• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    天然水中硫代钨酸盐的分析方法

    赵倩 郭清海 郭伟

    赵倩, 郭清海, 郭伟, 2023. 天然水中硫代钨酸盐的分析方法. 地球科学, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    引用本文: 赵倩, 郭清海, 郭伟, 2023. 天然水中硫代钨酸盐的分析方法. 地球科学, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    Zhao Qian, Guo Qinghai, Guo Wei, 2023. An Analysis Method of Thiotungstates in Natural Water. Earth Science, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    Citation: Zhao Qian, Guo Qinghai, Guo Wei, 2023. An Analysis Method of Thiotungstates in Natural Water. Earth Science, 48(1): 376-384. doi: 10.3799/dqkx.2022.010

    天然水中硫代钨酸盐的分析方法

    doi: 10.3799/dqkx.2022.010
    基金项目: 

    国家自然科学基金项目 41772370

    详细信息
      作者简介:

      赵倩(1993-),女,博士研究生,主要从事地热环境中钨的环境地球化学研究. ORCID:0000-0001-6325-0048. Email:1909034746@qq.com

      通讯作者:

      郭清海,E-mail: qhguo2006@gmail.com

    • 中图分类号: O658

    An Analysis Method of Thiotungstates in Natural Water

    • 摘要: 天然水中硫代钨酸盐的分析对钨的环境地球化学研究具有重要意义. 建立了利用反相离子对色谱‒电感耦合等离子质谱同时测定天然水中钨酸盐(WO42‒)和4种硫代钨酸盐(WO3S2‒、WO2S22‒、WOS32‒、WS42‒)的方法,并采用电喷雾‒高分辨质谱对这5种钨化合物进行鉴定. 采集富硫化物地热水样品经干冰速冻并在-20 ℃冷冻保存运输至实验室后,在厌氧环境下解冻后,利用优化的色谱及质谱条件在30 min内完成5种钨化合物的分离和测定. 以钨酸盐作为其他钨化合物的标准建立工作曲线,在0.001~20 mg/L浓度范围内具有良好线性关系(相关系数R2 > 0.999),WO42‒、WO3S2‒、WO2S22‒、WOS32‒、WS42‒检出限分别为0.82、0.34、0.22、0.79和0.62 µg/L. 本方法具有灵敏度高、重现性好等优点,为天然水中硫代钨酸盐的检测和研究提供了一种有效途径.

       

    • 图  1  负离子模式下钨酸盐‒硫化物混合溶液质谱图

      Fig.  1.  Mass spectrum of a tungstate-sulfide mixed solution obtained using a high-resolution electrospray ionization mass spectrometer (ESI-HRMS) in negative mode

      图  2  实验室配制钨相关溶液的RP-IPC-ICP-MS图

      a、b. 100 µM Na2WO4与4 mM Na2S混合溶液,盐酸调pH=5,其中定量环分别为500 µL(图a)、200 µL(图b);c. 100 µM Na2WO4溶液,定量环=200 µL;d. 100 µM(NH42WS4溶液,定量环=200 µL. “0”代表钨酸盐,“1~4”代表一至四硫代钨酸盐

      Fig.  2.  RP-IPC-ICP-MS chromatograms of the tungsten-bearing solutions prepared in the laboratory

      图  3  硫代钨形态测试标准曲线

      a. 测试实验室配制溶液时钨标液浓度梯度为1、5、10、20 mg/L,定量环=200 µL;b. 测试天然水样品时钨标液浓度梯度为1、5、10、20、50、100、300 µg/L,定量环=500 µL

      Fig.  3.  Calibration curves for quantitative analysis of thiotungstates

      图  4  天然水样品硫代钨酸盐的RP-IPC-ICP-MS图

      Fig.  4.  RP-IPC-ICP-MS chromatograms of thiotungstates in natural water samples

      图  5  天然水样LL10解冻后置于空气中硫代钨形态随时间变化的RP-IPC-ICP-MS图

      Fig.  5.  RP-IPC-ICP-MS chromatograms reflecting the thiotungstates speciation change with time in a natural water sample (LL10) which was stored at room temperature and under oxic condition after thawing

      表  1  反相色谱法常用溶剂的强度因子

      Table  1.   Intensity factors of common solvents used in reversed-phase chromatography

      试剂 甲醇 乙腈 乙醇 异丙醇
      溶剂强度因子 0.0 3.0 3.2 3.6 4.2
      下载: 导出CSV

      表  2  RP⁃IPC⁃ICP⁃MS联用法测试实验室配制硫代钨溶液色谱峰结果

      Table  2.   Analytical RP-IPC-ICP-MS results of the thiotungstates solutions prepared in the laboratory

      钨形态 化学式a 保留时间(s) 结果
      0 钨酸盐 HnWO42‒n 620 单峰(200 µL)/驼峰(500 µL)
      1 一硫代钨酸盐 HnWO3S2‒n 790 单峰
      2 二硫代钨酸盐 HnWO2S22‒n 1 045 单峰
      3 三硫代钨酸盐 HnWOS32‒n 1 335 单峰
      4 四硫代钨酸盐 HnWS42‒n 1 545 单峰
      注:a.实际水溶液中受pH值的影响存在多种质子化形式(n=0~2), 为方便文中均写为脱质子形式即n=0.
      下载: 导出CSV

      表  3  实验室配制溶液硫代钨测试结果

      Table  3.   Quantitative analysis of thiotungstates in the solutions prepared in the laboratory

      表  4  热泉样品的硫代钨和相关水化学指标分析结果

      Table  4.   Analysis results of thiotungstates and relevant hydrogeochemical parameters in representative hot spring samples

      泉名 地热区 T
      (℃)
      pH Eh
      (mV)
      硫化物
      (mg/L)
      WO42‒
      (µg/L)
      WO3S2‒
      (µg/L)
      WO2S22‒
      (µg/L)
      WOS32‒
      (µg/L)
      WS42‒
      (µg/L)
      钨形态之和
      (µg/L)
      总钨
      (µg/L)
      回收率
      (%)
      WGQ 热海 41 5.52 -41 1.4 2.4
      (RSD=
      4.46%)
      0
      (RSD=
      2.57%)
      0
      (RSD=
      0.81%)
      0
      (RSD=
      1.22%)
      0
      (RSD=
      4.41%)
      2.4 2.2 109.09
      LL10 邦腊掌 91 8.36 -306 8.0 15.0
      (RSD=
      4.20%)
      7.7
      (RSD=
      2.35)
      13.2
      (RSD=
      2.13%)
      175.7
      (RSD=
      3.54%)
      62.5
      (RSD=
      3.79%)
      274.2 267.8 102.35
      下载: 导出CSV

      表  5  天然水样LL10解冻后置于空气中硫代钨形态相对含量结果

      Table  5.   Change of relative contents of various thiotungstates in a natural water sample (LL10) which was stored at room temperature and under oxic condition after thawing

      接触空气时间 WO42‒
      (%)
      WO3S2‒
      (%)
      WO2S22‒
      (%)
      WOS32‒
      (%)
      WS42‒
      (%)
      < 5 min 5 3 5 64 23
      2 h 8 5 6 57 23
      24 h 22 2 9 47 20
      2 d 36 2 10 34 18
      5 d 57 2 8 20 13
      下载: 导出CSV
    • [1] Bidlingmeyer, B. A., Deming, S. N., Jr Price, W. P., et al., 1979. Retention Mechamism for Reversed⁃Phase Ion⁃Pair Liquid Chromatography. Journal of Chromatography A, 186: 419-434. https://doi.org/10.1016/S0021⁃9673(00)95264⁃6
      [2] Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      [3] Cui, M. M., Johannesson, K. H., 2017. Comparison of Tungstate and Tetrathiotungstate Adsorption onto Pyrite. Chemical Geology, 464: 57-68. https://doi.org/10.1016/j.chemgeo.2016.11.034
      [4] Dai, M. N., Bao, Z. A., Chen, K. Y., et al., 2017. Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 28(1): 92-102. https://doi.org/10.1007/s12583⁃017⁃0742⁃8
      [5] Guo, Q. H., Li, Y. M., Luo, L., 2019. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
      [6] Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High⁃Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
      [7] Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2013. In Vivo Tungsten Exposure Alters B⁃Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
      [8] Lee, M. K., Saunders, J. A., Wilkin, R. T., et al., 2006. Geochemical Modeling of Arsenic Speciation and Mobilization: Implications for Bioremediation. ACS Symposium Series, 915: 398-413. https://doi.org/10.1021/bk⁃2005⁃0915.ch029
      [9] Li, H. F., 2010. Comparison of Several Calculation Methods of Detection Limit. Chinese Journal of Spectroscopy Laboratory, 27(6): 2465-2469 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-8138.2010.06.082
      [10] Mamindy⁃Pajany, Y., Bataillard, P., Séby, F., et al., 2013. Arsenic in Marina Sediments from the Mediterranean Coast: Speciation in the Solid Phase and Occurrence of Thioarsenates. Soil and Sediment Contamination: An International Journal, 22(8): 984-1002. https://doi.org/10.1080/15320383.2013.770441
      [11] Mohajerin, T. J., Helz, G. R., Johannesson, K. H., 2016. Tungsten⁃Molybdenum Fractionation in Estuarine Environments. Geochimica et Cosmochimica Acta, 177: 105-119. https://doi.org/10.1016/j.gca.2015.12.030
      [12] Mohajerin, T. J., Helz, G. R., White, C. D., et al., 2014. Tungsten Speciation in Sulfidic Waters: Determination of Thiotungstate Formation Constants and Modeling Their Distribution in Natural Waters. Geochimica et Cosmochimica Acta, 144: 157-172. https://doi.org/10.1016/j.gca.2014.08.037
      [13] Planer⁃Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54(7): 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      [14] Planer⁃Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
      [15] Planer⁃Friedrich, B., Scheinost, A. C., 2011. Formation and Structural Characterization of Thioantimony Species and Their Natural Occurrence in Geothermal Waters. Environmental Science & Technology, 45(16): 6855-6863. https://doi.org/10.1021/es201003k
      [16] Roedel, E. Q., Cafasso, D. E., Lee, K. W. M., et al., 2012. Pulmonary Toxicity after Exposure to Military⁃Relevant Heavy Metal Tungsten Alloy Particles. Toxicology and Applied Pharmacology, 259(1): 74-86. https://doi.org/10.1016/j.taap.2011.12.008
      [17] Strigul, N., Galdun, C., Vaccari, L., et al., 2009. Influence of Speciation on Tungsten Toxicity. Desalination, 248(1-3): 869-879. https://doi.org/10.1016/j.desal.2009.01.016
      [18] Weiss, J., Möckel, H. J., Müller, A., et al., 1988. Retention of Thio⁃ and Selenometalates in Mobile⁃Phase Ion Chromatography. Journal of Chromatography A, 439(1): 93-108. https://doi.org/10.1016/S0021⁃9673(01)81678⁃2
      [19] Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632 (in Chinese with English abstract).
      [20] Yang, N. F., Welch, K. A., Mohajerin, T. J., et al., 2015. Comparison of Arsenic and Molybdenum Geochemistry in Meromictic Lakes of the McMurdo Dry Valleys, Antarctica: Implications for Oxyanion⁃Forming Trace Element Behavior in Permanently Stratified Lakes. Chemical Geology, 404: 110-125. https://doi.org/10.1016/j.chemgeo.2015.03.029
      [21] Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High⁃Temperature, Sulfide⁃Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      [22] 郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
      [23] 李海峰, 2010. 检出限几种常见计算方法的分析和比较. 光谱实验室, 27(6): 2465-2469. doi: 10.3969/j.issn.1004-8138.2010.06.082
      [24] 严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
      [25] 庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. doi: 10.3799/dqkx.2016.513
    • 加载中
    图(5) / 表(5)
    计量
    • 文章访问数:  124
    • HTML全文浏览量:  33
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-29
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回