• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    复杂艰险构造区铁路桥梁系统地震响应分析Part Ⅰ: 断层效应影响

    陈令坤 王璐 翟晨程 陈雯昕 朱利明 王尧周 张清华 张楠 李乔

    陈令坤, 王璐, 翟晨程, 陈雯昕, 朱利明, 王尧周, 张清华, 张楠, 李乔, 2022. 复杂艰险构造区铁路桥梁系统地震响应分析Part Ⅰ: 断层效应影响. 地球科学, 47(3): 867-879. doi: 10.3799/dqkx.2022.019
    引用本文: 陈令坤, 王璐, 翟晨程, 陈雯昕, 朱利明, 王尧周, 张清华, 张楠, 李乔, 2022. 复杂艰险构造区铁路桥梁系统地震响应分析Part Ⅰ: 断层效应影响. 地球科学, 47(3): 867-879. doi: 10.3799/dqkx.2022.019
    Chen Lingkun, Wang Lu, Zhai Chencheng, Chen Wenxin, Zhu Liming, Wang Yaozhou, Zhang Qinghua, Zhang Nan, Li Qiao, 2022. Seismic Response of Railway Bridges in Active Complex Tectonic Zones Part Ⅰ: Effects of Fault Effects. Earth Science, 47(3): 867-879. doi: 10.3799/dqkx.2022.019
    Citation: Chen Lingkun, Wang Lu, Zhai Chencheng, Chen Wenxin, Zhu Liming, Wang Yaozhou, Zhang Qinghua, Zhang Nan, Li Qiao, 2022. Seismic Response of Railway Bridges in Active Complex Tectonic Zones Part Ⅰ: Effects of Fault Effects. Earth Science, 47(3): 867-879. doi: 10.3799/dqkx.2022.019

    复杂艰险构造区铁路桥梁系统地震响应分析Part Ⅰ: 断层效应影响

    doi: 10.3799/dqkx.2022.019
    基金项目: 

    国家重点研发计划“交通基础设施”重点专项 2021YFB2600600

    2018年度江苏省建设系统科技项目——江苏省防灾减灾抗震“四新”技术专题研究 2018ZD039

    高速铁路基础研究联合基金项目 U1934207

    轨道交通安全教育部重点实验室2019年开放基金项目 2019JZZ01

    湖南创新型省份建设专项经费资助项目 2019RS3009

    国家自然科学基金项目 52178180

    国家自然科学基金项目 51878561

    湖南创新型省份建设专项 2019RS3009

    中南大学创新驱动项目 502501006

    详细信息
      作者简介:

      陈令坤(1974-),男,副教授,博士,硕导,主要从事车桥耦合振动研究.ORCID: 0000-0002-8262-2422. E-mail:lkchen@swjtu.edu.cn

    • 中图分类号: P642

    Seismic Response of Railway Bridges in Active Complex Tectonic Zones Part Ⅰ: Effects of Fault Effects

    • 摘要:

      近断层地震对桥梁的影响日益引起关注.本研究提出了桥梁‒土‒桩基全局建模方法,强调了更详细的桥墩及土壤非线性的真正好处,它可以比一系列轴载更真实地描述物理现象.协同SHAKE91程序并利用p-y曲线、t-z曲线和q-z曲线建立土‒桩基非线性模型,采用双线性模型模拟桥墩及桩基础的滞回特性,建立不良地质发育区铁路桥梁‒土‒桩基多跨简支梁桥体系模型,计算其弹塑性地震响应,分析Ap/vp等对桥梁的弹塑性地震响应的影响.研究结果表明:桥梁横竖向响应受Ap/vp影响特点不同,相比墩底固结工况,考虑桩基后桥梁横向地震响应减小;对于竖向响应,在Ap/vp > 10时桥梁竖向地震响应降低,说明竖向地震在较高频率影响桥梁地震响应.

