Geochemical Characteristics and Oil Source Correlation of Paleo-Reservoirs in Biluocuo Area, Qiangtang Basin
-
摘要: 羌塘盆地是一个大型中生代海相沉积盆地,盆地内发育多套烃源岩,并发现多处古油藏和油气显示,确定古油藏油源对油气勘探至关重要.为明确古油藏油源,对古油藏和烃源岩样品进行地球化学分析.研究表明古油藏可分为2类:Ⅰ类古油藏整体处于成熟-高成熟阶段,C24四环萜烷丰度较高,三环萜烷丰度低,C29规则甾烷占有一定优势,C29藿烷含量较高,体现出以陆源有机质贡献为主的特征.Ⅱ类古油藏整体处于低成熟-成熟阶段,以C23三环萜烷为主峰,低丰度C24四环萜烷,C27规则甾烷占优势,表明母质来源以低等水生生物为主.油源对比表明,两类古油藏来源于不同的烃源岩,Ⅰ类油藏来自于上三叠统扎那组烃源岩,Ⅱ类油藏主要为下侏罗统曲色组烃源岩的贡献.Abstract: Qiangtang basin is a large Mesozoic marine sedimentary basin, in which several sets of source rocks are developed, and many paleo-reservoirs and hydrocarbon indications are discovered. Determining the oil source of paleo-reservoirs is very important for oil and gas exploration. In order to clarify the oil source of the paleo-reservoir, geochemical analysis of oil and source rock samples is carried out in this paper. The results show that the paleo-reservoirs can be divided into two types: type Ⅰ paleo-reservoirs are in the mature-high mature stage in general with the high content of C24 tetracyclic terpane, the low tricyclic terpane abundance, C29 regular sterane with certain advantages in content, and high C29 hopane content, reflecting the contribution of terrigenous organic matter. Type Ⅱ paleo-reservoir is in the low mature-mature stage in general, with C23 tricyclic terpane as the main peak, low content of C24 tetracyclic terpane and the domination of C27 regular sterane, indicating the precursor was mainly lower aquatic organisms. The oil-source correlation result shows that the two types of paleo-reservoirs come from different source rocks. Type Ⅰ crude oil comes from the source rocks of Zhana Formation of Upper Triassic, and type Ⅱ crude oil is mainly contributed by the source rocks of Quse Formation of Lower Jurassic.
-
Key words:
- Qiangtang basin /
- paleo-reservoir /
- source rock /
- biomarker /
- oil-source correlation /
- petroleum geology
-
表 1 羌塘盆地烃源岩等级划分标准(据赵政璋等,2001修改)
Table 1. Classification standard of source rocks in Qiangtang basin (according to Zhao et al., 2001)
级别 碳酸盐岩烃源岩 总有机碳 氯仿沥青A 总烃 S1+S2 (%) (%) (10-6) (mg/g) 非烃源岩 < 0.10 < 0.03 < 100 < 1 较差烃源岩 0.10~0.3 0.03~0.05 100~200 1~2 中等烃源岩 0.3~0.7 0.05~0.10 200~500 2~5 好烃源岩 0.7~1.4 0.10~0.20 500~1 000 5~10 很好烃源岩 > 1.4 > 0.20 > 1 000 > 10 表 2 羌塘盆地毕洛错地区油藏链烷烃参数
Table 2. Parameters of alkanes in Biluocuo reservoir of Qiangtang basin
地区 样品编号 地层 CPI OEP ∑nC21-/ ∑nC22+ Pr/Ph Pr/C17 Ph/C18 德如日 DT-0065 S1 布曲组 1.36 0.90 1.25 0.39 0.71 1.25 DT-0065 S2 布曲组 1.10 0.99 0.89 0.59 0.69 1.05 DT-0125 S 布曲组 1.50 0.80 1.31 0.37 0.66 0.97 索日卡 DT-0109 S1 布曲组 1.05 0.99 0.37 0.43 0.90 0.47 DT-0109 S2 布曲组 1.01 1.01 0.72 0.50 0.46 0.69 DT-0109 S3 布曲组 1.19 1.01 0.63 0.47 0.50 0.79 DT-0223 S 布曲组 1.02 0.99 0.50 0.41 0.45 0.59 DT-0230 S 布曲组 1.01 0.91 0.44 0.38 0.85 1.18 DT-0270 S 布曲组 1.19 1.13 0.19 0.49 1.54 0.57 