng Yamin, Gan Yiqun, Zhang Yanpeng, 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025
    Citation: Zhang Pan, Xie Xianjun, Li Qinghua, Gan Zhiyuan, Hu Tian, Yang Jian, Deng Yamin, Gan Yiqun, Zhang Yanpeng, 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025

    东寨港红树林沉积物中微生物群落结构特征及其对环境的响应

    doi: 10.3799/dqkx.2022.025
    基金项目: 

    国家自然科学基金项目 41772255

    中国地质调查局地质调查项目 DD20190304

    详细信息
      作者简介:

      张攀(1993-),男,硕士研究生,主要从事红树林湿地环境微生物等方面的科研工作. ORCID:0000-0003-0243-9669. E-mail:1090990597@qq.com

      通讯作者:

      谢先军,E-mail:xjxie@cug.edu.cn

    • 中图分类号: P66

    Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port

    • 摘要:

      在红树林覆盖区域和光滩沉积物中存在着丰富的微生物群落,这些微生物在驱动红树林湿地的生物地球化学过程中起着至关重要的作用.深入了解东寨港红树林湿地沉积物中微生物的多样性分布特征,对探究东寨港红树林湿地中的生物地球化学过程和湿地的生态保护具有重要意义.本研究采用Illumina Miseq高通量测序技术,在东寨港的演丰西河和三江河采集108个沉积物样品,分析其地球化学和微生物群落特征,探讨不同环境因子对两岸红树林覆盖区域和光滩微生物群落的影响.结果显示:Proteobacteria是东寨港红树林沉积物中的优势种群,沉积物中微生物丰度和多样性随深度整体上呈减小趋势;演丰西河和三江河沉积物中微生物群落结构存在显著差异;pH是控制光滩区域沉积物中微生物群落结构的主要环境因子,而盐度是控制红树林表层沉积物中微生物群落结构的环境因子.上述研究结果表明:东寨港红树林沉积物中微生物分布特征和群落结构受到了人类活动的影响,微生物丰度和多样性随深度整体呈减小的变化趋势,不同采样区域沉积物中微生物群落结构存在明显差异,该差异是自然因素(盐度和pH)和人为因素(水产养殖)双重作用的结果.

       

    • 图  1  演丰西河和三江河红树林湿地沉积物采样位置及采样剖面

      a.东寨港;b.演丰西河采样区域;c.三江河采样区域;d.采样深度

      Fig.  1.  Sampling location and profile of mangrove wetland sediments in Yanfengxi River and Sanjiang River

      图  2  演丰西河和三江河采样区域沉积物中微生物丰度随深度的变化

      Fig.  2.  The variation of microbial abundance with depth in the sediments of the Yanfengxi River and Sanjiang River sampling areas

      图  3  演丰西河和三江河采样区域沉积物中微生物多样性随深度的变化

      Fig.  3.  Changes of microbial diversity in sediments of the sampling areas of Yanfengxi River and Sanjiang River with depth

      图  4  演丰西河和三江河采样区域沉积物中微生物丰度和多样性与环境因子相关性

      a.演丰西河;b.三江河

      Fig.  4.  Correlation between the abundance and diversity of microorganisms in sediments from Yanfengxi River and Sanjiang River sampling areas and environmental factors

      图  5  演丰西河和三江河沉积物中微生物在目水平上的分类

      a.演丰西河;b.三江河

      Fig.  5.  Classification of microorganisms in the sediments of Yanfengxi River and Sanjiang River at order level

      图  6  演丰西河和三江河不同深度沉积物样品NMDS分析

      a. 5~10 cm; b. 15~20 cm; c. 35~40 cm; d. 55~60 cm

      Fig.  6.  NMDS analysis of sediment samples at different depths in Yanfengxi River and Sanjiang River

      图  7  环境因子对演丰西河和三江河沉积物中微生物群落影响的冗余分析

      a.演丰西河;b.三江河

      Fig.  7.  Redundant analysis of the influence of environmental factors on the microbial community in the sediments of YanfengxiRiver and anjiang River

      表  1  演丰西河和三江河红树林不同深度沉积物样品的理化性质

      Table  1.   Physical and chemical properties of sediment samples from the mangroves of Yanfengxi River and Sanjiang River at different depths

