Characteristics of Tight Sandstone Reservoirs and Their Controlling Factors of He-1 Member in Hangjinqi Block, Ordos Basin
-
摘要: 鄂尔多斯盆地杭锦旗地区盒一段富含天然气,但储层致密、非均质性强,从而制约了该地区天然气的增储上产.利用岩心、铸体薄片和场发射扫描电镜观察、孔渗测试、X射线衍射分析、高压压汞及恒速压汞分析等,分析致密砂岩储层的特征及其主控因素.以此将储层划分为优势储层和差储层两类,优势储层主要以心滩和河道内的粗粒岩屑石英砂岩,岩屑砂岩为主,泥质含量低,溶蚀孔隙发育,差储层主要以河道间的细粒岩屑砂岩为主,泥质含量高,孔隙不发育.物源的差异导致了西部石英含量高于东部.水动力条件的强弱是决定储层优劣的初始条件,早期泥质充填导致差储层的原始孔隙度较低.优势储层中泥质含量较少,更能抵抗上覆压力,孔隙流体更活跃,能形成更多的溶蚀孔.Abstract: The He-1 Member of Hangjinqi block in Ordos basin is rich in natural gas, but the reservoir is dense and heterogeneous which restricts the increase of natural gas storage and production in this area. In this paper it makes full use of cores, casting thin section observation, field emission scanning electron microscopy (FE-SEM) observation, porosity and permeability test, X-ray diffraction (XRD) analysis, high-pressure mercury injection and constant-rate mercury injection analysis to illustrate the reservoir characteristics and controlling factors of He-1 Member in the study area. Based on that, the reservoirs are divided into superior reservoirs and poor reservoirs. The superior reservoirs are mainly composed of coarse-grained sublitharenite and litharenite developed in diara with less matrix and developed dissolution pores. The poor reservoirs are mainly composed of fine-grained litharenite developed with much matrix and undeveloped pores. The difference of provenance resulted in higher quartz content in the west than in the east. The strength of hydrodynamic condition is the initial condition that determines the quality of reservoir. Early argillaceous filling results in lower original porosity in poor reservoirs. The superior reservoir is more resistant to overburden pressure due to the less matrix. And the pore fluid is more active in superior reservoir which is benefitial to the formation of disolutionpore.
-
图 3 杭锦旗地区下石盒子组一段典型岩心照片
a.J21井,2 836.05~2 836.29 m,浅灰色砂砾岩,砾石呈径向排列;b.J67井,2 504.80~2 504.93 m,浅灰色含砾粗砂岩与细砂岩呈突变接触,下部细砂岩具斜层理;c.J63井,3 500.77~3 500.92 m,浅灰色细砂岩,断面含少许云母;d.J122井,2 716.71~2 716.86 m,浅灰色中细砂岩(见水平层理);e.J98井,3 082.71~3 082.98 m,浅灰色中砂岩、砂砾岩(见粒序层理);f.J91井,取心井深:2 952.43~2 952.56 m,浅灰色中砂岩,具斜层理
Fig. 3. Typical core photos of He-1 member of Hangjinqi block
图 5 杭锦旗地区盒一段孔隙类型
a.J89井,3 082.34 m,不等粒砂岩,自生高岭石部分晶间微孔隙相互连通;b.J103井,3 091.26 m,含泥质巨砂质粗粒岩屑石英砂岩,铸模孔发育,含石英破裂缝;c.J107井,3 205.27 m,含泥质细砂质中粒岩屑石英砂岩,塑性颗粒和基质堵塞孔隙,未见可测面孔率;d.J126井,2 973.03 m,粗砂质巨粒岩屑砂岩,颗粒破裂缝发育,溶蚀孔发育;e.J92井,3 066.1 m,中砂岩,粒间溶孔较发育,颗粒表面黏土化;f.J89井,3 082.34 m,不等粒砂岩,粒内溶孔发育;g. J33井,2 372.61 m,含泥质中砂质细粒长石岩屑砂岩,颗粒发生定向排列,岩屑发生塑性变形,孔隙不发育;h. J92井,3 073.88 m,弯曲状伊利石及少量高岭石充填孔隙,自生石英晶粒较少;i. J74井,2 711.18 m,含泥质粗粒岩屑石英砂岩,颗粒发生破裂,粒间溶孔和粒内溶孔发育