DT-0274 S 布曲组 1.08 0.97 0.66 0.47 0.51 0.83 桑嘎尔塘布 DT-0235 S 布曲组 1.11 0.85 0.66 0.41 1.15 1.57 DT-0257 S 布曲组 1.19 1.22 0.22 0.51 0.73 1.46 DT-0281 S 布曲组 1.15 1.07 0.18 0.43 0.94 0.65 AD17309 S 布曲组 0.93 0.95 0.10 0.78 1.93 1.86 AD17311 S1 布曲组 1.42 1.53 0.21 0.34 0.27 0.55 AD17312 S4 布曲组 1.12 1.25 0.69 0.61 0.18 0.35 PMSG02-2 S 布曲组 1.13 1.10 0.11 0.18 0.39 0.93 巴格底加日 AD17270-1S 布曲组 1.15 1.07 0.34 0.38 0.30 0.38 PMBG05-2S 布曲组 1.08 1.04 0.49 0.29 0.12 0.24 牙夏赛 PMYX10-1S 布曲组 1.00 1.17 0.46 0.41 0.27 0.42 表 3 羌塘盆地毕洛错地区油藏生标参数
Table 3. Parameters of reservoir biomarkers in Biluocuo area, Qiangtang basin
地区 样品编号 C21TT/ C23TT C24TeT/ C26TT Ga/ C30H Ts/ Tm C29-αββ/(αββ+ααα) C2920S/ (20S+20R) 德如日 DT-0065 S1 0.62 0.49 0.27 0.80 0.43 0.46 DT-0065 S2 0.77 0.56 0.21 0.61 0.38 0.43 DT-0125 S 0.61 0.51 0.32 0.71 0.42 0.46 索日卡 DT-0109 S1 0.43 5.19 0.11 1.20 0.43 0.39 DT-0109 S2 0.70 1.88 0.19 1.95 0.40 0.44 DT-0109 S3 0.59 2.36 0.15 1.07 0.39 0.42 DT-0223 S 0.80 2.07 0.27 3.38 0.39 0.43 DT-0230 S 0.61 1.25 0.14 0.50 0.41 0.45 DT-0270 S 0.47 1.34 0.17 1.57 0.42 0.43 DT-0274 S 0.51 1.69 0.14 1.26 0.29 0.26 桑嘎尔塘布 DT-0235 S 0.71 0.53 0.30 1.04 0.41 0.45 DT-0257 S 0.42 0.44 0.28 0.81 0.40 0.42 DT-0281 S 0.74 0.71 0.29 1.35 0.43 0.47 AD17309 S 0.31 0.51 0.19 0.95 0.43 0.45 AD17311 S1 0.49 0.54 0.15 0.96 0.41 0.43 AD17312 S4 0.46 0.64 0.17 1.12 0.47 0.50 PMSG02-2 S 0.25 0.49 0.21 0.89 0.43 0.47 巴格底加日 AD17270-1S 0.46 0.60 0.12 0.74 0.47 0.23 PMBG05-2S 0.43 0.80 0.21 1.22 0.45 0.49 牙夏赛 PMYX10-1S 0.50 3.87 0.09 0.33 0.41 0.36 表 4 羌塘盆地毕洛错地区烃源岩有机质丰度统计表
Table 4. Statistic of organic matter abundance of source rocks in Biluocuo area of Qiangtang basin
地层 总有机碳 产油潜率 氯仿沥青A 总烃 硫含量 评价 (%) S1+S2(mg/g) (%) (10-6) (%) 扎那组 0.80~24.60 0.94~26.18 0.010~0.544 452~1 732 0.03~0.16 中等—好 10.21 10.68 0.249 1 219 0.11 曲色组 0.28~9.07 0.06~78.99 0.002~1.407 24~3 545 0.10~0.68 差—优质 4.59 28.46 0.363 1 534 0.39 注:$\frac{{0.28 - 9.07}}{{4.59}}$表示$\frac{{最小值 - 最大值}}{平均值}$. 表 5 羌塘盆地毕洛错地区烃源岩生标参数
Table 5. Biomarker parameters of source rocks in Biluocuo area, Qiangtang basin
样品编号 地层 Pr/Ph C21TT/C23TT C24TeT/C26TT Ga/C30H DT-0019 S 曲色组 0.63 0.07 0.51 0.23 DT-0021 S1 曲色组 0.70 0.10 0.61 0.23 DT-0021 S2 曲色组 0.64 0.12 0.49 0.27 DT-0022 S 曲色组 0.74 0.20 0.50 0.05 DT-0023 S1 曲色组 0.60 0.25 0.79 0.12 DT-0023 S2 曲色组 0.61 0.21 0.65 0.12 DT-0026 S1 曲色组 0.69 0.34 1.01 0.06 DT-0026 S2 曲色组 0.58 0.27 0.59 0.11 DT-0136 S1 曲色组 0.69 0.17 0.51 0.30 DT-0136 S2 曲色组 0.65 0.18 0.53 0.28 BL-01 曲色组 0.49 0.19 0.54 0.12 BL-02 曲色组 0.54 0.17 0.49 0.13 BL-03 曲色组 0.38 0.18 0.54 0.10 BL-04 曲色组 0.48 0.19 0.54 0.12 BL-05 曲色组 0.48 0.19 0.55 0.12 AD17303 S 曲色组 0.37 0.18 0.52 0.12 AD17389 S 曲色组 0.48 0.14 0.47 0.26 AD17020 S1 扎那组 2.96 1.56 3.00 0.04 AD17020 S2 扎那组 2.26 2.54 4.70 0.03 AD17021 S1 扎那组 8.57 1.27 1.44 0.13 -