      深度(cm) 理化性质 YS1 YS2 YS3 YS4 YS5 SS1 SS2 SS3 SS4
      10 pH 5.99 6.03 6.63 4.03 4.11 5.63 5.61 5.47 5.58
      20 5.97 5.84 6.73 3.39 3.54 5.19 5.73 5.69 5.9
      40 5.66 4.61 6.55 3.67 3.83 5.4 5.65 6.09 5.63
      60 5.52 4.15 6.81 5.46 5.89 5.66 5.07 5.89 5.97
      10 盐度(mS/cm) 6.54 6.34 8.15 8.00 6.62 5.32 5.35 5.07 4.52
      20 6.25 6.83 7.00 7.27 7.38 4.70 5.60 3.72 5.62
      40 6.65 7.71 5.70 6.42 6.41 3.66 5.49 3.13 5.19
      60 6.50 6.86 6.55 6.05 4.52 3.60 5.40 2.56 5.69
      10 TOC(%) 1.583 1.192 0.772 1.681 0.825 1.303 1.777 1.211 0.765
      20 1.544 1.530 0.847 1.130 1.469 1.500 1.591 0.841 1.014
      40 1.336 0.916 0.855 0.388 0.849 1.190 1.287 0.762 1.085
      60 1.185 0.978 1.201 0.493 0.205 1.053 1.332 0.431 1.055
      10 SO42-(mg/kg) 392.5 400.6 333.9 964.1 930.5 594.6 364.4 481.5 370.9
      20 361.1 372.1 327.8 886.5 1089 483.8 368.1 394.0 316.1
      40 479.4 578.0 432.0 502.6 824.9 345.1 322.5 278.1 548.7
      60 555.1 850.0 487.2 718.2 402.1 357.6 568.7 246.4 623.2
      下载: 导出CSV
    • [1] Alongi, D. M., Sasekumar, A., Tirendi, F., et al., 1998. The Influence of Stand Age on Benthic Decomposition and Recycling of Organic Matter in Managed Mangrove Forests of Malaysia. Journal of Experimental Marine Biology and Ecology, 225(2): 197-218. https://doi.org/10.1016/S0022-0981(97)00223-2
      [2] Alvarenga, D. O., Rigonato, J., Branco, L. H. Z., et al., 2015. Cyanobacteria in Mangrove Ecosystems. Biodiversity and Conservation, 24(4): 799-817. https://doi.org/10.1007/s10531-015-0871-2
      [3] Alzubaidy, H., Essack, M., Malas, T. B., et al., 2016. Rhizosphere Microbiome Metagenomics of Gray Mangroves (Avicennia Marina) in the Red Sea. Gene, 576(2): 626-636. https://doi.org/10.1016/j.gene.2015.10.032
      [4] Andreote, F. D., Jiménez, D. J., Chaves, D., et al., 2012. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics. PLoS One, 7(6): e38600. https://doi.org/10.1371/journal.pone.0038600
      [5] Bai, Y. N., Ren, P., Feng, P. Y., et al., 2020. Shift in Rhizospheric and Endophytic Bacterial Communities of Tomato Caused by Salinity and Grafting. Science of the Total Environment, 734: 139388. https://doi.org/10.1016/j.scitotenv.2020.139388
      [6] Behera, P., Mahapatra, S., Mohapatra, M., et al., 2017. Salinity and Macrophyte Drive the Biogeography of the Sedimentary Bacterial Communities in a Brackish Water Tropical Coastal Lagoon. Science of the Total Environment, 595: 472-485. https://doi.org/10.1016/j.scitotenv.2017.03.271
      [7] Cabral, L., Pereira de Sousa, S. T., Júnior Jr, G. V., et al., 2018. Microbial Functional Responses to Long-Term Anthropogenic Impact in Mangrove Soils. Ecotoxicology and Environmental Safety, 160: 231-239. https://doi.org/10.1016/j.ecoenv.2018.04.050
      [8] Ceccon, D. M., Faoro, H., da Cunha Lana, P., et al., 2019. Metataxonomic and Metagenomic Analysis of Mangrove Microbiomes Reveals Community Patterns Driven by Salinity and pH Gradients in Paranaguá Bay, Brazil. Science of the Total Environment, 694: 133609. https://doi.org/10.1016/j.scitotenv.2019.133609
      [9] Chen, Q., Zhao, Q., Li, J., et al., 2016. Mangrove Succession Enriches the Sediment Microbial Community in South China. Scientific Reports, 6: 27468. https://doi.org/10.1038/srep27468
      [10] Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092 (in Chinese with English abstract).
      [11] Colares, G. B., Melo, V. M. M., 2013. Relating Microbial Community Structure and Environmental Variables in Mangrove Sediments Inside Rhizophora Mangle L. Habitats. Applied Soil Ecology, 64: 171-177. https://doi.org/10.1016/j.apsoil.2012.12.004
      [12] Crump, B. C., Hopkinson, C. S., Sogin, M. L., et al., 2004. Microbial Biogeography along an Estuarine Salinity Gradient: Combined Influences of Bacterial Growth and Residence Time. Applied and Environmental Microbiology, 70(3): 1494-1505. https://doi.org/10.1128/AEM.70.3.1494-1505.2004