Fig. 5. Pore types of He-1 member in Hangjinqi block
图 11 盒一段胶结物类型和岩屑类型
a. J92井,3 061.25 m,中砂岩,颗粒溶蚀部分黏土化生成伊利石,粒内微孔少;b. J72井,2 951.47 m,含泥质巨砂质粗粒岩屑砂岩,方解石胶结物;c.J76井,2 693.72 m,中砂岩,颗粒间堆积自生高岭石,粒表分布针叶状自生绿泥石等;d.J102井,2 724.74 m,含泥质中砂质细粒岩屑砂岩,由于泥质和塑性岩屑含量较高在压实只有呈半定向排列且孔隙不发育;e.J107井,3 201.67 m,含泥质中砂质粗粒岩屑砂岩,增孔型岩屑发生粒内溶蚀,留下溶蚀残余;f.J98井,3 086.12 m,中砂质粗粒岩屑砂岩,减孔型岩屑堵塞粒间孔,保孔型岩屑支撑粒间孔
Fig. 11. Cement and lithic fragment of He-1 member
表 1 盒一段高压压汞参数均值
Table 1. The mean values of high pressure mercury injection parameters in He-1 member
岩性(样品数) 孔隙度
(%)渗透率
(mD)最大孔喉半径
(μm)平均孔喉半径
(μm)中值孔喉半径
(μm)分选系数 含砾粗砂岩(39) 10.57 1.70 1.71 0.21 0.13 0.24 粗砂岩(26) 10.55 1.68 1.43 0.17 0.09 0.20 中砂岩(15) 8.38 0.86 1.10 0.13 0.07 0.13 细砂岩(8) 4.11 0.33 0.61 0.07 0.06 0.07 表 2 盒一段恒速压汞参数均值
Table 2. The mean values of constant rate mercury injection parameters in He-1 member
岩性(样品数) 孔隙度
(%)渗透率
(mD)孔隙平均半径
(μm)喉道平均半径
(μm)孔喉半径比均值 总孔/喉体积比 砾岩(2) 12.92 0.80 147.65 1.051 173.647 0.118 含砾粗砂岩(2) 10.04 0.75 158.56 1.264 158.555 0.220 粗砂岩(3) 7.52 1.07 155.02 0.869 205.674 0.205 中砂岩(2) 3.97 0.33 158.13 1.178 184.038 0.192 细砂岩(1) 2.33 0.024 154.00 0.379 351.750 0.026 表 3 杭锦旗地区盒一段储层分类标准
Table 3. Standard for reservoir classification of He-1 member in Hangjinqi block
储层类别 岩性 孔隙度
(%)渗透率
(10‒3μm2)平均孔喉半径
(μm)最大进汞饱和度(%) 泥质含量
(%)优势储层 粗粒岩屑石英砂岩,岩屑砂岩 > 5 > 0.5 > 0.1 > 25 < 25 差储层 细粒岩屑砂岩 < 5 < 0.5 < 0.1 < 25 > 25 表 4 杭锦旗地区盒一段不同沉积亚相的物性统计
Table 4. Physical property statistics of different subfacies of He-1 member in Hangjinqi block
区域 相类型 井号 深度(m) 孔隙度(%) 平均值 渗透率(mD) 平均值 北部 心滩 J33 2 356.15 11.40 11.24 0.408 0 0.322 2 356.36 11.10 0.309 0 2 356.57 11.00 0.433 0 2 356.83 12.20 0.241 0 2 357.05 11.30 0.252 0 2 357.28 12.50 0.297 0 2 357.50 9.20 0.314 0 河道间 J46 2 556.99 5.58 4.21 0.209 9 0.149 2 557.15 5.12 0.191 4 2 557.50 4.68 0.063 7 2 558.32 3.37 0.075 1 2 558.79 2.94 0.051 3 2 559.07 3.58 0.301 5 河道 J82 2 557.91 11.77 8.85 0.937 8 0.519 2 558.21 3.91 0.107 7 2 558.48 12.35 0.938 1 2 559.04 7.32 0.228 4 2 559.28 8.90 0.382 3 南部 心滩 J74 2714.33 14.30 11.695 0.830 0 0.724 2 711.40 11.54 0.721 7 2 711.65 10.38 0.675 3 2 711.78 10.56 0.669 4 河道间 J69 2 970.73 4.53 4.01 0.173 2 0.166 2 970.98 3.50 0.170 0 2 971.38 5.71 0.207 1 2 971.56 5.80 0.296 9 2 971.83 6.17 0.183 0 2 972.15 0.97 0.047 8 2 972.41 1.39 0.083 6 河道 J21 2 836.73 11.65 9.50 0.114 2 0.091 2 837.05 9.65 0.069 9 2 837.29 9.68 0.142 6 2 837.51 6.77 0.055 4 2 837.72 9.74 0.072 2 -
