Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin
-
摘要: 珠江口盆地白云凹陷珠海组和恩平组是该区深层油气勘探的主要层系,查明深层储层基本特征和有效储层控制因素对于白云凹陷深层油气勘探具有重要意义. 基于岩石学和矿物学、成岩作用、孔隙特征及沉积相分析,明确了白云凹陷深层储层基本特征. 白云凹陷深层以低孔低渗和致密储层为主;压实作用是造成深层储层变差的主要原因,碳酸盐胶结和石英次生加大是主要的自生矿物;孔隙类型以粒间溶孔和粒内溶孔为主;有效储层以低孔低渗及以上储层为主,孔隙度总体保持在10%左右,渗透率变化范围大. 中粗粒沉积相带、溶蚀作用和超压是深层有效储层的主要控制因素. 中粗粒砂岩具有较好的原生孔和次生孔发育条件,渗透率较高,胶结减孔作用弱,溶蚀增孔作用强;溶蚀作用是深层关键的建设性成岩作用,溶蚀孔隙是深层主要的孔隙类型;超压传导作用有利于酸性流体活动和溶蚀物质的迁移,对形成溶蚀孔隙具有积极意义;分流河道和水下分流河道砂体是中粗粒砂岩的主要载体,应作为深层油气勘探的优选对象.Abstract: The Zhuhai Formation and Enping Formation in Baiyun Sag of Pearl River Mouth Basin are important strata for deep oil and gas exploration. Understanding the basic characteristics of deep reservoirs and analyzing the development characteristics and controlling factors of effective reservoirs can provide necessary guidance and support for deep oil and gas exploration to find favorable target layers and target areas. Based on the analyses of petrology and mineralogy, diagenesis, pore development characteristics and sedimentary facies types of deep reservoirs, the basic characteristics of deep reservoirs are clarified. Deep reservoirs are mainly low porosity-low permeability (LL) and tight reservoirs. Compaction is the main reason for the deterioration of deep reservoir, and carbonate cementation and overgrowth of quartz are the main authigenic minerals. Pore types are mainly intergranular dissolved pores and intragranular dissolved pores. Effective reservoirs are mainly LL reservoirs and reservoirs that are better than LL reservoirs. Porosity is generally maintained at about 10%, and permeability varies widely. Sedimentary facies, dissolution and overpressure are the main controlling factors of deep effective reservoir. Medium- and coarse-grained sandstones have better development conditions of primary and secondary pores, higher permeability, weaker porosity reduction by cementation and stronger porosity increase by dissolution. Dissolution is the key constructive diagenesis in deep reservoir, and dissolution pores are the dominate pore type in deep layer. Overpressure conduction is conducive to the activity of acid fluid and the migration of dissolved substances, which is of positive significance to the formation of dissolution pores. Distributary channel and subaqueous distributary channel sandbodies are the main carriers of medium and coarse-grained sandstone and should be the preferred target of deep oil and gas exploration.