[1] Bao, J.P., Zhu, C.S., Wang, L.Q., 2010. Geochemical Characteristic Comparison of Crude Oil Samples from the Western Qaidam Basin. Oil & Gas Geology, 31(3): 353-359 (in Chinese with English abstract). [2] Chen, Z.H., Zha, M., Jin, Q., et al., 2011. Distribution and Characteristics of the Homohopane Molecular Parameters in Paleogene System of the Dongying Sag. Acta Sedimentologica Sinica, 29(1): 173-183 (in Chinese with English abstract). [3] Du, Q.D., Yi, H.S., Lin, J.H., et al., 2010. Organic Geochemical Characteristics of Dolomite Reservoir in Shuanghu Region. Qiangtang Basin. Petroleum Geology and Recovery Efficiency, 17(1): 22-24, 36, 112 (in Chinese with English abstract). [4] Fu, X.G., Liao, Z.L., Wang, J., et al., 2008. Geochemistry and Significance of Oil Seepages in the Zaring Area of the Southern Qiangtang Depression, Northern Tibet. Acta Sedimentologica Sinica, 26(4): 697-704 (in Chinese with English abstract). [5] Gao, H.X., 2001. Practical Statistical Methods and SAS System. Peking University Press, Beijing, 199-255 (in Chinese). [6] Gong, J.M., Zhang, L., Chen, X.H., et al., 2014. Discussion on Original Organic Types of Over-Mature Source Rocks in Wuli Permafrost Zone of Qinghai-Tibeatean Plateau. Northwestern Geology, 47(2): 208-215 (in Chinese with English abstract). [7] Huang, D. F., Li, J. C., Zhang, D. J., et al., 1991. Maturation Sequence of Tertiary Crude Oils in the Qaidam Basin and Its Significance in Petroleum Resource Assessment. Journal of Southeast Asian Earth Sciences, 5(1-4): 359-366. https://doi.org/10.1016/0743-9547(91)90049-4 [8] Hou, D.J., Feng, Z.H., 2011. Oil and Gas Geochemistry. Petroleum Industry Press, Beijing, 201-242 (in Chinese). [9] Ji, C.J., 2015. Biomarker Characteristics and Oil-Source Correlation Research of the Reservoirs in Southern Qiangtang Depression (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [10] Li, R.W., 1988. Geological Occurrence and Paleoenvironmental Significance of Gammacerane. Chinese Science Bulletin, 33(20): 1574-1576 (in Chinese). doi: 10.1360/csb1988-33-20-1574 [11] Li, X.Q., Wang, T.G., Zhong, N.N., et al., 2000. Some Advances in Organic Petrology Studies on Immature Source Rocks. Earth Science Frontiers, 7(3): 103-110 (in Chinese with English abstract). [12] Li, X.R., Wang, J., 2019. Zircon U-Pb Geochronology and Geochemistry of the Middle Permian Siliceous Clastics and Basalt from Central Qiangtang, Northern Tibet: Implications for the Evolution of Permian. Journal of Earth Science, 30(2): 286-295. doi: 10.1007/s12583-019-1209-x [13] Liu, G.D., Liu, C.L., Guo, Q.L., et al., 2018. Oil and Gas Resource Evaluation. Petroleum Industry Press, Beijing (in Chinese). [14] Moldowan, J.M., Fago, F.J., Carlson, R.M.K., et al., 1991. Rearranged Hopanes in Sediments and Petroleum. Geochemica et Cosmochimica Acta, 55(11): 3333-3353. doi: 10.1016/0016-7037(91)90492-N [15] Mukhopadhyay, P. K., Hagemann, H. W., Gormly, J. R., 1985. Characterization of Kerogens as Seen under the Aspect of Maturation and Hydrocarbon Generation. Erdol Kohle, 38(1): 7-18. [16] Nan, Z.B., Li, Y.T., Guo, Z.J., 2008. Hydrocarbon Show and Correlation between Oil and Source Rock in the Qiangtang Basin. Petroleum Geology and Experiment, 30(5): 503-507 (in Chinese with English abstract). [17] Pepper, A.S., Corvi, P.J., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅰ: Oil and Gas Generation from Kerogen. Marine and Petroleum Geology, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-E [18] Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide. Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, New York. [19] Qin, J.Z., 2006a. Distributions of the Main Mesozoic Hydrocarbon Source Rocks in the Qiangtang Basin of the Qinghai-Tibet Plateau. Petroleum Geology & Experiment, 28(2): 134-141, 146 (in Chinese with English abstract). [20] Qin, J.Z., 2006b. Oil Source and Hydrocarbon Migration Process in Qiangtang Basin, Qinghai-Tibet Plateau. Petroleum Geology & Experiment, 28(5): 450-457 (in Chinese with English abstract). [21] Radke, M., Willsch, H., 1994. Extractable Alkyldibenzothiophenes in Posidonia Shale (Toarcian) Source Rocks: Relationship of Yields to Petroleum Formation and Expulsion. Geochimica et Cosmochimica Acta, 58(23): 5223-5244. https://doi.org/10.1016/0016-7037(94)90307-7 [22] Volkman, J. K., 2004. Sterols and Other Triterpenoids: Source Specificity and Evolution of Biosynthetic Pathways. Organic Geochemistry, 36(2): 139-159. https://doi.org/10.1016/j.orggeochem.2004.06.013 [23] Wang, C.S., Yi, H.S., Liu, C.Y., et al., 2004. Discovery of Paleo-Oil-Reservoir in Qiangtang Basin in Tibet and Its Geological Significance. Oil & Gas Geology, 25(2): 139-143 (in Chinese with English abstract). [24] Wang, C.S., Zhang, S.N., 1996. Preliminary Analysis of Petroliferous Basins and Oil-Gas Prospects in Qinghai-Xizang (Tibet) Plateau. Earth Science, 21(2): 120-129 (in Chinese with English abstract). [25] Wang, J., Ding, J., Wang, C.S., et al., 2009. Discussion on the Investigation and Evaluation of Strategic Petroleum Area in Qinghai-Tibet. Geological Publishing House, Beijing (in Chinese). [26] Wang, J., Fu, X.G., Shen, L.J., et al., 2020. Prospect of the Potential of Oil and Gas Resources in Qiangtang Basin, Xizang (Tibet). Geological Review, 66(5): 1091-1113 (in Chinese with English abstract). [27] Wang, J., Sun, W., Fu, X.G., et al., 2020. Investigation and Evaluation of Key Blocks in Qiangtang Basin. Science Press, Beijing, 79-190 (in Chinese). [28] Wang, T.G., Zhong, N.N., Xiong, B., et al., 1994. Organic Petrologic Methodology for Evaluation of Hydrocarbon Generation Potential in Source Rocds. Acta Petrolei Sinica, (4): 9-16 (in Chinese with English abstract). [29] Wang, Y. J., Cai, C., Xiao, Y., et al., 2021. Geochemical Characteristics and Oil-Source Correlation of Crude Oils of Buried Hills in Shulu Sag, Jizhong Depression. Earth Science, 46(10): 3629-3644 (in Chinese with English abstract). [30] Wang, Y.S., 2006. 