[1] Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217 (in Chinese with English abstract). [2] Cao, J. H., Zhou, W., Deng, L. Z., et al., 2007. Reservoir Physical Properties and Evaluation of Lower Shihezi Formation in Hangjinqi Area of Northern Ordos Basin. Computing Techniques for Geophysical and Geochemical Exploration, 29(1): 30-34, 92 (in Chinese with English abstract). [3] Dai, J. X., Ni, Y. Y., Wu, X. Q., 2012. Tight Gas in China and Its Significance in Exploration and Exploitation. Petroleum Exploration and Development, 39(3): 257-264 (in Chinese with English abstract). [4] Dou, W. T., Hou, M. C., Dong, G. Y., 2009. Provenance Analysis of the Upper Paleozoic Shanxi to Lower Shihezi Formations in North Ordos Basin. Natural Gas Industry, 29(3): 25-28, 132 (in Chinese with English abstract). [5] Gao, H., Xie, W., Yang, J. P., et al., 2011. Pore Throat Characteristics of Extra-Ultra Low Permeability Sandstone Reservoir Based on Constant-Rate Mercury Penetration Technique. Petroleum Geology & Experiment, 33(2): 206-211, 214 (in Chinese with English abstract). [6] Ji, W. M., Li, W. L., Liu, Z., et al., 2013. Research on the Upper Paleozoic Gas Source of the Hangjinqi Block in the Northern Ordos Basin. Natural Gas Geoscience, 24(5): 905-914 (in Chinese with English abstract). [7] Lei, T., Yang, Y., 2013. Research on Reservoir Characteristics and Influencing Factors in Hangjinqi. Petrochemical Industry Application, 32(8): 64-67 (in Chinese with English abstract). [8] Li, D. M., Zhang, S. N., 2003. Reservoir Characteristics of the P1x-s Formation of the Permian in the Northern Hangjinqi Area, Ordos Basin. Journal of Mineralogy and Petrology, 23(2): 94-97 (in Chinese with English abstract). [9] Li, J., 2013. Sedimentary Facies Analysis and Its Influence on Reservoirs in Hangjinqi Area Lower Shihezi Formation (Dissertation). Chengdu University and Technology, Chengdu (in Chinese with English abstract). [10] Liu, D., 2016. Research on Gas Enrichment Regularity and Accumulation Mechanism of the Upper Paleozoic Gas Reservoir in Hangjinqi Area (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [11] Liu, K., Wang, R., Shi, W. Z., et al., 2021. Multiple Provenance System of Lower Shihezi Formation in Hangjinqi Area, Northern Ordos Basin: Evidence from Mineralogy and Detrital Zircon U-Pb Chronology. Earth Science, 46(2): 540-554 (in Chinese with English abstract). [12] Qiu, L. W., Mu, X. J., Li, H., et al., 2019a. Characteristics of Detritus Development in the Permian Lower Shihezi Formation in Hangjinqi Area and Its Influence on Reservoir Physical Properties. Oil & Gas Geology, 40(1): 24-33 (in Chinese with English abstract). [13] Qiu, L. W., Mu, X. J., Li, H., et al., 2019b. Influence of Diagenesis of Tight Sandstone Reservoiron the Porosity Development of Lower Shihezi Formation in Hangjinqi Area, Ordos Basin. Petroleum Geology and Recovery Efficiency, 26(2): 42-50 (in Chinese with English abstract). [14] Wang, R., Shi, W. Z., Xie, X. Y., et