      [13] Dias, A. C. F., Andreote, F. D., Dini-Andreote, F., et al., 2009. Diversity and Biotechnological Potential of Culturable Bacteria from Brazilian Mangrove Sediment. World Journal of Microbiology and Biotechnology, 25(7): 1305-1311. https://doi.org/10.1007/s11274-009-0013-7
      [14] Dias, A. C. F., Andreote, F. D., Rigonato, J., et al., 2010. The Bacterial Diversity in a Brazilian Non-Disturbed Mangrove Sediment. Antonie Van Leeuwenhoek, 98(4): 541-551. https://doi.org/10.1007/s10482-010-9471-z
      [15] Fortunato, C. S., Crump, B. C., 2015. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient. PLoS One, 10(11): e0140578. https://doi.org/10.1371/journal.pone.0140578
      [16] Foti, M., Sorokin, D. Y., Lomans, B., et al., 2007. Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes. Applied and Environmental Microbiology, 73(7): 2093-2100. https://doi.org/10.1128/AEM.02622-06
      [17] Gomes, N. C. M., Cleary, D. F. R., Pires, A. C. C., et al., 2014. Assessing Variation in Bacterial Composition between the Rhizospheres of Two Mangrove Tree Species. Estuarine, Coastal and Shelf Science, 139: 40-45. https://doi.org/10.1016/j.ecss.2013.12.022
      [18] Gonzalez-Acosta, B., Bashan, Y., Hernandez-Saavedra, N. Y., et al., 2006. Seasonal Seawater Temperature as the Major Determinant for Populations of Culturable Bacteria in the Sediments of an Intact Mangrove in an Arid Region. FEMS Microbiology Ecology, 55(2): 311-321. https://doi.org/10.1111/j.1574-6941.2005.00019.x
      [19] Henriques, I. S., Alves, A., Tacão, M., et al., 2006. Seasonal and Spatial Variability of Free-Living Bacterial Community Composition along an Estuarine Gradient (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science, 68(1-2): 139-148. https://doi.org/10.1016/j.ecss.2006.01.015
      [20] Holguin, G., Vazquez, P., Bashan, Y., 2001. The Role of Sediment Microorganisms in the Productivity, Conservation, and Rehabilitation of Mangrove Ecosystems: An Overview. Biology and Fertility of Soils, 33(4): 265-278. https://doi.org/10.1007/s003740000319
      [21] Hori, T., Müller, A., Igarashi, Y., et al., 2010. Identification of Iron-Reducing Microorganisms in Anoxic Rice Paddy Soil by 13C-Acetate Probing. The ISME Journal, 4(2): 267-278. https://doi.org/10.1038/ismej.2009.100
      [22] Huang, C. L., Zheng, W. M., 2004. Current Progresses of Chinese Mangrove Wetlands Research. Wetland Science, 2(4): 303-308 (in Chinese with English abstract).
      [23] Ikenaga, M., Guevara, R., Dean, A. L., et al., 2010. Changes in Community Structure of Sediment Bacteria along the Florida Coastal Everglades Marsh-Mangrove-Seagrass Salinity Gradient. Microbial Ecology, 59(2): 284-295. https://doi.org/10.1007/s00248-009-9572-2
      [24] Ismail, Z., Sam, C. K., Yin, W. F., et al., 2017. Tropical Mangrove Swamp Metagenome Reveals Unusual Abundance of Ecologically Important Microbes. Current Science, 112(8): 1698. https://doi.org/10.18520/cs/v112/i08/1698-1703
      [25] Jiang, X. T., Peng, X., Deng, G. H., et al., 2013. Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microbial Ecology, 66(1): 96-104. https://doi.org/10.1007/s00248-013-0238-8
      [26] Kirchman, D. L., Dittel, A. I., Malmstrom, R. R., et al., 2005. Biogeography of Major Bacterial Groups in the Delaware Estuary. Limnology and Oceanography, 50(5): 1697-1706. https://doi.org/10.4319/lo.2005.50.5.1697
      [27] Li, M., Wang, L. J., Ma, W. H., et al., 2004. A Preliminary Study of Water Pollution in Dongzhaigang National Nature Reserve. Journal of Hainan Normal University (Natural Science), 17(3): 282-285 (in Chinese with English abstract).
      [28] Li, W., Guan, W., Chen, H., et al., 2019. Variations of Sediment Archaea Communities in Different Distribution Areas of Bruguiera Gymnoihiza Mangrove in Dongzhaigang, China. Polish Journal of Environmental Studies, 28(5): 3343-3352. https://doi.org/10.15244/pjoes/90030