       

    • 图  1  G/Gmax-lgγβ-lgγ曲线

      Fig.  1.  G/Gmax-lgγ curves and β-lgγ curves

      图  2  列车‒桥梁‒桩基计算模型

      a. 3D桩土模型;b. 非线性p-y单元

      Fig.  2.  Model of train-bridge-foundation system

      图  3  考虑桩土的列车‒桥梁系统简图

      a. 桥梁-桩基模型示意图;b. 桩基础立面图(单位m);c. 桩基础平面图(单位mm)

      Fig.  3.  Model of bridges considering SSI

      图  4  桥梁振型图

      a.无SSI横向振型;b.有SSI横向振型

      Fig.  4.  Mode shape of natural vibration of the bridge

      图  5  Japan Kobe 1995地震KJMA/Shin-Osaka波作用下考虑SSI H+V输入桥梁地震响应时程

      Fig.  5.  Seismic responses of bridge subjected to Japan Kobe 1995, KJMA/Shin-Osaka ground motions

      图  6  脉冲/远场地震速度/位移时程曲线

      a.脉冲地震速度时程;b.远场地震速度时程

      Fig.  6.  Velocity/displacement time-history curve under pulse/far field earthquakes

      图  7  近/远场地震下桥梁地震响应峰值与Ap/vp关系

      Fig.  7.  Relationship between Ap/vp and peak seismic response of the bridge under near fault/far field ground motion

      图  8  不考虑/考虑SSI H+V输入工况近远场地震下墩底第1单元转角时程曲线

      a.脉冲地震;b.远场地震

      Fig.  8.  Rotation time-history curve at the first element of the pier base subjected to the near-fault/far field horizontal and vertical ground motions without/with the consideration of the SSI

      图  9  脉冲/远场地震下梁体横向加速度傅里叶谱图

      a.脉冲地震塑性;b.远场地震塑性

      Fig.  9.  Fourier spectrum of lateral acceleration at the girder under pulse/far field earthquakes with considering the SSI

      图  10  脉冲(a)/远场地震(b)FN分量傅里叶谱

      Fig.  10.  Fourier spectrum of the FN component of pulse (a) far field (b) earthquakes

      表  1  脉冲近场地震

      Table  1.   Pulse-typed near-fault ground motion database

      地震名称 台站 震级 断层距(km) 场地 Tp
      (s)
      PGAH
      (g)
      PGVH (cm/s) PGAV
      (g)
      $ {\partial }_{PGA} $ Ap/vp
      Kobe 1995 KJMA 6.9 1.0 粘土 1.09 0.854 105.6 0.342 0.401 8.08
      Northridge 1994 Rinaadi 6.7 0.0 粘土 1.25 0.869 149.0 0.834 0.959 5.84
      Kobe 1995 Takatori 6.9 1.4 粘土 1.55 0.682 153.2 0.271 0.398 4.45
      Imperial Valley 06 1979 Agrarias 6.53 0.6 粘土 2.34 0.311 53.5 0.834 2.679 5.82
      Duzce 1999 Bolu 7.1 6.6 粘土 5.94 0.775 65.8 0.202 0.261 11.79
      Chi-Chi 1999 TCU059 7.62 3.6 粘土 7.78 0.168 64.1 0.056 0.334 2.63
      注:Tp为脉冲周期;PGAH为横向峰值地震加速度;PGVH为横向峰值地震速度;PGAV为竖向峰值地震加速度;竖向峰值地震加速度与横向峰值地震加速度比值$ {\partial }_{PGA}=PG{A}_{\mathrm{V}}/PG{A}_{\mathrm{H}} $;Ap/vp是横向峰值加速度与横向峰值速度的比值.
      下载: 导出CSV

      表  2  远场地震

      Table  2.   Far-field ground motion database

      地震名称 台站 震级 断层(km) 场地 PGAH
      (g)
      PGVH (cm/s) PGAV
      (g)
      $ {\partial }_{PGA} $ Ap/vp
      Chi-Chi 1999 CHY036 7.6 16.1 粘土 0.322 36.31 0.104 0.322 8.89
      Kobe 1995 Shin-Osaka 6.9 19.2 粘土 0.186 29.96 0.058 0.314 6.23
      Imperial Valley 1979 El Centro Array #13 6.5 21.9 粘土 0.138 14.23 0.045 0.330 9.70
      Loma Prieta 1989 Coyote Lake Dam (Downst) 6.9 20.8 粘土 0.159 10.30 0.0947 0.593 15.50
      Chi-Chi 1999 CHY092 7.6 22.7 粘土 0.111 60.71 0.119 1.076 1.83
      Loma Prieta 1989 Capitola 6.9 15.2 粘土 0.371 34.55 0.541 1.455 10.75
      下载: 导出CSV

