• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泸州区块深层页岩裂缝脉体发育特征及成脉流体活动

    姚程鹏 伏海蛟 马英哲 严德天 汪虎 李跃国 王佳伟

    姚程鹏, 伏海蛟, 马英哲, 严德天, 汪虎, 李跃国, 王佳伟, 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021
    引用本文: 姚程鹏, 伏海蛟, 马英哲, 严德天, 汪虎, 李跃国, 王佳伟, 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021
    Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei, 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021
    Citation: Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei, 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021

    泸州区块深层页岩裂缝脉体发育特征及成脉流体活动

    doi: 10.3799/dqkx.2022.021
    基金项目: 

    中国石油科技创新基金资助项目 2019D-5007-0107

    国家自然科学基金青年基金资助项目 41902173

    国家自然科学基金面上基金资助项目 4217020846

    详细信息
      作者简介:

      姚程鹏(1997-),男,四川眉山人,硕士研究生. ORCID:0000-0003-0870-8196. E-mail:1592988926@qq.com

      通讯作者:

      伏海蛟, E-mail:fuhj@cug.edu.cn

    • 中图分类号: P618

    Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block

    • 摘要: 裂缝脉体中蕴藏着天然裂缝演化与古流体充注活动等重要信息,对于深层页岩气保存条件也有指示意义.针对泸州区块龙马溪组深层页岩裂缝脉体,综合运用光学薄片、阴极发光、流体包裹体及微区原位等分析手段,分析了裂缝脉体的发育特征,研究了成脉流体活动及其成岩环境演化,探讨了页岩气保存条件.研究发现,深层页岩裂缝脉体主要为石英与白云石或方解石组成的复合脉体,不同矿物之间表现出较复杂的切割关系,盐水包裹体与高密度甲烷包裹体大量发育,且裂缝脉体主要形成于还原性环境.整体看来,构造抬升背景下,深层页岩裂缝开始形成且处于不断开启或闭合过程,3期不同性质的古流体多次充注胶结,较封闭的成岩体系对深层页岩气的保存有利.

       

    • 图  1  四川盆地南部泸州区块构造位置(据马新华,2018修改)

      Fig.  1.  Tectonic location map of Luzhou block, Sichuan basin (according to Ma, 2018)

      图  2  研究区龙马溪组页岩裂缝脉体特征

      Fig.  2.  The characteristics of shale fractures in the Longmaxi Formation in the study area

      图  3  裂缝脉体镜下光学和阴极发光特征

      X1为普通光学特征;X2为阴极发光特征. a.石英颗粒间的孔洞可见细碎白云石颗粒;b.树枝状白云石,且白云石脉中见石英颗粒;c.石英细脉刺穿方解石脉体;d.方解石脉体与石英脉体直接接触;e.白云石脉体发育于石英脉体与围岩间;f.粗宽白云石脉体

      Fig.  3.  Optical and cathodoluminescence characteristics of the fracture veins

      图  4  深层页岩裂缝脉体中流体包裹体产状和形态特征

      a~c.龙马溪组,4 080.60 m,石英中气态烃及其伴生盐水包裹体(a、b发育于石英愈合缝中,c发育于石英颗粒中);d~e.龙马溪组,3 861.00 m,方解石中气态烃及其伴生盐水包裹体;g~i.龙马溪组,3 860.76 m,白云石中气态烃及其伴生盐水包裹体

      Fig.  4.  Occurrence and morphological characteristics of fluid inclusions in deep shale fracture veins

      图  5  石英脉体内甲烷包裹体和盐水包裹体的激光拉曼光谱图

      a.甲烷包裹体的激光拉曼图,表现出明显甲烷拉曼散射特征峰;b.盐水包裹体的激光拉曼图,液相部分可见H2O的拉曼散射特征峰,气相部分可见到强度很高的CH4和强度较弱的CO2的拉曼散射特征峰

      Fig.  5.  Laser Raman spectra of methane and brine inclusions in quartz veins

      图  6  裂缝脉体中3种矿物颗粒中盐水包裹体均一温度分布直方图

      Fig.  6.  Histogram of homogenization temperature distribution of saline inclusions in quartz, dolomite and calcite in the fracture veins

      图  7  石英脉中包裹体均一温度‒盐度交汇图

      Fig.  7.  Plot of inclusion homogenization temperature and salinity in quartz veins

      图  8  裂缝脉体氧化还原环境判别参数分布特征

      Fig.  8.  Distribution characteristics of discriminant parameters in redox environment of fractured veins