1: 250 000 Angdarco Offset Regional Survey Report. Jilin Geological Survey Institute, Changchun (in Chinese). [31] Wang, Z.W., Wang, J., Fu, X.G., et al., 2017. Geochemical Features of Oil-Bearing Samples from the Well in Buqu Formation in the Qiangtang Basin, Northern Tibet, and Their Implications. Geological Bulletin of China, 36(4): 591-600 (in Chinese with English abstract). [32] Wu, X.H., 2005. Mesozoic Petroleum System in the Qiangtang Basin, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [33] Wu, Z.H., Gao, R., Lu, Z.W., et al., 2014. Structures of the Qiangtang Basin and Its Significance to Oil-Gas Exploration. Acta Geologica Sinica, 88(6): 1-15 (in Chinese with English abstract). [34] Wu, Z.H., Ji, C.J., Zhao, Z., et al., 2019. Main Source Rock and Oil Resource Potential of the Bandaohu- Donghu Area in the Northern Qiangtang Basin. Acta Geologica Sinica, 93(7): 1738-1753 (in Chinese with English abstract). [35] Wu, Z.H., Liu, Z.W., Zhao, Z., et al., 2016. Thrust and Uplift of the Lung'erni-Angdarco Paleo-Oil Reservoirs in the Qiangtang Basin. Acta Geologica Sinica, 90(4): 615-627 (in Chinese with English abstract). [36] Yang, F., Wang, Q., Hao, F., et al, 2020. Biomarker Characteristics of Source Rock and Oil-Correlation in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 45(1): 263-275 (in Chinese with English abstract). [37] Yang, Y.Z., Zhao, Z., Wu, Z.H., et al., 2020. Discovery and Geochemical Characteristics of the Upper Jurassic Suowa Formation Reservoir in Qiangtang Basin, Xizang (Tibet). Geological Review, 66(5): 1230-1240 (in Chinese with English abstract). [38] Zhao, H.J., 2013. Origin and Gas Source Correlation of Taibei Sag in Turpan Hami Basin. Petroleum Industry Press, Beijing (in Chinese). [39] Zhao, Z.Z., Li, Y.T., Fei, S.B., 2001. Petroleum Geology of Qiangtang Basin, Qinghai-Xizang Plateau. Science Press, Beijing, 174-245 (in Chinese). [40] Zhao, Z.Z., Li, Y.T., Wang, X.Y., et al., 2002. A Case Analysis of the Jurassic Marine Destroyed Reservoirs in Southern Part of Qiangtang Basin, Qinghai-Tibet Plateau. Marine Origin Petroleun Geology, 7(3): 34-36, 5 (in Chinese with English abstract). [41] 包建平, 朱翠山, 汪立群, 2010. 柴达木盆地西部原油地球化学特征对比. 石油与天然气地质, 31(3): 353-359. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003017.htm [42] 陈中红, 查明, 金强, 等, 2011. 东营凹陷古近系升藿烷生物标志物参数分布及演变规律. 沉积学报, 29(1): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101021.htm [43] 杜秋定, 伊海生, 林金辉, 等, 2010. 羌塘盆地双湖地区含油白云岩有机地球化学特征. 油气地质与采收率, 17(1): 22-24, 36, 112. doi: 10.3969/j.issn.1009-9603.2010.01.007 [44] 付修根, 廖忠礼, 王剑, 等, 2008. 