Characteristics of Shale Fracture Veins and Paleo-Pressure Evolution in Normal Pressure Shale Gas Zone, Southeast Margin of Sichuan Basin
-
摘要: 为了查明川东南盆缘常压页岩气区五峰组页岩裂缝脉体记录的古温度及古压力特征,揭示常压页岩气区储层压力降低的主要影响因素和页岩气散失机理.以松坎地区五峰组黑色碳质页岩裂缝脉体内的流体包裹体为主要研究对象,通过显微镜光学观察、阴极发光测试、包裹体测温和激光拉曼分析,结合埋藏-生烃-热史模拟,对裂缝脉体中的气-液两相盐水包裹体和高密度甲烷包裹体进行了系统研究.研究表明:松坎地区五峰组裂缝中主要存在着两期脉体充填,M1裂缝脉体形成时间距今约103~86 Ma,脉体较宽、阴极发光颜色为橘红色,其内甲烷包裹体捕获压力为82.6~91.5 MPa,反映燕山中期盆缘地区页岩气藏处在超压状态;M2裂缝脉体生长于M1裂缝脉体两侧,形成时间距今约90~72 Ma,脉体较窄、阴极发光颜色为暗红色,其内甲烷包裹体捕获压力为43.6~47.3 MPa.综合分析认为,川东南盆缘松坎地区五峰组在燕山期经历了由超压至常压的转变.燕山期以来的抬升剥蚀与褶皱变形导致地层内大量页岩气沿着滑脱层发生侧向运移和散失,地层压力快速下降.燕山晚期时,盆内稳定构造区页岩气藏仍处于超压状态,而盆缘地区已降至常压.Abstract: This study aims to investigate the characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale fracture veins of Wufeng Formation, and to understand the main influencing factors of the shale reservoir pressure reduction and the mechanism of shale gas loss in the normal pressure shale gas zone, southeast margin of Sichuan basin. Taking the fluid inclusions in the fracture veins of the black carbonaceous shale of the Wufeng Formation in Songkan region as the main research object, the gas-liquid saline inclusion and high-density methane inclusion with the records of paleo-temperature and paleo-pressure characteristics in fracture veins were studied systematically by the microscope optical observation, cathodoluminescence (CL) test, inclusion temperature measurement and laser Raman analysis, combined with burial-hydrocarbon generation-thermal history simulation. The results show that there are mainly two phases of vein filling in the fractures of Wufeng Formation in Songkan region. The first phase fracture veins (M1) was formed about 103-86 Ma ago, which are wide in size and with orange-red CL color. The capture pressure of methane inclusions in the fractures recorded by the M1 vein is 82.6-91.5 MPa, reflecting that the shale gas reservoir in the basin margin region was still in the overpressure state at the medium stage of Yanshanian. The second-stage fracture veins (M2) grew along both sides of the first-stage fracture veins, and the formation time was about 90-72 Ma. The M2 veins are relative narrower than M1, and with dark-red CL color. And the trapping pressure of methane inclusions in M2 veins is calculated to be 43.6-47.3 MPa. Comprehensive analysis suggests that the Wufeng Formation in the Songkan region of the Southeast margin of Sichuan basin experienced a transition from overpressure to normal pressure during the Yanshanian. The uplift, denudation and fold deformation since the Yanshanian have caused a large amount of shale gas to migrate and dissipate laterally along the detachment zone within shales of Wufeng Formation and lower section of Longmaxi Formation, and leading to the formation pressure decreased rapidly. During the late Yanshan period, the shale gas reservoir in the stable structural zone was still in overpressure stage, while the basin margin region had dropped to normal pressure.