      图  9  泸州区块埋藏史、热演化史以及均一温度投点图

      Fig.  9.  Burial, thermal evolution history and homogenization temperature projection of Luzhou block

      表  1  样品信息表

      Table  1.   The sampling location

      井号 样品编号 采样层位 深度(m) 主要脉体类型 脉体产状
      Y-101 A 龙马溪组 4 080.60 石英脉 高角度
      B 龙马溪组 3 861.00 石英脉、石英和方解石复合脉 高角度
      C 龙马溪组 3 860.76 石英脉、石英和白云石复合脉 高角度
      下载: 导出CSV

      表  2  石英脉体中气液两相盐水包裹体均一温度、盐水包裹体冰点值及盐度统计

      Table  2.   Statistics of homogenization temperature, freezing point value and salinity of gas-liquid saline inclusions in quartz veins

      测试包裹体号 均一温度(℃) 冰点温度(℃) 盐度(%) 赋存矿物
      3-1 133.3 ‒5.91 9.1 石英
      2-1 141.5 ‒7.32 10.9 石英
      2-2 149.2 ‒6.44 9.8 石英
      1-1 182.6 ‒12.2 16.2 石英
      1-2 188.5 ‒11.4 15.4 石英
      1-3 185.4 ‒11.8 15.8 石英
      1-4 178.5 ‒12.7 16.7 石英
      1-5 234.7 ‒6.8 10.3 石英愈合缝
      1-6 237.4 ‒6.5 9.9 石英愈合缝
      1-7 220.6 ‒7.5 11.1 石英愈合缝
      1-8 235.7 ‒6.3 9.6 石英愈合缝
      1-9 238.4 ‒6.1 9.4 石英愈合缝
      1-10 223.5 ‒7.2 10.8 石英
      下载: 导出CSV

      表  3  裂缝脉体微量元素特征参数表(10-6

      Table  3.   Characteristic parameters of trace elements in fracture veins (10-6)