-
Key words:
- deep reservoir /
- medium- and coarse-grained sandstone /
- dissolution /
- overpressure /
- Baiyun Sag /
- petroleum geology
-
图 5 白云凹陷深层压溶作用典型特征
a. PY33,3 880.5 m,珠海组,极细‒细粒砂岩,碎屑颗粒呈“漂浮”状,早期方解石连晶胶结,充填孔隙并交代石英;b. BY18,珠海组,4 305 m,早期石英次生加大,铁白云石充填次生孔隙,交代长石和石英加大边;c. BY51,4 805 m,珠海组,压溶作用较明显,颗粒间可见缝合线;d. BY51,珠海组,4 304 m,石英发育多期次生加大,在发生强烈压实作用前已形成早期次生加大;e. BY52,5 109 m,恩平组,含铁白云石和铁白云石充填孔隙及交代碎屑颗粒;f. BY51,4 380.4 m,珠海组,伊利石生长在方解石外侧,伊利石形成时间晚于方解石;g. LW21,3 739.2 m,珠海组,显微球状黄铁矿、自生石英、丝缕状伊利石充填孔隙;h. PY72,4 631.5 m,恩平组,发育粒间溶孔,颗粒溶蚀不彻底;i. PY73,珠海组,3 555.8 m,压实作用强,颗粒裂缝,长石被溶蚀形成次生孔隙. F. 长石,Q. 石英,Or. 钾长石,Ca. 方解石胶结物,q1. 石英一期次生加大,q2. 石英二期次生加大,q3. 石英三期次生加大,Fe-Do. 铁白云石,I. 伊利石,Pr. 黄铁矿,P. 孔隙
Fig. 5. Typical characteristics of pressure solution in Baiyun Sag
-
[1] Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193-2214. https://doi.org/10.1306/04301211139 [2] Chen, G. J., Lü, C. F., Wang, Q., et al., 2010. Characteristics of Pore Evolution and Its Controlling Factors of Baiyun Sag in Deepwater Area of Pearl River Mouth Basin. Acta Petrolei Sinica, 31(4): 566-572 (in Chinese with English abstract). [3] Chen, H. H., Mi, L. J., Liu, Y. H., et al., 2017. Genesis, Distribution and Risk Belt Prediction of CO2 in Deep⁃Water Area in the Pearl River Mouth Basin. Acta Petrolei Sinica, 38(2): 119-134 (in Chinese with English abstract). [4] Ehrenberg, S. N., 1989. Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones: Discussion; Compaction and Porosity Evolution of Pliocene Sandstones, Ventura Basin, California: Discussion. AAPG Bulletin, 73(10): 1274-1276. https://doi.org/10.1306/44b4aa1e⁃170a⁃11d7⁃8645000102c1865d [5] Fan, C. W., Cao, J. J., Luo, J. L., et al., 2021. Heterogeneity and Influencing Factors of Marine Gravity Flow Tight Sandstone under Abnormally High Pressure: A Case Study from the Miocene Huangliu Formation Reservoirs in LD10 Area, Yinggehai Basin, South China Sea. Petroleum Exploration and Development, 48(5): 903-915, 949 (in Chinese with English abstract). [6] Feng, J. R., Gao, Z. Y., Cui, J. G., et al., 2016. The Exploration Status and Research Advances of Deep and Ultra⁃Deep Clastic Reservoirs. Advances in Earth Science, 31(7): 718-736 (in Chinese with English abstract). [7] He, D. F., Ma, Y. S., Liu, B., et al., 2019. Main Advances and Key Issues for Deep⁃Seated Exploration in Petroliferous Basins in China. Earth Science Frontiers, 26(1): 1-12 (in Chinese with English abstract). [8] Huang, Z. L., Zhu, J. C., Ma, J., et al., 2015. Characteristics and Genesis of High⁃Porosity and Low⁃Permeability Reservoirs in the Huangliu Formation of High Temperature and High Pressure Zone in Dongfang Area, Yinggehai Basin. Oil & Gas Geology, 36(2): 288-296 (in Chinese with English abstract). [9] Jia, C. Z., Pang, X. Q, 2015. Research Processes and Main Development Directions of Deep Hydrocarbon Geological Theories. Acta Petrolei Sinica, 36(12): 1457-1469 (in Chinese with English abstract). [10] Jiang, P., Wang, Z. Z., Zou, M. S., et al., 2021. Development Characteristics of Carbonate Cement and Its Influence on Reservoir Quality in Sandstones from Zhuhai Formation in Wenchang A Depression. Earth Science, 46(2): 600-620 (in Chinese with English abstract). [11] Li, C., Luo, J. L., Hu, H. Y., et al., 2019. Thermodynamic Impact on Deepwater Sandstone Diagenetic Evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 44(2): 572-587 (in Chinese with English