al., 2018. Boundary Fault Linkage and Its Effect on Upper Jurassic to Lower Cretaceous Sedimentation in the Gudian Half-Graben, Songliao Basin, Northeastern China. Marine and Petroleum Geology, 98: 33-49. doi: 10.1016/j.marpetgeo.2018.08.007 [15] Wang, R., Shi, W. Z., Xie, X. Y., et al., 2020. Clay Mineral Content, Type, and Their Effects on Pore Throat Structure and Reservoir Properties: Insight from the Permian Tight Sandstones in the Hangjinqi Area, North Ordos Basin, China. Marine and Petroleum Geology, 115: 104281. doi: 10.1016/j.marpetgeo.2020.104281 [16] Wang, T., Hou, M. C., Chen, H. D., et al., 2014. Coupling Relationship between Yinshan Episodic Orogenic Movement of Hercynian Tectonic Cycle and Filling Cycle of the North Ordos Basin in China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 310-317 (in Chinese with English abstract). [17] Wang, Z. J., Zhang, J. Q., Chen, H. D., 2001. Study of the Dispositional Provenance of the Terrigenous Detritus in Ordos Basin in Late Paleozoic Era. Journal of Chengdu University of Technology, 28(1): 7-12 (in Chinese with English abstract). [18] Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences of the United States of America, 7(4): 115-116. doi: 10.1073/pnas.7.4.115 [19] Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6 [20] Xie, R. C, Zhou, W., Li, L., et al., 2010. Characteristics of Upper Paleozoic Sandstone Reservoir in Hangjinqi Area of Ordos Basin. Xinjiang Geology, 28(1): 86-90 (in Chinese with English abstract). [21] Xu, Q. H., Shi, W. Z., Xie, X. Y., et al., 2018. Inversion and Propagation of the Late Paleozoic Porjianghaizi Fault (North Ordos Basin, China): Controls on Sedimentation and Gas Accumulations. Marine and Petroleum Geology, 91: 706-722. doi: 10.1016/j.marpetgeo.2018.02.003 [22] Xue, H., Wang, Y., Mao, X. P., et al., 2009a. The Timing of Gas Pooling in the Upper Paleozoic in the Northern Ordos Basin: A Case Study of the Hangjinqi Block. Natural Gas Industry, 29(12): 9-12, 136 (in Chinese with English abstract). [23] Xue, H., Wang, Y., Xu, B., 2009b. Accumulation Mechanism of Natural Gas in Upper Paleozoic, Hangjinqi Block, North Ordos Basin. Petroleum Geology & Experiment, 31(6): 551-556, 562 (in Chinese with English abstract). [24] Xue, H., Zhang, J. C., Wang, Y., et al., 2009c. Relationship between Tectonic Evolution and Hydrocarbon in Hangjinqi Block of North Ordos Bain. Geotectonica et Metallogenia, 33(2): 206-214 (in Chinese with English abstract). [25] Xue, H., Zhang, J. C., Xu, B., et al., 2010. Evaluation of Upper Paleozoic Source Rocks of the Hangjinqi Block in the Northern Ordos Basin, China. Journal of Chengdu University of Science