      测试点位 V/Cr Ni/Co U/Th V/(V+Ni) 氧化还原环境 矿物 捕获流体包裹体的温度
      C2-1-4 / 6.524 / 0.501 弱氧化-还原 方解石 较低温度区间
      C2-1-6 4.328 11 8.923 1.264 47 0.636 还原 方解石 较低温度区间
      C2-1-7 4.708 86 9.943 1.550 5 0.725 还原 方解石 较低温度区间
      C3-1-4 4.588 2 8.433 1.190 6 0.704 还原 白云石 中温度区间
      C3-1-5 2.216 27 6.269 1.168 48 0.56 弱氧化-还原 方解石 较低温度区间
      C3-1-7 3.926 23 7.583 1.389 15 0.605 还原 白云石 中温度区间
      C3-2-2 6.007 83 7.176 1.757 75 0.777 还原 方解石 较低温度区间
      C3-2-3 7.149 45 8.823 1.323 81 0.616 还原 白云石 中温度区间
      C3-2-4 4.482 49 8.108 1.290 14 0.576 还原 白云石 中温度区间
      C3-2-5 3.748 66 6.695 0.762 35 0.477 弱氧化-还原 方解石 较低温度区间
      C3-2-6 4.523 05 8.271 1.400 31 0.701 还原 白云石 中温度区间
      C3-2-7 4.403 73 7.018 1.306 93 0.617 还原 白云石 中温度区间
      下载: 导出CSV
    • [1] Chen, X., Fan, J. X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358 (in Chinese with English abstract).
      [2] Dong, D. Z., Cheng, K. M., Wang, Y. M., et al., 2010. Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China. Oil & Gas Geology, 31(3): 288-299, 308 (in Chinese with English abstract).
      [3] Evans, M. A., 1995. Fluid Inclusions in Veins from the Middle Devonian Shales: A Record of Deformation Conditions and Fluid Evolution in the Appalachian Plateau. Geological Society of America Bulletin, 107(3): 327-339. doi: 10.1130/0016-7606(1995)107<0327:FIIVFT>2.3.CO;2
      [4] Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
      [5] Guo, W. X., Tang, J. M., Ouyang, J. S., et al., 2021. Characteristics of Structural Deformation in the Southern Sichuan Basin and Its Relationship with the Storage Condition of Shale Gas. Natural Gas Industry, 41(5): 11-19 (in Chinese with English abstract).
      [6] He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract).
      [7] Hu, X. M., Wang, C. S., 2001. Summarization on the Studying Methods of the Palaeo-Ocean Dissolved Oxygen. Advance in Earth Sciences, 16(1): 65-71(in Chinese with English abstract).
      [8] Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract).
      [9] Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698 (in Chinese with English abstract).
      [10] Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract).
      [11] Ma, X. H., 2018. Enrichment Laws and Scale Effective Development of Shale Gas in the Southern Sichuan Basin. Natural Gas Industry, 38(10): 1-10 (in Chinese with English abstract).
      [12] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020. Genetic Mechanism of High-Quality Shale Gas Reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract).
      [13] Nie, H. K., Jin, Z. J., Ma, X., et al., 2017. Graptolites Zone and Sedimentary Characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 38(2): 160-174 (in Chinese with English abstract).
      [14] Pan, Z. K., Liu, D. D., Huang, Z. X., et al., 2019. Paleotemperature and Paleopressure of Methane Inclusions in Fracture Cements from the Wufeng-Longmaxi Shales in the Luzhou Area, Southern Sichuan Basin. Petroleum Science Bulletin, 4(3): 242-253 (in Chinese with English abstract).
      [15] Shu, Z. H., 2018. Fracture Feature of Gas-Bearing Shale Intervals of Wufeng-Longmaxi Formation in Fuling Shale Gas Field and Its Effect. Sino-Global Energy, 23(11): 30-35 (in Chinese with English abstract).
      [16] Tang, X., 2018. Tectonic Control of Shale Gas Accumulation in Longmaxi Formation in the Southern Sichuan Basin (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract).
      [17] Zhang, J. L., Qiao, S. H., Lu, W. J., et al., 2016. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171: 20-28. doi: 10.1016/j.gexplo.2015.12.003
      [18] Zhou, Z., Liu, W. P., Jiang, L., et al., 2020. Multiple Fluid-Flow of the Wufeng-Longmaxi Formation in the Changning Shale-Gas Field, Southern Sichuan Basin. Shandong Chemical Industry, 49(2): 144-147, 151(in Chinese with English abstract).
      [19] Yang, W., He, S., Su, A., et al., 2021. Paleo-Temperature and -Pressure Characteristics of Fluid Inclusions in Composite Veins of the Doushantuo Shale (Yichang Area, South China): Implications for the Preservation and Enrichment of Shale Gas. Energy & Fuels, 35(5): 4091-4105.
      [20] 陈旭, 樊隽轩, 张元动, 等, 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm
      [21] 董大忠, 程克明, 王玉满, 等, 2010. 中国上扬子区下古生界页岩气形成条件及特征. 石油与天然气地质, 31(3): 288-299, 308. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003008.htm
      [22] 郭卫星, 唐建明, 欧阳嘉穗, 等, 2021. 四川盆地南部构造变形特征及其与页岩气保存条件的关系. 天然气工业, 41(5): 11-19. doi: 10.3787/j.issn.1000-0976.2021.05.002
      [23] 何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
      [24] 胡修棉, 王成善, 2001. 古海洋溶解氧研究方法综述. 地球科学进展, 16(1): 65-71. doi: 10.3321/j.issn:1001-8166.2001.01.013
      [25] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm
      [26] 梁超, 姜在兴, 杨镱婷, 等, 2012. 四川盆地五峰组‒龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm
      [27] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
      [28] 马新华, 2018. 四川盆地南部页岩气富集规律与规模有效开发探索. 天然气工业, 38(10): 1-10. doi: 10.3787/j.issn.1000-0976.2018.10.001
      [29] 聂海宽, 何治亮, 刘光祥, 等, 2020. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm
      [30] 聂海宽, 金之钧, 马鑫, 等, 2017. 四川盆地及邻区上奥陶统五峰组‒下志留统龙马溪组底部笔石带及沉积特征. 石油学报, 38(2): 160-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702004.htm
      [31] 潘占昆, 刘冬冬, 黄治鑫, 等, 2019. 川南地区泸州区块五峰组‒龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复. 石油科学通报, 4(3): 242-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903003.htm
      [32] 舒志恒, 2018. 涪陵页岩气田五峰组‒龙马溪组含气页岩段裂缝发育特征及其影响. 中外能源, 23(11): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201811006.htm
      [33] 唐鑫, 2018. 川南地区龙马溪组页岩气成藏的构造控制(博士学位论文). 徐州: 中国矿业大学.
      [34] 周政, 刘文平, 姜磊, 等, 2020. 川南长宁页岩气田五峰‒龙马溪组多期流体活动特征. 山东化工, 49(2): 144-147, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202002054.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  338
    • HTML全文浏览量:  118
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-05
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回