Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction
-
摘要: 河流辫曲转换与共存是自然地理学、水力学、河流沉积地质方面的研究热点问题,也对古代河流沉积环境恢复与储层预测有重要借鉴意义.首先对河流辫曲转换与共存特征的主要影响因素进行了探讨,指出构造变动与地貌单元、坡度(坡降)的陡缓差异、物源远近与水动力条件、气候变化与植被发育状况、海/湖平面变化等主要因素控制着辫曲河型转换过程,其中构造变动与地貌单元是最为关键因素;然后总结了辫曲转换与共存这一理念对古代河流沉积恢复研究的4点启示;再以鄂尔多斯盆地大牛地气田中二叠统下部的下石盒子组为例,结合测井曲线特征、地震属性与砂岩厚度分布规律,把辫曲转换与共存的理念应用于古代河流沉积环境恢复之中,最终再现了气田区H21砂层河流沉积分布格局,明确了该区北辫南曲、辫曲转换与共存的规律,指出在辫曲转换地带与相邻的曲流河发育的区域更易于产生废弃河道.Abstract: The braided-meander transition and coexistence phenomenon is a hot issue in physical geography, hydraulics and fluvial sedimentary geology. It also has important reference significance for ancient fluvial sedimentary environment reconstruction and reservoir prediction. Firstly, it discusses the main influencing factors of the characteristics of fluvial braided-meander transition and coexistence, and points out that the main factors such as structural change and geomorphic unit, the difference of slope gradient, the distance of provenance and hydrodynamic conditions, climate change and vegetation development, sea/lake level change control the process of braid river type transformation. Among them, tectonic change and geomorphic unit are the key factors. Then, four implications of the concept of braided-meander transition on the study of ancient river sedimentary facies reconstruction are summarized. Taking the Lower Shihezi Formation in the lower part of the Middle Permian in Daniudi gas field, Ordos basin, as an example, combined with the characteristics of well-logging curves, seismic attributes and sandstone thickness distribution law, the concept of braided-meander transition and coexistence was applied to the reconstruction of ancient fluvial environment. Finally, fluvial sedimentary distribution pattern of H21 sand bed in the gas field area was reconstructed. It is indicated that braided river prevailed in the northern part and meandering river was mainly developed in the southern part in the gas field area. It is pointed out that it is easier to form abandoned river channels in the braided-meander zone and the adjacent meandering river area.
-
图 4 勒拿河三角洲区域的河流辫曲共存与转换现象
图片源自百度地图 . 该三角洲是北极地区面积最大的,流域面积约 为 29 000 km2(Julia et al.,2009)
Fig. 4. Coexistence and transformation of braided-meander in Lena River delta
图 5 坡度不同河型变化示意图
据 Rosgen(1994)修改 . Aa+与 A 为直流河;B、C、E 为弯度不同的曲流河;D 为辫状河;DA 为网状河;F 为宽而浅的限制性曲流河,很少发育泛 滥平原;G 为窄而深的限制性曲流河,不发育泛滥平原,弯曲度比 E 要小
Fig. 5. Schematic diagram of changes in river types with different slopes
图 7 辫曲转换与共存的河流沉积相平面分布示例图(据李胜利等,2015修改)
Fig. 7. Examples of plane distribution of fluvial sedimentary facies with braided-meander transition and coexistence
-
[1] Arche, A., Gomez, J. L., 2005. Sudden Changes in Fluvial Style across the Permian-Triassic Boundary in the Eastern Iberian Ranges, Spain: Analysis of Possible Causes. Palaeogeography Palaeoclimatology Palaeoecology, 229(1): 104-126. https://doi.org/10.1016/j.palaeo.2005.06.033 [2] Bridge, J. S., Tye, R. S., 2000. Interpreting the Dimensions of Ancient Fluvial Channel Bars, Channels, and Channel Belts from Wireline-Logs and Cores. AAPG Bulletin, 84(8): 1205-1228. [3] Cai, Q. G., 1982. Experimental Study on the Influence of Crustal Tectonic Movement on River Type Transformation. Geographical Research, 1(3): 21-32 (in Chinese with English abstract). [4] Carson, M. A., 1984. The Meandering-Braided River Threshold: A Reappraisa. Journal of Hydrology, 73(3): 315-334. https://doi.org/10.1016/0022-1694(84)90006-4 [5] Catuneanu, O., Elango, H. N., 2001. Tectonic Control on Fluvial Styles: The Balfour Formation of the Karoo Basin, South Africa. Sedimentary Geology, 140(3): 291-313. https://doi.org/10.1016/S0037-0738(00)00190-1 [6] Chang, X. H., Wang, Y. B., Han, D. X., 2004. Reservoir Characteristics of Lower Shihezi Formation in Daniudi Gas Field. Natural Gas Industry, 24(11): 19-21 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2004.11.005 [7] Chen, B. T., Yu, X. H., Wang, L., et al., 2021. Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and Its Significance for Petroleum Geology: An Insight from the Jimidi Formation in the Ruman Area, Melut Basin, South Sudan. Acta Sedimentologica Sinica, 39(2): 424-433 (in Chinese with English abstract). [8] Dendy, F. E., Bolton, G. C., 1976. Sediment-Yield-Runoff-Drainage Area Relationships in the United States. Journal of Soil Water Conservation, 31(6): 264-266. [9] Friend, P. F., Sinha, R., 1993. Braiding and Meandering Parameters. Geological Society, London, Special Publications, 75(1): 105-111. https://doi.org/10.1144/GSL.SP.1993.075.01.05 [10] Guo, L., Jiang, Z. X., Jiang, W. L., 2011. Formation Conditions of Shale Gas Reservoir and Geological Research Contents of Reservoir. Geological Bulletin of China, 30(2): 385-392 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2011.02.025 [11] Guo, Q. J., Chen, J. W., Jiao, S. Q., et al., 1997. Sedimentary Model of Braided River of Guantao Formation in Gaoshangbao Oilfield. Earth Science, 22(5): 552-556 (in Chinese with English abstract). [12] Hao, S. M., Li, L., You, H. Z., 2006. Permo-Carboniferous Paralic Depositional Systems in the Daniudi Gas Field and Its Nearsource Box-Type Gas Accumulation-Forming Model. Geology in China, 34(4): 606-611 (in Chinese with English abstract). [13] He, T. T., Li, S. L., Gao, X. J., et al., 2014. Types and Superposed Patterns of Distributary Channels in a Shallow Lacustrine Delta Plain. Journal of Palaeogeography, 16(5): 597-604 (in Chinese with English abstract). [14] He, X. J., Zhong, J. H., Cao, M. C., et al., 2018. Control Factors and Mechanism of River Facies Braided River Type Transformation-Taking Guantao Formation in Qingxi Area of Dongying Depression as an Example. Henan Science, 36(5): 776-784 (in Chinese with English abstract). [15] Jiang, X. J., Ren, J. S., Zhou, D. W., et al., 2019. The Caledonian Tectonic-Sedimentary Evolution Process in Eastern Qinling Orogenic Belt. Earth Science, 44(1): 88-108 (in Chinese with English abstract). [16] Jin, J. L., Huang, Q. Z., Zhao, G., et al., 2018. River Type Evolution Law and Main Controlling Factors of Paleogene Yabus Formation in Palogue Oilfield, Melut Basin, South Sudan. Journal of Paleogeography, 20(6): 952-962 (in Chinese with English abstract). [17] Julia, S., Guido, G., Dirk, W., 2009. Land Cover Classification of Tundra Environments in the Arctic Lena Delta Based on Landsat 7 ETM+ Data and Its Application for Upscaling of Methane Emissions. Remote Sensing of Environment, 113(2): 380-391. https://doi.org/10.1016/j.rse.2008.10.013 [18] Kang, Y., Huang, S. J., Liu, K. H., et al., 2020. Study on the Influence of Water and Sand Conditions and Riparian Boundary Conditions on River Type Transformation. Water Conservancy Science and Technology and Economy, 26(1): 1-6 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7175.2020.01.001 [19] Langbein, W. B., Schumm, S. A., 1958. Yield of Sediment in Relation to Mean Annual Precipitation. American Geophysical Union Transactions, 39(6): 1076-1084. https://doi.org/10.1029/TR039i006p01076 [20] Li, S. L., Yu, X. H., Jiang, T., et al., 2017. Characteristics of River Braid Transformation and Abandoned Channel Model. Acta Sedimentologica Sinica, 35(1): 1-9 (in Chinese with English abstract). [21] Li, S. L., Yu, X, H., Yang, Z. H., et al., 2015. Fluvial Changes and Sandbody Distribution of Toutunhe Formation in Cainan Area, Junggar Basin. Xinjiang Petroleum Geology, 36(6): 660-667 (in Chinese with English abstract). [22] Li, Y. L., Jia, A. L., Ji, G., et al., 2018. Reservoir Architecture of Braided River in Member 8 of Xiashihezi Formation, Central-Eastern Ordos Basin. Acta Petrolei Sinica, 39(9): 1037-1050 (in Chinese with English abstract). [23] Miall, A. D., 1998. Reservoir Heterogeneities in Fluvail Sandstones: Lessons from Outcrop Studies. AAPG, 72(6): 682-679. https://doi.org/10.1306/703C8F01-1707-11D7-8645000102C1865D [24] Qin, G. S., Hu, W. R., Song, X. M., et al., 2018. Gravel Braided River Architecture and Inter-Layers Distribution: A Case Study of Jurassic Badaowan Formation Outcrop in the Northwest of Junggar Basin. Journal of China University of Mining & Technology, 47(5): 1008-1020 (in Chinese with English abstract). [25] Rosgen, D. L., 1994. A Classification of Natural Rivers. Catena, 22(3): 169-199. https://doi.org/10.1016/0341-8162(94)90001-9 [26] Schumm, S. A., 1973. Geomorphic Thresholds and the Complex Response of Drainage Systems. In: Morisawa, M., ed., Fluvial Geomorphology, Publications of Geomorphology. State University of New York, Binghamton, 299-310. [27] Schumm, S. A., 1985. Patterns of Alluvial Rivers. Ann. Rev. Earth Planet. Science, 13(1): 5-27. https://doi.org/10.1146/annurev.ea.13.050185.000253 [28] Singh, I. B., 2007. The Gang River. In: Gupta, A., ed., Large Rivers: Geomorphology and Management. John Wiley and Sons, New York, 347-371. [29] Sun, Z. H., Li, Y. T., Huang, Y., 2006. Review of River System in Responses to Flow and Sediment Regime Variation. Advances in Water Science, 17(6): 887-893 (in Chinese with English abstract). [30] Tan, C. P., Yu, X. H., Li, S. L., et al., 2014. Discussion on the Transformation Model of Braided River Meandering River-Taking the Outcrop of Toutunhe Formation in the Southern Margin of Junggar Basin as an Example. Acta Sedimentologica Sinica, 32(3): 450-458 (in Chinese with English abstract). [31] Tan, M. X., Zhu, X. M., Liu, Q. H., et al., 2019. Multi River Seismic Geomorphological Characteristics of the Lower Ming Section of Neogene in Shaleitian Area, Bohai Sea. Petroleum Experimental Geology, 41(3): 411-419 (in Chinese with English abstract). [32] Tang, W., Wang, Y. M., Zhao, Z. G., et al., 2016. Review on Research Progress of River Type Transformation. Geological Review, 62(1): 138-152 (in Chinese with English abstract). [33] Wang, S. J., Ni, J. R., Wang, G. Q., 2000. Sedimentary System Analysis of Ancient River Type Evolution Model and Its Influencing Factors. Petroleum Exploration and Development, 27(5): 102-108 (in Chinese with English abstract). [34] Wang, S. J., Ren, M. D., 1999. A New Classification of Fluvial Rivers according to Channel Planform and Sediment Characteristics. Acta Sedimentologica Sinica, 17(2): 7 (in Chinese). [35] Wang, Z. L., Zhang, L. K., Sun, M. L., et al., 2004. Natural Gas Accumulation Mechanism in Upper Shihezi and Shiqianfeng Formations of Shenmu-Yulin District in Northeastern Ordos Basin. Acta Petrolei Sinica, 25(3): 37-43 (in Chinese with English abstract). [36] Wang, Z. Y., Liu, H. N., Tang, J. X., et al., 1996. The Multiple Classification of Late Palaeozoic Stratigraphy of North China Platform. Journal of Geology and Mineral Resources of North China, 1(1): 9-23 (in Chinese with English abstract). [37] Xie, R. J., Qi, J. F., Wang, Y. S., et al., 2004. Study on Cenozoic Tectonic Evolution Characteristics in the Northern Part of Dongying Sag, Bohai Bay Basin. Petroleum Experimental Geology, 26(5): 427-431 (in Chinese with English abstract). [38] Yao, G. Q., Ma, Z., Zhao, Y. C., et al., 1995. Reservoir Characteristics of Distributary Channel Sand Bodies of Shallow Water Delta. Acta Petrolei Sinica, 16(1): 26-31 (in Chinese with English abstract). [39] Yin, G. K., 1984. Application Significance of Boundary Law of Geomorphic Process. Journal of Sediment Research, 4(14): 25-36 (in Chinese with English abstract). [40] Yousef, I., Morozov, V., Sudakov, V., et al., 2021. Cementation Characteristics and Their Effect on Quality of the Upper Triassic, the Lower Cretaceous, and the Upper Cretaceous Sandstone Reservoirs, Euphrates Graben, Syria. Journal of Earth Science, 32(6): 1545-1562. doi: 10.1007/s12583-020-1065-8 [41] Yu, W. C., 1994. Analysis on Geometry Criterion of the Middle and Lower Yangtze River-Reaches. Journal of Yangtze River Scientific Research Institute, 11(1): 48-55 (in Chinese with English abstract). [42] Zeng, Q. G., Wang, B. D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). [43] Zhang, C., Yu, X. H., Yao, Z. Q., et al., 2021. Sedimentary Evolution and Controlling Factors of the Middle-Upper Jurassic in the Western Part of the Southern Junggar Basin. Geology in China, 48(1): 284-296 (in Chinese with English abstract). [44] Zhang, C. M., Yin, T. J., Zhu, Y. J., et al., 2010. Shallow Water Deltas and Models. Acta Sedimentologica Sinica, 28(5): 933-944 (in Chinese with English abstract). [45] Zhang, S. Q., Ji, Y. L., 1998. Control of Paleoclimate Change on Sequence Development in Dongying Sag in Early Tertiary. Journal of China University of Petroleum (Edition of Natural Sciences), 22(6): 29-30 (in Chinese with English abstract). [46] Zhang, Z. L, Zhu, X. M., Liao, F. Y., et al., 2021. Features and Control Factors of Gentle-Sloped Fluvial Sandbodies in Rift Basins: An Example from the Wenan Slope, Baxian Sag. Earth Science Frontiers, 28(1): 141-154 (in Chinese with English abstract). [47] Zhu, H. T., Liu, K. Y., Zhu, X. M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785 (in Chinese with English abstract). [48] Zhu, X. M., Liu, Y., Fang, Q., et al., 2012. Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake. Example from Cretaceous Quantou Formation in Sanzhao Sag Basin. Earth Science Frontiers, 19(1): 89-99 (in Chinese with English abstract). [49] Zou, C. N., Zhao, W. Z., Zhang, X. Y., et al., 2008. Formation and Distribution of Shallow-Water Deltas and Central-Basin Sandbodies in Large Open Depression Lake Basins. Acta Geologica Sinica, 82(6): 813-825 (in Chinese with English abstract). [50] 蔡强国, 1982. 地壳构造运动对河型转化影响的实验研究. 地理研究, 1(3): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198203002.htm [51] 常兴浩, 王延宾, 韩德馨, 2004. 大牛地气田下石盒子组储层特征. 天然气工业, 24(11): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200411006.htm [52] 陈彬滔, 于兴河, 王磊, 等, 2021. 河流相沉积的河型转换特征与控制因素及其油气地质意义——以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例. 沉积学报, 39(2): 424-433. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102012.htm [53] 郭岭, 姜在兴, 姜文利, 2011. 页岩气储层的形成条件与储层的地质研究内容. 地质通报, 30(2): 385-392. doi: 10.3969/j.issn.1671-2552.2011.02.025 [54] 郭齐军, 陈建文, 焦守诠, 等, 1997. 高尚堡油田馆陶组辫状河沉积模式. 地球科学, 22(5): 552-556. http://www.earth-science.net/article/id/542 [55] 郝蜀民, 李良, 尤欢增, 2006. 大牛地气田石炭‒二叠系海陆过渡沉积体系与近源成藏模式. 中国地质, 34(4): 606-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704009.htm [56] 贺婷婷, 李胜利, 高兴军, 等, 2014. 浅水湖泊三角洲平原分流河道类型与叠置模式. 古地理学报, 16(5): 597-604. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201405003.htm [57] 贺雪晶, 钟建华, 曹梦春, 等, 2018. 河流相辫曲河型转换控制因素与控制机理——以东营凹陷青西地区馆陶组为例. 河南科学, 36(5): 776-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201805027.htm [58] 江小均, 任纪舜, 周鼎武, 等, 2019. 东秦岭加里东期沉积‒构造演化过程. 地球科学, 44(1): 88-108. doi: 10.3799/dqkx.2018.281 [59] 晋剑利, 黄奇志, 赵国, 等, 2018. 南苏丹Melut盆地Palogue油田古近系Yabus组河型演化规律及主控因素分析. 古地理学报, 20(6): 952-962. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201806004.htm [60] 康叶, 黄世俊, 刘克浩, 等, 2020. 水沙条件及河岸边界条件对河型转化影响的研究. 水利科技与经济, 26(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKY202001001.htm [61] 李胜利, 于兴河, 姜涛, 等, 2017. 河流辫曲转换特点与废弃河道模式. 沉积学报, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701001.htm [62] 李胜利, 于兴河, 杨志浩, 等, 2015. 准噶尔盆地彩南地区头屯河期河流变迁与砂体展布. 新疆石油地质, 36(6): 660-667. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201506007.htm [63] 李易隆, 贾爱林, 冀光, 等, 2018. 鄂尔多斯盆地中‒东部下石盒子组八段辫状河储层构型. 石油学报, 39(9): 1037-1050. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201809008.htm [64] 秦国省, 胡文瑞, 宋新民, 等, 2018. 砾质辫状河构型及隔夹层分布特征——以准噶尔盆地西北缘八道湾组露头为例. 中国矿业大学学报, 47(5): 1008-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201805010.htm [65] 孙昭华, 李义天, 黄颖, 2006. 水沙变异条件下的河流系统调整及其研究进展. 水科学进展, 17(6): 887-893. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200606023.htm [66] 谭程鹏, 于兴河, 李胜利, 等, 2014. 辫状河‒曲流河转换模式探讨——以准噶尔盆地南缘头屯河组露头为例. 沉积学报, 32(3): 450-458. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201403006.htm [67] 谈明轩, 朱筱敏, 刘强虎, 等, 2019. 渤海沙垒田地区新近系明下段多河型地震地貌学特征. 石油实验地质, 41(3): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201903016.htm [68] 唐武, 王英民, 赵志刚, 等, 2016. 河型转化研究进展综述. 地质论评, 62(1): 138-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201601019.htm [69] 王随继, 倪晋仁, 王光谦, 2000. 古河型演化模式及其影响因素的沉积体系分析. 石油勘探与开发, 27(5): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200005031.htm [70] 王随继, 任明达, 1999. 根据河道形态和沉积物特征的河流新分类. 沉积学报, 17(2): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB902.012.htm [71] 王震亮, 张立宽, 孙明亮, 等, 2004. 鄂尔多斯盆地神木‒榆林地区上石盒子组‒石千峰组天然气成藏机理. 石油学报, 25(3): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200403007.htm [72] 汪曾荫, 刘汉男, 唐锦秀, 等, 1996. 华北地台晚古生代含煤地层多重划分. 华北地质矿产杂志, 1(1): 9-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ601.001.htm [73] 谢锐杰, 漆家福, 王永诗, 等, 2004. 渤海湾盆地东营凹陷北部地区新生代构造演化特征研究. 石油实验地质, 26(5): 427-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200405004.htm [74] 姚光庆, 马正, 赵彦超, 等, 1995. 浅水三角洲分流河道砂体储层特征. 石油学报, 16(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB501.003.htm [75] 尹国康, 1984. 地貌过程界限规律的应用意义. 泥沙研究, 4(14): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198404002.htm [76] 余文畴, 1994. 长江中下游河道平面形态指标分析. 长江科学院院报, 11(1): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB401.007.htm [77] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 [78] 张驰, 于兴河, 姚宗全, 等, 2021. 准噶尔盆地南缘西段中、上侏罗统沉积演化及控制因素分析. 中国地质, 48(1): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101020.htm [79] 张昌民, 尹太举, 朱永进, 等, 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005012.htm [80] 张世奇, 纪友亮, 1998. 东营凹陷早第三纪古气候变化对层序发育的控制. 石油大学学报(自然科学版), 22(6): 29-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX806.003.htm [81] 张自力, 朱筱敏, 廖凤英, 等, 2021. 断陷盆地缓坡带河流沉积砂体定量表征及控制因素分析: 以霸县凹陷文安斜坡东营组三段为例. 地学前缘, 28(1): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101015.htm [82] 朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906 [83] 朱筱敏, 刘媛, 方庆, 等, 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1) : 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201012.htm [84] 邹才能, 赵文智, 张兴阳, 等, 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6) : 813-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806012.htm