and Technology (Science & Technology Edition), 37(1): 21-28 (in Chinese with English abstract). [26] Yang, J. J., 2002. Structural Evolution and Oil and Gas Distribution in Ordos Basin. Petroleum Industry Press, Beijing (in Chinese). [27] Yang, M. H., Li, L., Zhou, J., et al., 2013. Segmentation and Inversion of the Hangjinqi Fault Zone, the Northern Ordos Basin (North China). Journal of Asian Earth Sciences, 70-71(1): 64-78. [28] Zhang, G. S., Zhao, W. Z., Yang, T., et al., 2012. Resource Evaluation, Position and Distribution of Tight Sandstone Gas in China. Engineering Sciences, 14(6): 87-93 (in Chinese with English abstract). [29] Zhang, J., Xue, H., Wang, Y., et al., 2009. Accumulation Types of Neopaleozoic Gas in Hangjinqi Block of North Ordos Basin. Journal of Xi'an Shiyou University (Natural Science Edition), 24(3): 1-6, 108 (in Chinese with English abstract). [30] Zhang, Q., Zhai, X. F., Wang, G. Y., et al., 2007. Analysis of Reservoir Densification in Hangjinqi Area. Inner Mongolia Petrochemical Industry, (8): 268-270 (in Chinese). [31] Zhang, S. N., 2008. Tight Sandstone Gas Reservoirs: Their Origin and Discussion. Oil & Gas Geology, 29(1): 1-10, 18 (in Chinese with English abstract). [32] Zhang, X. L., Chen S. H., Wang, D. G., et al., 2001. Reservoir Evaluation of Lower Shihezi Formation, Permian, at Shiguhao Region in Northern E'erduosi Basin. Natural Gas Industry, (S1): 57-61, 9 (in Chinese with English abstract). [33] Zhao, H. W., Ning, Z. F., Wang, Q., et al., 2015. Petrophysical Characterization of Tight Oil Reservoirs Using Pressure-Controlled Porosimetry Combined with Rate-Controlled Porosimetry. Fuel, 154: 233-242. https://doi.org/10.1016/j.fuel.2015.03.085 [34] Zou, C. N., Zhang, G. Y., Tao, S. Z., et al., 2010. Geological Features, Major Discoveries and Unconventional Petroleum Geology in the Global Petroleum Exploration. Petroleum Exploration and Development, 37(2): 129-145 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60021-3 [35] Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance. Acta Petrolei Sinica, 33(2): 173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203 [36] 白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372 [37] 曹敬华, 周文, 邓礼正, 等, 2007. 鄂北杭锦旗地区下石盒子组储层物性特征及评价. 物探化探计算技术, 29(1): 30-34, 92. doi: 10.3969/j.issn.1001-1749.2007.01.009 [38] 戴金星, 倪云燕, 吴小奇, 2012. 中国致密砂岩气及在勘探开发上的重要意义. 石油勘探与开发, 39(3): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm [39] 窦伟坦, 侯明才, 董桂玉, 2009. 鄂尔多斯盆地北部山西组‒下石盒子组物源分析. 天然气工业, 29(3): 25-28, 132. doi: 10.3787/j.issn.1000-0976.2009.03.007 [40] 高辉, 解伟, 杨建鹏, 等, 2011. 基于恒速压汞技术的特低—超低渗砂岩储层微观孔喉特征. 石油实验地质, 33(2): 206-211, 214. doi: 10.3969/j.issn.1001-6112.2011.02.019 [41] 纪文明, 李潍莲, 刘震, 等, 2013. 