abstract). [12] Liao, J. H., Xu, Q., Chen, Y., et al., 2016. Sedimentary Characteristics and Genesis of the Deepwater Channel System in Zhujiang Formation of Baiyun⁃Liwan Sag. Earth Science, 41(6): 1041-1054 (in Chinese with English abstract). [13] Liu, B. J., Pang, X., Yan, C. Z., et al., 2011. Evolution of the Oligocene⁃Miocene Shelf Slope⁃Break Zone in the Baiyun Deep⁃Water Area of the Pearl River Mouth Basin and Its Significance in Oil⁃Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract). [14] Liu, K. J., Huang, F., Gao, S., et al., 2018. Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic. Earth Science, 43(5): 1562-1573 (in Chinese with English abstract). [15] Luo, J. L., He, M., Pang, X., et al., 2019. Diagenetic Response on Thermal Evolution Events and High Geothermal Gradients in the Southern Pearl River Mouth Basin and Its Enlightenment to Hydrocarbon Exploration. Acta Petrolei Sinica, 40(S1): 90-104 (in Chinese with English abstract). [16] Lü, C. F., Chen, G. J., Zhang, G. C., et al., 2011. Reservoir Characteristics of Detrital Sandstones in Zhuhai Formation of Baiyun Sag, Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 42(9): 2763-2773 (in Chinese with English abstract). [17] Ma, M., Chen, G. J., Li, C., et al., 2017. Quantitative Analysis of Porosity Evolution and Formation Mechanism of Good Reservoir in Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Natural Gas Geoscience, 28(10): 1515-1526 (in Chinese with English abstract). [18] Mi, L. J., He, M., Zhai, P. Q., et al., 2019. Integrated Study on Hydrocarbon Types and Accumulation Periods of Baiyun Sag, Deep Water Area of Pearl River Mouth Basin under the High Heat Flow Background. China Offshore Oil and Gas, 31(1): 1-12 (in Chinese with English abstract). [19] Mi, L. J., Zhang, Z. T., Pang, X., et al., 2018. Main Controlling Factors of Hydrocarbon Accumulation in Baiyun Sag at Northern Continental Margin of South China Sea. Petroleum Exploration and Development, 45(5): 902-913 (in Chinese with English abstract). [20] Okunuwadje, S. E., MacDonald, D., Bowden, S., 2020. Diagenetic and Reservoir Quality Variation of Miocene Sandstone Reservoir Analogues from Three Basins of Southern California, USA. Journal of Earth Science, 31(5): 930-949. https://doi.org/10.1007/s12583⁃020⁃1289⁃7 [21] Pang, J., Luo, J. L., Ma, Y. K., et al., 2019. Forming Mechanism of Ankerite in Tertiary Reservoir of the Baiyun Sag, Pearl River Mouth Basin, and Its Relationship to CO2⁃Bearing Fluid Activity. Acta Geologica Sinica, 93(3): 724-737 (in Chinese with English abstract). [22] Pang, X., Chen, C. M., Peng, D. J., et al., 2008. Basic Geology of Baiyun Deep⁃Water Area in the Northern South China Sea. China Offshore Oil and Gas, 20(4): 215-222 (in Chinese with English abstract). [23] Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep⁃Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract). [24] Pang, X., Shi, H. S., Zhu, M., et al., 2014. A Further Discussion on the Hydrocarbon Exploration Potential in Baiyun Deep Water Area. China Offshore Oil and Gas, 26(3): 23-29 (in Chinese with English abstract). [25] Pang, X. Q., Jiang, Z. X., Huang, H. D., et al., 2014. Formation Mechanisms, Distribution Models, and Prediction of Superimposed, Continuous Hydrocarbon Reservoirs. Acta Petrolei Sinica, 35(5): 795-828 (in Chinese with English abstract). [26] Qin, W. J., Li, N., Fu, Z. H., 2015. Factors Controlling Formation of Effective Reservoirs in Deep of the Gaoyou Sag. Oil & Gas Geology, 36(5): 788-792 (in Chinese with English abstract). [27] Shi, H. S., He, M., Zhang, L. L., et al., 2014. Hydrocarbon Geology, Accumulation Pattern and the Next Exploration Strategy in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas, 26(3): 11-22 (in Chinese with English abstract). [28] Taylor, T. R., Giles, M. R., Hathon, L. A., et al., 2010. Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality. AAPG Bulletin, 94(8): 1093-1132. https://doi.org/10.1306/04211009123 [29] Tian, L. X., Zhang, Z. T., Pang, X., et al., 2020. Characteristics of Overpressure Development in the Mid⁃Deep Strata of Baiyun Sag and Its New Enlightenment in Exploration Activity. China Offshore Oil and Gas, 32(6): 1-11 (in Chinese with English abstract). [30] Tong, X. G., Zhang, G. Y., Wang, Z. M., et al., 2014. Global Oil and Gas Potential and Distribution. Earth Science Frontiers, 21(3): 1-9 (in Chinese with English abstract). [31] Wang, Q., Hao, L. W., Chen, G. J., et al., 2010. Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag. Acta Petrolei Sinica, 31(4): 553-558, 565 (in Chinese with English abstract). [32] Xie, Y. H., Cai, J., Li, W. T., 2018. Pre⁃Monitoring Method and Practice of Multi Mechanism Overpressure Formation Pressure in Yinggehai Basin. Petroleum Industry Press, Beijing (in Chinese). [33] Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source⁃Route⁃Sink⁃Rock" System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract). [34] Zeng, Q. L., Mo, T., Zhao, J. L., et al., 2020. Characteristics, Genetic Mechanism and Oil & Gas Exploration Significance of High⁃Quality Sandstone Reservoirs Deeper than 7 000 m: A Case Study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression. Natural Gas Industry, 40(1): 38-47 (in Chinese with English abstract). [35] Zhang, G. C., Yang, H. Z., Chen, Y., et al., 2014. The Baiyun Sag: A Giant Rich Gas⁃Generation Sag in the Deepwater Area of the Pearl River Mouth Basin. Natural Gas Industry, 34(11): 11-25 (in Chinese with English abstract). [36] Zhang, H. L., Pei, J. X., Zhang, Y. Z., et al., 2013. Overpressure Reservoirs in the Mid⁃Deep Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea. Petroleum Exploration and Development, 40(3): 284-293 (in Chinese with English abstract). [37] Zhang, L., Chen, S. H., 2017. Reservoir Property Response Relationship under Different Geothermal Gradients in the Eastern Area of the Pearl River Mouth Basin. China Offshore Oil and Gas, 29(1): 29-38 (in Chinese with English abstract). [38] 陈国俊, 吕成福, 王琪, 等, 2010. 珠江口盆地深水区白云凹陷储层孔隙特征及影响因素. 石油学报, 31(4): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004007.htm [39] 陈红汉, 米立军, 刘妍鷨, 等, 2017. 珠江口盆地深水区CO2成因、分布规律与风险带预测. 石油学报, 38(2): 119-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702001.htm [40] 范彩伟, 曹江骏, 罗静兰, 等, 2021. 异常高压下海相重力流致密砂岩非均质性特征及其影响因素: 以莺歌海盆地LD10区中新统黄流组储集层为例. 石油勘探与开发, 48(5): 903-915, 949. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105004.htm [41] 冯佳睿, 高志勇, 崔京钢, 等, 2016. 深层、超深层碎屑岩储层勘探现状与研究进展. 地球科学进展, 31(7): 718-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201607009.htm [42] 何登发, 马永生, 刘波, 等, 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901002.htm [43] 黄志龙, 朱建成, 马剑, 等, 2015. 莺歌海盆地东方区高温高压带黄流组储层特征及高孔低渗成因. 