-
图 4 川东南松坎地区ZIY1井裂缝脉体盐水包裹体和甲烷包裹体形态与产出特征
a.M1方解石内盐水包裹体,单偏光,2 177.82 m;b. M1方解石内盐水包裹体,单偏光,2 180.03 m;c. M1石英内甲烷包裹体,单偏光,2 180.03 m;d. M2方解石内盐水包裹体,单偏光,2 177.82 m;e. M2方解石内盐水包裹体,单偏光,2 180.03 m;f. M2石英内甲烷包裹体,单偏光,2 180.03 m
Fig. 4. Morphology and occurrence of saline inclusions and methane inclusions in fracture veins from well ZIY1 in Songkan region, Southeast Sichuan basin
表 1 川东南松坎地区ZIY1井五峰组M1、M2脉体内甲烷包裹体拉曼峰位移及密度计算结果
Table 1. The displacement and density calculation results of the Raman peaks of methane inclusions in the M1 and M2 veins in Wufeng Formation from well ZIY1 of Songkan region, Southeast Sichuan basin
样品编号 期次 测点数 υd(cm-1) D(cm-1) ρ0(g/cm3) ρ(g/cm3) S1-01 M1 8 2 909.416~2 910.034 ‒6.351~‒5.734 0.232~0.268 0.259 S2-01 M1 5 2 909.298~2 909.564 ‒6.470~‒6.203 0.259~0.276 0.268 S2-02 M1 8 2 909.274~2 909.606 ‒6.493~‒6.161 0.256~0.278 0.265 S1-02 M2 5 2 909.749~2 910.506 ‒5.671~‒4.914 0.192~0.229 0.206 S1-03 M2 4 2 909.853~2 910.511 ‒5.567~‒4.909 0.193~0.224 0.213 S2-03 M2 6 2 909.869~2 910.569 ‒5.550~‒4.851 0.189~0.223 0.208 注:ρ0为利用公式(1)计算的甲烷包裹体密度;ρ为每个样品所有测点密度计算结果的平均值. 表 2 川东南松坎地区ZIY1井五峰组M1、M2脉体内甲烷包裹体捕获压力计算结果
Table 2. Calculation results of the capture pressure of methane inclusions in the M1 and M2 veins in Wufeng Formation from well ZIY1 of Songkan region, Southeast Sichuan basin
样品编号 期次 测点数 ρ(g/cm3) T(℃) 捕获压力P(MPa) 静水压力P0(MPa) 压力系数 S1-01 M1 8 0.259 171.6 82.6 51.9 1.59 S2-01 M1 5 0.268 176.8 91.5 54.1 1.69 S2-02 M1 8 0.265 175.9 88.7 54.0 1.64 S1-02 M2 5 0.206 139.6 43.6 39.9 1.09 S1-03 M2 4 0.213 142.5 47.3 40.1 1.18 S2-03 M2 6 0.208 147.1 46.1 41.1 1.12 注:T为与甲烷包裹体共生的盐水包裹体均一温度的平均值;P为利用公式(2)计算得到的甲烷包裹体捕获压力值;P0为包裹体捕获时地层的静水压力;压力系数=P/P0. -
[1] Duan, Z. H., Moller, N., Weare, J. H., 1992. An Equation of State for the CH4-CO2-H2O System: Ⅰ. Pure Systems from 0 to 1 000 ℃ and 0 to 8 000 bar. Geochimica et Cosmochimica Acta, 56: 2605-2617. https://doi.org/10.1016/0016-7037(92)90347-L [2] Gao, J., He, S., He, Z. L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1): 33-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201401006.htm [3] Gao, J., He, S., Yi, J. Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3): 472-480 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201503018.htm [4] Gao, J., He, S., Zhao, J. X., et al., 2017. Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China: Insight from Fluid Inclusions in Fracture Cements. Marine and Petroleum Geology, 83: 124-139. https://doi. org/10.1016/j.marpetgeo.2017.02.018 doi: 10.1016/j.marpetgeo.2017.02.018 [5] Gao, J., Zhang, J. K., He, S., et al., 2019. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Marine and Petroleum Geology, 102: 844-859. https://doi.org/10.1016/j.marpetgeo.2019.01.032 [6] Guo, T. L., He, X. P., Zeng, P., et al., 2020. Geological Characteristics and Beneficial Development Scheme of Shale Gas Reservoirs in Complex Tectonic Regions: A Case Study of Wufeng-Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(12): 1490-1500 (in Chinese with English abstract). [7] Guo, X. S., 2014. Rules of Two-Factor Enrichiment for Marine Shale Gas in Southern China—Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area. Acta Geologica Sinica, 88(7): 1209-1218 (in Chinese with English abstract). [8] Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology and the Bulletin of the Society of Economic Geologists, 83(1): 197-202. https://doi.org/10.2113/gsecongeo.83.1.197 [9] He, X. P., Gao, Y. Q., Tang, X. C., et al., 2017. Analysis of Major Factors Controlling the Accumulation in Normal Pressure Shale Gas in the Southeast of Chongqing. Natural Gas Geoscience, 28(4): 654-664 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201704021.htm [10] Hu, D. F., 2019. Main Controlling Factors on Normal Pressure Shale Gas Enrichments in Wufeng-Longmaxi Formations in Synclines, Southeastern Sichuan Basin. Natural Gas Geoscience, 30(5): 605-615 (in Chinese with English abstract). [11] Hu, D. F., Zhang, H. R., Ni, K., et al., 2014. Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6): 17-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201406003.htm [12] Jin, Z. Y., Hu, Z. Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10 (in Chinese with English abstract). [13] Li, S. J., Li, J. M., Zhou, Y., et al., 2011. Fission Track Evidence for Mesozoic-Cenozoic Uplifting in the Southeastern Margin of Sichuan Basin. Acta Petrologica et Mineralogica, 30(2): 225-233(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201102009.htm [14] Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415(in Chinese with English abstract). [15] Lin, F., Bodnar, R. J., Becker, S. P., 2007. Experimental Determination of the Raman CH4 Symmetric Stretching (ν1) Band Position from 1-650 bar and 0.3-22 ℃: Application to Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 71(15): 3746-3756. https://doi.org/10.1016/j.gca.2007.05.016 [16] Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). [17] Liu, Z., Hao, F., Liu, X., et al., 2021. Development Characteristics and Geological Significance of High Density Methane Inclusions in the Longmaxi Member Ⅰ in the Ningxi Area, Southern Sichuan Basin. Earth Science, 46(9): 3157-3171 (in Chinese with English abstract). [18] Long, P. Y., Zhang, J. C., Tang, X., et al., 2011. Feature of Muddy Shale Fissure and Its Effect for Shale Gas Exploration and Development. Natural Gas Geoscience, 22(3): 525-532 (in Chinese with English abstract). [19] Nie, H. K., Bao, S. J., Gao, B., et al., 2012. A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery. Earth Science Frontiers, 19(3): 280-294 (in Chinese with English abstract). [20] Nie, H. K., Wang, H., He, Z. L., et al., 2019. Formation Mechanism, Distribution and Exploration Prospect of Normal Pressure Shale Gas Reservoir: A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 40(2): 131-143, 164 (in Chinese with English abstract). [21] Qin, Z. P., Liu, S. G., Deng, B., et al., 2013. Multiphase Structural Features and Evolution of Southeast Sichuan Tectonic Belt in China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 703-711 (in Chinese with English abstract). [22] Qiu, N. S., Feng, Q. Q., Tenger, B., et al., 2020. Yanshanian-Himalayan Differential Tectono-Thermal Evolution and Shale Gas Preservation in Dingshan Area, Southeastern Sichuan Basin. Acta Petrolei Sinica, 41(12): 1610-1622 (in Chinese with English abstract). [23] Tang, J. G., Wang, K. M., Qin, D. C., et al., 2021. Tectonic Deformation and Its Constraints to Shale Gas Accumulation in Nanchuan Area, Southeastern Sichuan Basin. Bulletin of Geological Science and Technology, 40(5): 11-21 (in Chinese with English abstract). [24] Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2): 315-332. https://doi.org/10.1007/s12583-016-0921-7 [25] Wei, X. F., Liu, Z. J., Wang, Q., et al., 2020. Analysis and Thinking of the Difference of Wufeng-Longmaxi Shale Gas Enrichment Conditions between Dingshan and Jiaoshiba Areas in Southeastern Sichuan Basin. Natural Gas Geoscience, 31(8): 1041-1051 (in Chinese with English abstract). [26] Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531 (in Chinese with English abstract) [27] Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6 [28] Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract). [29] Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese with English abstract). [30] Yang, Z., Zou, C. N., Wu, S. T., et al., 2019. Formation, Distribution and Resource Potential of the "Sweet Areas (Sections)" of Continental Shale Oil in China. Marine and Petroleum Geology, 75 (8): 341-355. https://doi.org/10.1016/j.marpetgeo.2018.11.049 [31] Yuan, Y. S., Sun, D. S., Zhou, Y., et al., 2010. Relationship between Hydrocarbon Generation History of Source Rocks and Sealing History of Mudstone Cap-Rocks in the Southeast Sichuan Basin. Geological Review, 56(6): 831-838 (in Chinese with English abstract). [32] Yue, F., Li, Y. C., Zhao, B. S., et al., 2018. Bedding Decollement Deformation Domain in the Lower Paleozoic Shales in Chongqing. Formation and Geological Significance. Oil & Gas Geology, 39(2): 229-238 (in Chinese with English abstract). [33] Zhang, J. L., Qiao, S. H., Lu, W. J., et al., 2016. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171: 20-28. https://doi.org/10.1016/j.gexplo.2015.12.003 [34] Zhu, C. Q., Xu, M., Shan, J. N., et al., 2009. Quantifying the Denudations of Major Tectonic Events in Sichuan Basin: Constrained by the Paleothermal Records. Geology in China, 36(6): 1268-1277 (in Chinese with English abstract). [35] Zou, Y. T., Duan, J. B., Zhao, Y. J., et al., 2015. Tectonic Characteristics and Evolution of the High and Steep Fault Folding Belt in East Sichuan. Acta Geologica Sinica, 89(11): 2046-2052 (in Chinese with English abstract). [36] 高键, 何生, 何治亮, 等, 2014. 中扬子京山地区方解石脉成因及其对油气保存的指示意义. 石油与天然气地质, 35(1): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401006.htm [37] 高键, 何生, 易积正, 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm [38] 郭彤楼, 何希鹏, 曾萍, 等, 2020. 复杂构造区页岩气藏地质特征与效益开发建议: 以四川盆地及其周缘五峰组-龙马溪组为例. 石油学报, 41(12): 1490-1500. doi: 10.7623/syxb202012004 [39] 郭旭升, 2014. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [40] 何希鹏, 高玉巧, 唐显春, 等, 2017. 渝东南地区常压页岩气富集主控因素分析. 天然气地球科学, 28(4): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704021.htm [41] 胡东风, 2019. 四川盆地东南缘向斜构造五峰组-龙马溪组常压页岩气富集主控因素. 天然气地球科学, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm [42] 胡东风, 张汉荣, 倪楷, 等, 2014. 四川盆地东南缘海相页岩气保存条件及其主控因素. 天然气工业, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [43] 金之钧, 胡宗全, 高波, 等, 2016. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm [44] 李双建, 李建明, 周雁, 等, 2011. 四川盆地东南缘中新生代构造隆升的裂变径迹证据. 岩石矿物学杂志, 30(2): 225-233. doi: 10.3969/j.issn.1000-6524.2011.02.007 [45] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm [46] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [47] 柳卓, 郝芳, 刘鑫, 吴伟, 等, 2021. 川南宁西地区龙一段高密度甲烷包裹体发育特征及地质意义. 地球科学, 46(9): 3157-3171. doi: 10.3799/dqkx.2020.344 [48] 龙鹏宇, 张金川, 唐玄, 等, 2011. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响. 天然气地球科学, 22(3): 525-532. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103022.htm [49] 聂海宽, 包书景, 高波, 等, 2012. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203030.htm [50] 聂海宽, 汪虎, 何治亮, 等, 2019. 常压页岩气形成机制、分布规律及勘探前景: 以四川盆地及其周缘五峰组-龙马溪组为例. 石油学报, 40(2): 131-143, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201902001.htm [51] 覃作鹏, 刘树根, 邓宾, 等, 2013. 川东南构造带中新生代多期构造特征及演化. 成都理工大学学报(自然科学版), 40(6): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201306010.htm [52] 邱楠生, 冯乾乾, 腾格尔, 等, 2020. 川东南丁山地区燕山期-喜马拉雅期差异构造-热演化与页岩气保存. 石油学报, 41(12): 1610-1622. doi: 10.7623/syxb202012013 [53] 汤济广, 汪凯明, 秦德超, 等, 2021. 川东南南川地区构造变形与页岩气富集. 地质科技通报, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htm [54] 魏祥峰, 刘珠江, 王强, 等, 2020. 川东南丁山与焦石坝地区五峰组-龙马溪组页岩气富集条件差异分析与思考. 天然气地球科学, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm [55] 吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组-龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049 [56] 徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376 [57] 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. doi: 10.3969/j.issn.0001-5733.2011.04.020 [58] 袁玉松, 孙冬胜, 周雁, 等, 2010. 四川盆地川东南地区"源-盖"匹配关系研究. 地质论评, 56(6): 831-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006009.htm [59] 岳锋, 李永臣, 赵宝山, 等, 2018. 重庆下古生界页岩顺层滑脱变形域的形成及其地质意义. 石油与天然气地质, 39(2): 229-238. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802004.htm [60] 朱传庆, 徐明, 单竞男, 等, 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268-1277. doi: 10.3969/j.issn.1000-3657.2009.06.008 [61] 邹玉涛, 段金宝, 赵艳军, 等, 2015. 川东高陡断褶带构造特征及其演化. 地质学报, 89(11): 2046-2052. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511016.htm