      [29] Li, Y., Zhao, Z. Z., Wang, H. P., et al., 2018. Distribution of Organic Carbon in Sediments of Mangrove Forests and Its Influencing Factors in Dongzhai Harbor. Journal of Anhui Agricultural University, 45(2): 268-273 (in Chinese with English abstract).
      [30] Lin, X. L., Hetharua, B., Lin, L., et al., 2019. Mangrove Sediment Microbiome: Adaptive Microbial Assemblages and Their Routed Biogeochemical Processes in Yunxiao Mangrove National Nature Reserve, China. Microbial Ecology, 78(1): 57-69. https://doi.org/10.1007/s00248-018-1261-6
      [31] Liu, M., Huang, H., Bao, S., et al., 2019. Microbial Community Structure of Soils in Bamenwan Mangrove Wetland. Scientific Reports, 9: 8406. https://doi.org/10.1038/s41598-019-44788-x
      [32] Mendes, L. W., Taketani, R. G., Navarrete, A. A., et al., 2012. Shifts in Phylogenetic Diversity of Archaeal Communities in Mangrove Sediments at Different Sites and Depths in Southeastern Brazil. Research in Microbiology, 163(5): 366-377. https://doi.org/10.1016/j.resmic.2012.05.005
      [33] Nathan, V. K., Vijayan, J., Ammini, P., 2020. Comparison of Bacterial Diversity from Two Mangrove Ecosystems from India through Metagenomic Sequencing. Regional Studies in Marine Science, 35: 101184. https://doi.org/10.1016/j.rsma.2020.101184
      [34] Ou, Y. X., Fang, X. W., Zhang, N., et al., 2016. Influence of Solution Salinity on Microbial Biocementation of Coral Sand. Journal of Logistical Engineering University, 32(1): 78-82 (in Chinese with English abstract).
      [35] Polidoro, B. A., Elfes, C. T., Sanciangco, J. C., et al., 2011. Conservation Status of Marine Biodiversity in Oceania: An Analysis of Marine Species on the IUCN Red List of Threatened Species. Journal of Marine Biology, 2011: 247030. https://doi.org/10.1155/2011/247030
      [36] Priya, G., Lau, N. S., Furusawa, G., et al., 2018. Metagenomic Insights into the Phylogenetic and Functional Profiles of Soil Microbiome from a Managed Mangrove in Malaysia. Agri Gene, 9: 5-15. https://doi.org/10.1016/j.aggene.2018.07.001
      [37] Rath, K. M., Rousk, J., 2015. Salt Effects on the Soil Microbial Decomposer Community and Their Role in Organic Carbon Cycling: A Review. Soil Biology and Biochemistry, 81: 108-123. https://doi.org/10.1016/j.soilbio.2014.11.001
      [38] Rocha, L. L., Colares, G. B., Nogueira, V. L. R., et al., 2016. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments. International Journal of Microbiology, 2016: 3435809. https://doi.org/10.1155/2016/3435809
      [39] Schloss, P. D., Westcott, S. L., Ryabin, T., et al., 2009. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75(23): 7537-7541. https://doi.org/10.1128/AEM.01541-09
      [40] Smith, E. M., Kemp, W. M., 2003. Planktonic and Bacterial Respiration along an Estuarine Gradient: Responses to Carbon and Nutrient Enrichment. Aquatic Microbial Ecology, 30: 251-261. https://doi.org/10.3354/ame030251
      [41] Sutton, N. B., Maphosa, F., Morillo, J. A., et al., 2013. Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure. Applied and Environmental Microbiology, 79(2): 619-630. https://doi.org/10.1128/AEM.02747-12
      [42] Taketani, R. G., Yoshiura, C. A., Dias, A. C. F., et al., 2010. Diversity and Identification of Methanogenic Archaea and Sulphate-Reducing Bacteria in Sediments from a Pristine Tropical Mangrove. Antonie Van Leeuwenhoek, 97(4): 401-411. https://doi.org/10.1007/s10482-010-9422-8
      [43] Tang, Y. Q., Yu, G. R., Zhang, X. Y., et al., 2018. Changes in Nitrogen-Cycling Microbial Communities with Depth in Temperate and Subtropical Forest Soils. Applied Soil Ecology, 124: 218-228. https://doi.org/10.1016/j.apsoil.2017.10.029
      [44] Thatoi, H., Behera, B. C., Mishra, R. R., et al., 2013. Biodiversity and Biotechnological Potential of Microorganisms from Mangrove Ecosystems: A Review. Annals of Microbiology, 63(1): 1-19. https://doi.org/10.1007/s13213-012-0442-7