石油与天然气地质, 36(2): 288-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502015.htm [44] 贾承造, 庞雄奇, 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457-1469 doi: 10.7623/syxb201512001 [45] 姜平, 王珍珍, 邹明生, 等, 2021. 文昌A凹陷珠海组砂岩碳酸盐胶结物发育特征及其对储层质量的影响. 地球科学, 46(2): 600-620. doi: 10.3799/dqkx.2020.075 [46] 李弛, 罗静兰, 胡海燕, 等, 2019. 热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响. 地球科学, 44(2): 572-587. doi: 10.3799/dqkx.2017.618 [47] 廖计华, 徐强, 陈莹, 等, 2016. 白云‒荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制. 地球科学, 41(6): 1041-1054. doi: 10.3799/dqkx.2016.086 [48] 柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102008.htm [49] 刘开君, 黄菲, 高尚, 等, 2018. 北大西洋Logatchev热液区多形貌黄铁矿特征及其意义. 地球科学, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414 [50] 罗静兰, 何敏, 庞雄, 等, 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报, 40(S1): 90-104. doi: 10.7623/syxb2019S1008 [51] 吕成福, 陈国俊, 张功成, 等, 2011. 珠江口盆地白云凹陷珠海组碎屑岩储层特征及成因机制. 中南大学学报(自然科学版), 42(9): 2763-2773. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109037.htm [52] 马明, 陈国俊, 李超, 等, 2017. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征. 天然气地球科学, 28(10): 1515-1526. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710006.htm [53] 米立军, 何敏, 翟普强, 等, 2019. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析. 中国海上油气, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201901001.htm [54] 米立军, 张忠涛, 庞雄, 等, 2018. 南海北部陆缘白云凹陷油气富集规律及主控因素. 石油勘探与开发, 45(5): 902-913. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805019.htm [55] 庞江, 罗静兰, 马永坤, 等, 2019. 白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系. 地质学报, 93(3): 724-737. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903015.htm [56] 庞雄, 陈长民, 彭大钧, 等, 2008. 南海北部白云深水区之基础地质. 中国海上油气, 20(4): 215-222. doi: 10.3969/j.issn.1673-1506.2008.04.001 [57] 庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm [58] 庞雄, 施和生, 朱明, 等, 2014. 再论白云深水区油气勘探前景. 中国海上油气, 26(3): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403004.htm [59] 庞雄奇, 姜振学, 黄捍东, 等, 2014. 叠复连续油气藏成因机制、发育模式及分布预测. 石油学报, 35(5): 795-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201405001.htm [60] 秦伟军, 李娜, 付兆辉, 2015. 高邮凹陷深层系有效储层形成控制因素. 石油与天然气地质, 36(5): 788-792. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505011.htm [61] 施和生, 何敏, 张丽丽, 等, 2014. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略. 中国海上油气, 26(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm [62] 田立新, 张忠涛, 庞雄, 等, 2020. 白云凹陷中深层超压发育特征及油气勘探新启示. 中国海上油气, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006001.htm [63] 童晓光, 张光亚, 王兆明, 等, 2014. 全球油气资源潜力与分布. 地学前缘, 21(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403002.htm [64] 王琪, 郝乐伟, 陈国俊, 等, 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553-558, 565. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004005.htm [65] 谢玉洪, 蔡军, 李文拓, 2018. 莺歌海盆地多机制超压地层压力预测方法及实践. 北京: 石油工业出版社. [66] 姚光庆, 姜平, 2021. 储层"源‒径‒汇‒岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327 [67] 曾庆鲁, 莫涛, 赵继龙, 等, 2020.7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例. 天然气工业, 40(1): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001009.htm [68] 张功成, 杨海长, 陈莹, 等, 2014. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷. 天然气工业, 34(11): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411003.htm [69] 张伙兰, 裴健翔, 张迎朝, 等, 2013. 莺歌海盆地东方区中深层黄流组超压储集层特征. 石油勘探与开发, 40(3): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm [70] 张丽, 陈淑慧, 2017. 珠江口盆地东部地区不同地温梯度下储层特征响应关系. 中国海上油气, 29(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201701004.htm