      表  3  桥墩/桩柱弯矩‒曲率骨架曲线响应计算值

      Table  3.   Calculated value of skeleton-frame curves of moment-curvature relation of pier/pile

      地震方向 屈服转角
      (10-3 rad)
      屈服弯矩
      (103 kN·m)
      极限转角
      (10-3 rad)
      极限弯矩
      (103 kN·m)
      桥墩 横桥向 0.47 56.40 17.87 97.9
      顺桥向 1.45 24.80 52.63 35.8
      桩柱 横桥向 2.31 5.05 47.1 6.14
      顺桥向 2.18 5.71 44.3 6.96
      下载: 导出CSV

      表  4  地质参数

      Table  4.   Soil column properties

      层序号 到桩顶距离段(m) 土层厚度(m) 岩土名称 密度
      (g/cm3)
      剪切波速
      (m/s)
      泊松比 剪切模量(MPa) 弹性模量(MPa)
      1 0~3.5 3.5 淤泥、淤泥质土 1.85 85 0.46 13.37 49.47
      2 3.5~11.0 7.5 含淤泥粉砂 1.94 191 0.35 70.77 274.59
      3 11~29 18 全风化花岗片麻岩 2.05 311 0.27 198.28 812.95
      4 29~31 2 强风化花岗片麻岩 2.00 1 200 0.25 2 880 11 250
      5 31~34 3 弱风化花岗片麻岩 2.10 1 500 0.22 4 725 16 601
      下载: 导出CSV

      表  5  脉冲近场地震弹塑性响应峰值

      Table  5.   Peak seismic response of the pulse-typed near-fault ground motions

      地震波 梁跨中竖向位移
      (mm)
      墩底轴力
      (104 kN)
      墩顶横向位移
      (mm)
      墩底剪力
      (104 kN·m)
      墩底弯矩
      (104 kN·m)
      Kobe 1995, KJMA 25.59 1.34 31.30 0.50 6.30
      Northridge01 1994, Rinaadi 21.26 1.37 29.50 0.43 5.96
      Kobe 1995, Takatori 22.00 1.56 28.60 0.52 6.39
      Imperial Valley06 1979, Agrarias 32.58 1.87 23.17 0.34 5.26
      Duzce 1999, Bolu 22.75 1.41 36.24 0.41 6.06
      Chi-Chi 1999, TCU059 21.52 1.37 32.50 0.48 6.37
      下载: 导出CSV

      表  6  远场地震弹塑性响应峰值

      Table  6.   Peak seismic response of the far field-typed ground motions

      地震波 梁跨中竖向位移(mm) 墩底轴力
      (104 kN)
      墩顶横向位移(mm) 墩底剪力
      (104 kN·m)
      墩底弯矩
      (104 kN·m)
      Chi-Chi 1999, CHY036 21.48 1.38 28.66 0.46 6.01
      Kobe 1995, Shin-Osaka 26.09 1.37 22.98 0.42 5.99
      Imperial Valley 1979, El Centro Array #13 23.31 1.39 20.06 0.21 3.05
      Loma Prieta 1989, Coyote Lake Dam (Downst) 25.20 1.47 19.95 0.32 3.54
      Chi-Chi 1999, CHY092 23.08 1.38 32.14 0.47 6.17
      Loma Prieta 1989, Capitola 32.71 1.99 29.23 0.49 6.19
      下载: 导出CSV
    • [1] Chang, Z. W., de Luca, F., Goda, K., 2019. Near-Fault Acceleration Pulses and Non-Acceleration Pulses: Effects on the Inelastic Displacement Ratio. Earthquake Engineering & Structural Dynamics, 48(11): 1256-1276. https://doi.org/10.1002/eqe.3184
      [2] Chen, L. K., Kurtulus, A., Dong, Y. F., et al., 2021a. Velocity Pulse Effects of Near-Fault Earthquakes on a High-Speed Railway Vehicle-Ballastless Track-Benchmark Bridge System. Vehicle System Dynamics, 1-25. https://doi.org/10.1080/00423114.2021.1933546
      [3] Chen, L. K., Liu, P., Zhu, L. M., et al., 2021b. A Simplified Iterative Approach for Testing the Pulse Derailment of Light Rail Vehicles across a Viaduct to Near-Fault Earthquake Scenarios. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 235(9): 1172-1188. https://doi.org/10.1177/0954409720987410
      [4] Chen, L. K., Qin, H. X., Jiang, L. Z., et al., 2021c. A Near-Fault Vertical Scenario Earthquakes-Based Generic Simulation Framework for Elastoplastic Seismic Analysis of Light Rail Vehicle-Viaduct System. Vehicle System Dynamics, 59(6): 949-973. https://doi.org/10.1080/00423114.2020.1739316
      [5] Chen, Z. W., Han, Z. L., Zhai, W. M., et al., 2019. TMD Design for Seismic Vibration Control of High-Pier Bridges in Sichuan-Tibet Railway and Its Influence on Running Trains. Vehicle System Dynamics, 57(2): 207-225. https://doi.org/10.1080/00423114.2018.1457793
      [6] Chotesuwan, A., Mutsuyoshi, H., Maki, T., 2012. Seismic Behavior of Bridges with Pier and Foundation Strengthening: PsD Tests and Analytical Study. Earthquake Engineering & Structural Dynamics, 41(2): 279-294. https://doi.org/10.1002/eqe.1129
      [7] Durucan, C., Dicleli, M., 2015. AP/vP Specific Inelastic Displacement Ratio for Seismic Response Estimation of Structures. Earthquake Engineering & Structural Dynamics, 44(7): 1075-1097. https://doi.org/10.1002/eqe.2500
      [8] Faramarz, K., Ehsan, A., 2015. Effects of Inertial Soil-Structure Interaction on Inelastic Displacement Ratios of SDOF Oscillators Subjected to Pulse-Like Ground Motions. Bulletin of Earthquake Engineering, 13(6): 1809-1833. https://doi.org/10.1007/s10518-014-9693-y
      [9] FEMA P695, 2009. "Quantification of Building Seismic Performance Factors" Rep. FEMA P695, Federal Emergency Management Agency, Washington, D.C. .
      [10] Giannopoulos, D., Vamvatsikos, D., 2018. Ground Motion Records for Seismic Performance Assessment: To Rotate or not to Rotate? Earthquake Engineering & Structural Dynamics, 47(12): 2410-2425. https://doi.org/10.1002/eqe.3090
      [11] Hu, G. S., Zhao, C. Y., Chen, N. S., et al., 2019. Characteristics, Mechanisms and Prevention Modes of Debris Flows in an Arid Seismically Active Region along the Sichuan-Tibet Railway Route, China: A Case Study of the Basu-Ranwu Section, Southeastern Tibet. Environmental Earth Sciences, 78(18): 1-18. https://doi.org/10.1007/s12665-019-8554-z
      [12] Idriss, I. M., Sun, J. I., 1993. User's Manual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis.
      [13] Li, P. E., Liao, L., Feng, J. Z., 2021. Study on the Relationship between Post Earthquake Stress Evolution and Aftershocks of Sichuan Changning M6.0 Earthquake on June 17, 2019. Earth Science, Online (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2021.143.
      [14] Liu, T., Zhang, Q. L., 2016. AP/vP Specific Equivalent Viscous Damping Model for Base-Isolated Buildings Characterized by SDOF Systems. Engineering Structures, 111: 36-47. https://doi.org/10.1016/j.engstruct.2015.12.024
      [15] Lu, C. F., Cai, C. X., 2019. Challenges and Countermeasures for Construction Safety during the Sichuan-Tibet Railway Project. Engineering, 5(5): 833-838. https://doi.org/10.1016/j.eng.2019.06.007
      [16] Luo, C., Yang, X., Zhan, C. B., et al., 2016. Nonlinear 3D Finite Element Analysis of Soil-Pile-Structure Interaction System Subjected to Horizontal Earthquake Excitation. Soil Dynamics and Earthquake Engineering, 84: 145-156. https://doi.org/10.1016/j.soildyn.2016.02.005
      [17] Moghaddasi, M., Cubrinovski, M., Chase, J. G., et al., 2011. Probabilistic Evaluation of Soil-Foundation-Structure Interaction Effects on Seismic Structural Response. Earthquake Engineering & Structural Dynamics, 40(2): 135-154. https://doi.org/10.1002/eqe.1011
      [18] Semih, E., Murat, D., 2014. Effect of Dynamic Soil-Bridge Interaction Modeling Assumptions on the Calculated Seismic Response of Integral Bridges. Soil Dynamics and Earthquake Engineering, 66: 42-55. https://doi.org/10.1016/j.soildyn.2014.06.033
      [19] Seyed Ardakani, S. M., Saiidi, M. S., 2018. Simple Method to Estimate Residual Displacement in Concrete Bridge Columns under Near-Fault Earthquake Motions. Engineering Structures, 176: 208-219. https://doi.org/10.1016/j.engstruct.2018.08.083
      [20] Shamsi, M., Zakerinejad, M., Vakili, A. H., 2021. Seismic Analysis of Soil-Pile-Bridge-Train Interaction for Isolated Monorail and Railway Bridges under Coupled Lateral-Vertical Ground Motions. Engineering Structures, 248: 113258. https://doi.org/10.1016/j.engstruct.2021.113258
      [21] Shan, Y., Cheng, G. H., Gu, X. Q., et al., 2021. Optimization of Design Parameters of Displacement Isolation Piles Constructed between a High-Speed Railway Bridge and a Double-Line Metro Tunnel: From the View Point of Vibration Isolation Effect. Computers and Geotechnics, 140: 104460. https://doi.org/10.1016/j.compgeo.2021.104460
      [22] Shi, Y., Wang, D.S., Han, J. P., et al., 2017. Application Status of Seismic Isolation for Bridges and Its Development Tendency. Earthquake Engineering and Engineering Dynamics, 37(5): 118-128 (in Chinese with English abstract).
      [23] Simos, N., Manos, G. C., Kozikopoulos, E., 2018. Near- and Far-Field Earthquake Damage Study of the Konitsa Stone Arch Bridge. Engineering Structures, 177: 256-267. https://doi.org/10.1016/j.engstruct.2018.09.072
      [24] Sun, L.X., Wang, Y., Yang, J., et al., 2021. Progress in Rotational Seismology. Earth Science, 46(4): 1518-1536 (in Chinese with English abstract).
      [25] Wang, W. D., Li, J. Y., Han, Z., 2020. Comprehensive Assessment of Geological Hazard Safety along Railway Engineering Using a Novel Method: A Case Study of the Sichuan-Tibet Railway, China. Geomatics, Natural Hazards and Risk, 11(1): 1-21. https://doi.org/10.1080/19475705.2019.1699606
      [26] Wang, Z. H., Dueñas-Osorio, L., Padgett, J. E., 2013. Seismic Response of a Bridge-Soil-Foundation System under the Combined Effect of Vertical and Horizontal Ground Motions. Earthquake Engineering & Structural Dynamics, 42(4): 545-564. https://doi.org/10.1002/eqe.2226
      [27] Wei, L. M., Li, S. L., Lin, Y. L., et al., 2020. Dynamic Performance of a Deep Buried Pile-Plank Structure Transition Section for a High-Speed Railway—Field Tests and Numerical Analyses. Transportation Geotechnics, 25: 100408. https://doi.org/10.1016/j.trgeo.2020.100408
      [28] Wu, R. A., Zhang, Y. S., Guo, C. B., et al., 2020. Landslide Susceptibility Assessment in Mountainous Area: A Case Study of Sichuan-Tibet Railway, China. Environmental Earth Sciences, 79(6): 1-16. https://doi.org/10.1007/s12665-020-8878-8
      [29] Xiang, N. L., Alam, M. S., 2019. Displacement-Based Seismic Design of Bridge Bents Retrofitted with Various Bracing Devices and Their Seismic Fragility Assessment under Near-Fault and Far-Field Ground Motions. Soil Dynamics and Earthquake Engineering, 119: 75-90. https://doi.org/10.1016/j.soildyn.2018.12.023
      [30] Xie, Y. Z., Huo, Y. L., Zhang, J., 2017. Development and Validation of P-y Modeling Approach for Seismic Response Predictions of Highway Bridges. Earthquake Engineering & Structural Dynamics, 46(4): 585-604. https://doi.org/10.1002/eqe.2804
      [31] Xin, L. F., Li, X. Z., Zhang, Z. T., et al., 2019. Seismic Behavior of Long-Span Concrete-Filled Steel Tubular Arch Bridge Subjected to Near-Fault Fling-Step Motions. Engineering Structures, 180: 148-159. https://doi.org/10.1016/j.engstruct.2018.11.006
      [32] Xue, Y. G., Kong, F. M., Yang, W. M., et al., 2020. Main Unfavorable Geological Conditions and Engineering Geological Problems along Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468 (in Chinese with English abstract).
      [33] Yu, K. Y., Gu, X. Q., Huang, M. S., et al., 2021. Experimental, Numerical and Analytical Studies on the Attenuation of Maglev Train-Induced Vibrations with Depth in Layered Soils. Soil Dynamics and Earthquake Engineering, 143: 106628. https://doi.org/10.1016/j.soildyn.2021.106628
      [34] Yu, X. Z., Mou, R. F., 2021. System Modeling and Risk Analysis of the Sichuan-Tibet Railway Project. Journal of Transportation Engineering, Part A: Systems, 147(12): 04021094. https://doi.org/10.1061/jtepbs.0000610
      [35] Zhang, J. M., Zhu, W., Cheng, Y. Q., et al., 2021. Landslide Detection in the Linzhi-Ya'an Section along the Sichuan-Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sensing, 13(18): 3566. https://doi.org/10.3390/rs13183566
      [36] Zhang, Z. J., Li, X. Z., Zhang, X., et al., 2022. Semi-Analytical Simulation for Ground-Borne Vibration Caused by Rail Traffic on Viaducts: Vibration-Isolating Effects of Multi-Layered Elastic Supports. Journal of Sound and Vibration, 516: 116540. https://doi.org/10.1016/j.jsv.2021.116540
      [37] Zhao, M. Y., Xie, Q., Ren, X. H., et al., 2020. Experimental Research on the Deformation and Failure Characteristics of Coarse-Grained Soil Slopes in Seasonal Frozen Region along Sichuan-Tibet Railway. IOP Conference Series: Earth and Environmental Science, 455(1): 012135. https://doi.org/10.1088/1755-1315/455/1/012135
      [38] Zhao, W. T., Ding, J. M., Zhang, Q. S., et al., 2021. Investigation into the Braking Performance of High-Speed Trains in the Complex Braking Environment of the Sichuan-Tibet Railway. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 095440972110418. https://doi.org/10.1177/09544097211041884
      [39] 李平恩, 廖力, 奉建州, 2021. 2019年6月17日四川长宁6.0级地震震后应力演化与余震关系研究. 地球科学, 在线出版. https://doi.org/10.3799/dqkx.2021.143.
      [40] 石岩, 王东升, 韩建平, 等, 2017. 桥梁减隔震技术的应用现状与发展趋势. 地震工程与工程振动, 37(5): 118-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201705014.htm
      [41] 孙丽霞, 王赟, 杨军, 等, 2021. 旋转地震学的研究进展. 地球科学, 46(4): 1518-1536. doi: 10.3799/dqkx.2020.113
      [42] 薛翊国, 孔凡猛, 杨为民, 等, 2020. 川藏铁路沿线主要不良地质条件与工程地质问题. 岩石力学与工程学报, 39(3): 445-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm
    • 加载中
    图(10) / 表(6)
    计量
    • 文章访问数:  515
    • HTML全文浏览量:  46
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-17
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回