      [45] Tong, T. L., Li, R. L., Wu, S. J., et al., 2019. The Distribution of Sediment Bacterial Community in Mangroves across China was Governed by Geographic Location and Eutrophication. Marine Pollution Bulletin, 140: 198-203. https://doi.org/10.1016/j.marpolbul.2019.01.046
      [46] Wang, H. T., Su, J. Q., Zheng, T. L., et al., 2014. Impacts of Vegetation, Tidal Process, and Depth on the Activities, Abundances, and Community Compositions of Denitrifiers in Mangrove Sediment. Applied Microbiology and Biotechnology, 98(22): 9375-9387. https://doi.org/10.1007/s00253-014-6017-8
      [47] Wu, P., Xiong, X. F., Xu, Z. Z., et al., 2016. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China. PLoS One, 11(10): e0164082. https://doi.org/10.1371/journal.pone.0164082.[PubMed]
      [48] Xiao, Y. N., Zhong, X. L., Wang, B. C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081 (in Chinese with English abstract).
      [49] Yamada, T., Sekiguchi, Y., Imachi, H., et al., 2005. Diversity, Localization, and Physiological Properties of Filamentous Microbes Belonging to Chloroflexi Subphylum I in Mesophilic and Thermophilic Methanogenic Sludge Granules. Applied and Environmental Microbiology, 71(11): 7493-7503. https://doi.org/10.1128/AEM.71.11.7493-7503.2005
      [50] Yang, P., Zhai, Y. P., Zhao, X., et al., 2020. Effect of Interaction between Arbuscular Mycorrhizal Fungi and Rhizobium on Medicago Sativa Rhizosphere Soil Bacterial Community Structure and PICRUSt Functional Prediction. Microbiology China, (11): 3868-3879 (in Chinese with English abstract).
      [51] Yao, Q., You, Q., Li, Y. H., et al., 2017. Functional Diversity of Soil Microorganisms in the Soil in Dongzhaigang Mangrove Wetlands in Hainan. Chinese Journal of Applied and Environmental Biology, 23(5): 857-861 (in Chinese with English abstract).
      [52] Zhang, K. P., Shi, Y., Cui, X. Q., et al., 2019. Salinity is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem. Msystems, 4(1): e00225-e00218. https://doi.org/10.1128/mSystems.00225-18
      [53] Zhang, X. Y., Hu, B. X., Ren, H. J., et al., 2018. Composition and Functional Diversity of Microbial Community across a Mangrove-Inhabited Mudflat as Revealed by 16S rDNA Gene Sequences. Science of the Total Environment, 633: 518-528. https://doi.org/10.1016/j.scitotenv.2018.03.158
      [54] Zhu, P., Wang, Y. P., Shi, T. T., et al., 2018. Intertidal Zonation Affects Diversity and Functional Potentials of Bacteria in Surface Sediments: A Case Study of the Golden Bay Mangrove, China. Applied Soil Ecology, 130: 159-168. https://doi.org/10.1016/j.apsoil.2018.06.003
      [55] 谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289
      [56] 黄初龙, 郑伟民, 2004. 我国红树林湿地研究进展. 湿地科学, 2(4): 303-308. doi: 10.3969/j.issn.1672-5948.2004.04.010
      [57] 黎明, 王力军, 马文辉, 等, 2004. 东寨港国家级自然保护区水污染生物检测. 海南师范学院学报(自然科学版), 17(3): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HNXZ200403018.htm
      [58] 李燕, 赵志忠, 王鸿平, 等, 2018. 海南东寨港红树林湿地沉积物有机碳的分布特征. 安徽农业大学学报, 45(2): 268-273. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201802014.htm
      [59] 欧益希, 方祥位, 张楠, 等, 2016. 溶液盐度对微生物固化珊瑚砂的影响. 后勤工程学院学报, 32(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC201601015.htm
      [60] 肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
      [61] 杨盼, 翟亚萍, 赵祥, 等, 2020. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析. 微生物学通报, (11): 3868-3879. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202011039.htm
      [62] 姚琦, 尤青, 李媛宏, 等, 2017. 海南东寨港红树林土壤微生物功能多样性. 应用与环境生物学报, 23(5): 857-861. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201705013.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  411
    • HTML全文浏览量:  79
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-04
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回