藏北南羌塘盆地扎仁地区油苗地球化学特征及意义. 沉积学报, 26(4): 697-704. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200804024.htm [45] 高惠璇, 2001. 实用统计方法与SAS系统. 北京: 北京大学出版社, 199-255. [46] 龚建明, 张莉, 陈小慧, 等, 2014. 青藏高原乌丽冻土区过成熟烃源岩原始有机质类型讨论. 西北地质, 47(2): 208-215. doi: 10.3969/j.issn.1009-6248.2014.02.026 [47] 侯读杰, 冯子辉, 2011. 油气地球化学. 北京: 石油工业出版社, 201-242. [48] 季长军, 2015. 南羌塘坳陷油藏带生物标志化合物特征及油源对比研究(博士学位论文). 成都: 成都理工大学. [49] 李任伟, 1988. 伽马蜡烷的地质产状及古环境意义. 科学通报, 33(20): 1574-1576. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198820015.htm [50] 李贤庆, 王铁冠, 钟宁宁, 等, 2000. 未熟-低熟烃源岩有机岩石学研究的若干进展. 地学前缘, 7(3): 103-110. doi: 10.3321/j.issn:1005-2321.2000.03.011 [51] 柳广弟, 刘成林, 郭秋麟, 等, 2018. 油气资源评价. 北京: 石油工业出版社. [52] 南征兵, 李永铁, 郭祖军, 2008. 羌塘盆地油气显示及油源对比. 石油实验地质, 30(5): 503-507. doi: 10.3969/j.issn.1001-6112.2008.05.015 [53] 秦建中, 2006a. 青藏高原羌塘盆地中生界主要烃源层分布特征. 石油实验地质, 28(2): 134-141, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200602008.htm [54] 秦建中, 2006b. 青藏高原羌塘盆地油源及运移过程. 石油实验地质, 28(5): 450-457. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200605008.htm [55] 王成善, 伊海生, 刘池洋, 等, 2004. 西藏羌塘盆地古油藏发现及其意义. 石油与天然气地质, 25(2): 139-143. doi: 10.3321/j.issn:0253-9985.2004.02.004 [56] 王成善, 张哨楠, 1996. 青藏高原含油气盆地分析及油气资源预测. 地球科学, 21(2): 120-129. doi: 10.3321/j.issn:1000-2383.1996.02.002 [57] 王剑, 丁俊, 王成善, 等, 2009. 青藏高原油气资源战略选区调查与评价. 北京: 地质出版社. [58] 王剑, 付修根, 沈利军, 等, 2020. 论羌塘盆地油气勘探前景. 地质论评, 66(5): 1091-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005005.htm [59] 王剑, 孙伟, 付修根, 等, 2020. 羌塘盆地重点区块调查与评价. 北京: 科学出版社, 79-190. [60] 王铁冠, 钟宁宁, 熊波, 等, 1994. 源岩生烃潜力的有机岩石学评价方法. 石油学报, (4): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB404.001.htm [61] 王元杰, 蔡川, 肖阳, 等, 2021. 冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比. 地球科学, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030 [62] 王永胜, 2006. 1: 250 000昂达尔错幅区调报告. 长春: 吉林省地质调查院. [63] 王忠伟, 王剑, 付修根, 等, 2017. 藏北羌塘盆地井下布曲组含油白云岩地球化学特征及其意义. 地质通报, 36(4): 591-600. doi: 10.3969/j.issn.1671-2552.2017.04.013 [64] 伍新和, 2005. 西藏羌塘盆地中生界含油气系统(博士学位论文). 成都: 成都理工大学. [65] 吴珍汉, 高锐, 卢占武, 等, 2014. 羌塘盆地结构构造与油气勘探方向. 地质学报, 88(6): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406014.htm [66] 吴珍汉, 季长军, 赵珍, 等, 2019. 羌塘盆地半岛湖-东湖地区主力烃源岩及油气资源潜力. 地质学报, 93(7): 1738-1753. doi: 10.3969/j.issn.0001-5717.2019.07.013 [67] 吴珍汉, 刘志伟, 赵珍, 等, 2016. 羌塘盆地隆鄂尼-昂达尔错古油藏逆冲推覆构造隆升. 地质学报, 90(4): 615-627. doi: 10.3969/j.issn.0001-5717.2016.04.002 [68] 杨帆, 王权, 郝芳, 等, 2020. 冀中坳陷饶阳凹陷北部烃源岩生物标志化合物与油源对比. 地球科学, 45(1): 263-275. doi: 10.3799/dqkx.2018.374 [69] 杨易卓, 赵珍, 吴珍汉, 等, 2020. 西藏羌塘盆地上侏罗统索瓦组油藏发现及地球化学特征. 地质论评, 66(5): 1230-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005015.htm [70] 赵红静, 2013. 吐哈盆地台北凹陷天然气成因及气源对比. 北京: 石油工业出版社. [71] 赵政璋, 李永铁, 费宝生, 2001. 青藏高原羌塘盆地石油地质. 北京: 科学出版社, 174-245. [72] 赵政璋, 李永铁, 王岫岩, 等, 2002. 羌塘盆地南部海相侏罗系古油藏例析. 海相油气地质, 7(3): 34-36, 5. doi: 10.3969/j.issn.1672-9854.2002.03.005