鄂尔多斯盆地北部杭锦旗地区上古生界气源岩分析. 天然气地球科学, 24(5): 905-914. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305005.htm [42] 雷涛, 杨艺, 2013. 杭锦旗地区储层物性特征及影响因素研究. 石油化工应用, 32(8): 64-67. doi: 10.3969/j.issn.1673-5285.2013.08.016 [43] 李德敏, 张哨楠, 2003. 鄂尔多斯盆地杭锦旗地区二叠系P1x-s储层特征. 矿物岩石, 23(2): 94-97. doi: 10.3969/j.issn.1001-6872.2003.02.020 [44] 李婕, 2013. 杭锦旗地区下石盒子组沉积相分析及对储层的影响. 成都: 成都理工大学. [45] 刘栋, 2016. 杭锦旗地区上古生界天然气富集规律与成藏机理研究. 成都: 成都理工大学. [46] 刘凯, 王任, 石万忠, 等, 2021. 鄂尔多斯盆地北部杭锦旗地区下石盒子组多物源体系: 来自矿物学及碎屑锆石U-Pb年代学的证据. 地球科学, 46(2): 540-554. doi: 10.3799/dqkx.2020.090 [47] 邱隆伟, 穆相骥, 李浩, 等, 2019a. 鄂尔多斯盆地杭锦旗地区二叠系下石盒子组岩屑发育特征及其对储层物性的影响. 石油与天然气地质, 40(1): 24-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901004.htm [48] 邱隆伟, 穆相骥, 李浩, 等, 2019b. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响. 油气地质与采收率, 26(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902006.htm [49] 王涛, 侯明才, 陈洪德, 等, 2014. 海西构造旋回阴山幕式造山与鄂尔多斯盆地北部旋回充填的耦合关系. 成都理工大学学报(自然科学版), 41(3): 310-317. doi: 10.3969/j.issn.1671-9727.2014.03.07 [50] 汪正江, 张锦泉, 陈洪德, 2001. 鄂尔多斯盆地晚古生代陆源碎屑沉积源区分析. 成都理工学院学报, 28(1): 7-12. doi: 10.3969/j.issn.1671-9727.2001.01.002 [51] 谢润成, 周文, 李良, 等, 2010. 鄂尔多斯盆地北部杭锦旗地区上古生界砂岩储层特征. 新疆地质, 28(1): 86-90. doi: 10.3969/j.issn.1000-8845.2010.01.016 [52] 薛会, 王毅, 毛小平, 等, 2009a. 鄂尔多斯盆地北部上古生界天然气成藏期次: 以杭锦旗探区为例. 天然气工业, 29(12): 9-12, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200912003.htm [53] 薛会, 王毅, 徐波, 2009b. 鄂尔多斯盆地杭锦旗探区上古生界天然气成藏机理. 石油实验地质, 31(6): 551-556, 562. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200906004.htm [54] 薛会, 张金川, 王毅, 2009c. 鄂北杭锦旗探区构造演化与油气关系. 大地构造与成矿, 33(2): 206-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200902003.htm [55] 薛会, 张金川, 徐波, 等, 2010. 鄂尔多斯北部杭锦旗探区上古生界烃源岩评价. 成都理工大学学报(自然科学版), 37(1): 21-28. doi: 10.3969/j.issn.1671-9727.2010.01.004 [56] 杨俊杰, 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社. [57] 张国生, 赵文智, 杨涛, 等, 2012. 我国致密砂岩气资源潜力、分布与未来发展地位. 中国工程科学, 14(6): 87-93. doi: 10.3969/j.issn.1009-1742.2012.06.012 [58] 张杰, 薛会, 王毅, 等, 2009. 鄂北杭锦旗探区上古生界天然气成藏类型. 西安石油大学学报(自然科学版), 24(3): 1-6, 108. doi: 10.3969/j.issn.1673-064X.2009.03.001 [59] 张琴, 翟秀芬, 王广源, 等, 2007. 杭锦旗地区储层致密化成因浅析. 内蒙古石油化工, (8): 268-270. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200708101.htm [60] 张哨楠, 2008. 致密天然气砂岩储层: 成因和讨论. 石油与天然气地质, 29(1): 1-10, 18. doi: 10.3321/j.issn:0253-9985.2008.01.001 [61] 张学例, 陈淑惠, 王代国, 等, 2001. 鄂北什股壕地区二叠系下石盒子组储集层评价. 天然气工业, (S1): 57-61, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2001S1010.htm [62] 邹才能, 张光亚, 陶士振, 等, 2010. 全球油气勘探领域地质特征、重大发现及非常规石油地质. 石油勘探与开发, 37(2): 129-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002002.htm [63] 邹才能, 朱如凯, 吴松涛, 等, 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm