Seismic Dynamic Response Characteristics of a Layered Slope at Tunnel Entrance Using Shaking Table Test
-
摘要: 为研究地震作用下隧道洞口段顺层边坡的动力响应特征及动力破坏模式,基于动力模型试验的相似关系,设计完成了隧道洞口段顺层边坡振动台缩尺模型试验.试验结果表明,地震作用下模型边坡具有典型的地形放大效应,模型边坡具有明显的坡表动力放大效应,相同条件下与坡内相比坡表的动力放大效应较大;地震动输入方向及强度对模型边坡的动力响应特征具有影响,相同条件下与输入垂直地震动相比输入水平地震动时模型边坡的动力放大效应较大;隧道结构改变了模型边坡的局部动力响应特征,对坡体的动力放大效应具有放大作用;地震作用下模型边坡的动力破坏模式为地震诱发-最上层结构面逐渐形成滑带-最上层结构面以上滑体滑动破坏-滑体堆积坡脚.Abstract: To study the dynamic response characteristics and dynamic failure modes of the bedding slope at the tunnel entrance under earthquakes, a shaking table scaled model test of the bedding slope at the tunnel entrance was designed based on the similarity relationship of the dynamic model tests. The experimental results show that the model slope has typical topographic amplification effect under seismic action. The model slope has obvious dynamic amplification effect of slope surface, and the dynamic amplification effect on the slope surface is larger than that in the slope under the same conditions. The input direction and strength of ground motion have influence on the dynamic response characteristics of the model slope. Compared with the input of vertical ground motion, the dynamic amplification effect of the model slope is larger when the input of horizontal ground motion under the same conditions. The tunnel structure changes the local dynamic response characteristics of the model slope and has a magnifying effect on the dynamic amplification effect of the slope. The dynamic failure mode of the model slope under earthquake action is as follows: earthquake induced-slip zone gradually formed on the topmost structural plane-slip failure above the topmost structural plane-slip body accumulation at the foot of slope.
-
表 1 模型试验主要相似常数
Table 1. Primary similitude coefficients of model
物理量 相似关系 相似常数 几何尺寸L S1 150 振动加速度a Sa=SE/(Sl Sρ) 1 密度ρ Sρr 1 弹性模量E SE=SρSl 150 泊松比μ Sμ=1 1 内聚力c Sc=Sr Sl Sa 150 表 2 模型计算参数取值
Table 2. Take model calculation parameters
岩性 中风化花岗岩 软弱结构面 容重γ(kN/m3) 25 21 弹性模量E(MPa) 20 000 100 泊松比ν 0.26 0.32 粘聚力c(kPa) 1 200 35 摩擦角φ(°) 45 30 表 3 模型边坡地震波加载方案
Table 3. Seismic wave loading scheme for model slope
加载顺序 波形 方向 加载顺序 波形 方向 1 白噪声 水平 9 白噪声 水平 2 0.037 g 水平 10 0.254 g 水平 3 白噪声 竖直 11 白噪声 竖直 4 0.037 g 竖直 12 0.254 g 竖直 5 白噪声 水平 13 白噪声 水平 6 0.125 g 水平 14 0.4 g 水平 7 白噪声 竖直 15 白噪声 竖直 8 0.125 g 竖直 16 0.4 g 竖直 -
[1] Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract). [2] Chen, C. C., Li, H. H., Chiu, Y. C., et al., 2020. Dynamic Response of a Physical Anti-Dip Rock Slope Model Revealed by Shaking Table Tests. Engineering Geology, 277: 105772. https://doi.org/10.1016/j.enggeo.2020.105772. [3] Cheng, X. S., Zhou, X. H., Wang, P., et al., 2021. Shaking Table Model Test of Loess Tunnel. China Journal of Highway and Transport, 34(6): 136-146(in Chinese with English abstract). [4] Cui, G. Y., Meng, L. H., Zhang, J. H., et al., 2018. Study on Large-Scale Shaking Table Model Test for Seismic Response of Soft and Hard Surrounding Rock Interface Section of Tunnel Portal Part. Advanced Engineering Sciences, 50(6): 84-90(in Chinese with English abstract). [5] Cui, G. Y., Wang, M. N., Yu, L., et al., 2013. Seismic Damage and Mechanism of Portal Structure of Highway Tunnels in Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 35(6): 1084-1091(in Chinese with English abstract). [6] Dai, F. C., Xu, C., Yao, X., et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883-895. https://doi.org/10.1016/j.jseaes.2010.04.010. [7] Fan, K. X., Shen, Y. S., Gao, B., et al., 2019. Shaking Table Test on Damping Layer Applied in Tunnel Crossing Soft and Hard Surronding Rock. China Civil Engineering Journal, 52(9): 109-128(in Chinese with English abstract). [8] Geli, L., Bard, P. Y., Jullien, B., 1988. The Effect of Topography on Earthquake Ground Motion: A Review and New Results. Bulletin of the Seismological Society of America, 78(1): 42-63. https://doi.org/10.1785/bssa0780010042 [9] He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract). [10] Hou, S., Tao, L. J., Zhao, X., et al., 2015. Dynamic Response of Portal Section of Mountain Tunnels under Seismic SH Wave Action. Chinese Journal of Rock Mechanics and Engineering. 34(2): 340-348(in Chinese with English abstract). [11] Hu, Z. N., Shen, J., Wang, Y. F., et al., 2021. Cracking Characteristics and Mechanism of Entrance Section in Asymmetrically-Load Tunnel with Bedded Rock Mass: A Case Study of a Highway Tunnel in Southwest China. Engineering Failure Analysis, 122: 105221. https://doi.org/10.1016/j.engfailanal.2021.105221 [12] Jiang, X. L., Wang, F. F., Yang, H., et al., 2018. Parameter Sensitivity of Shallow-Bias Tunnel with a Clear Distance Located in Rock. Advances in Civil Engineering: 5791354. https://doi.org/10.1155/2018/5791354 [13] Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960(in Chinese with English abstract). [14] Liu, G. Q., Xiao, M., Chen, J. T., et al., 2018. Numerical Simulation of Seismic Response for Tunnel Portal Section in Strong Earthquake Area. Journal of Central Sourth University (Science and Technology), 49(11): 2804-2812(in Chinese with English abstract). [15] Liu, G. W., Song, D. Q., Chen, Z., et al., 2020. Dynamic Response Characteristics and Failure Mechanism of Coal Slopes with Weak Intercalated Layers under Blasting Loads. Advances in Civil Engineering, 5412795. https://doi.org/10.1155/2020/5412795 [16] Liu, S. L., Yang, Z. P., Liu, X. R., et al., 2018. Shaking Table Model Test and Numerical Analysis of the Bedding Rock Slopes under Frequent Micro-Seismic Actions. Chinese Journal of Rock Mechanics and Engineering, 37(10): 2264-2276(in Chinese with English abstract). [17] Niu, J. Y., Jiang, X. L., Yang, H., et al., 2017. Study on Dynamic Response Characteristics of Rock Slope with Small Spacing Tunnel under Earthquakes. Journal of Natural Disasters, 26(5): 130-139(in Chinese with English abstract). [18] Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract). [19] Ren, Y., Li, T. B., Lai, L., 2020. Centrifugal Shaking Table Test on Dynamic Response Characteristics of Tunnel Entrance Slope in Strong Earthquake Area. Rock and Soil Mechanics, 41(5): 1605-1612, 1624 (in Chinese with English abstract). [20] Ren, Y., Wang, D., Li, T. B., et al., 2021. In-Situ Geostress Characteristics and Engineering Effect in Ya'an-Xinduqiao Section of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76(in Chinese with English abstract). [21] Sun, T. C., Yue, Z. R., Gao, B., et al., 2011. Model Test Study on the Dynamic Response of the Portal Section of Two Parallel Tunnels in a Seismically Active Area. Tunnelling and Underground Space Technology, 26(2): 391–397. https://doi.org/10.1016/j.tust.2010.11.010 [22] Song, D. Q., Huang, J., Liu, X. L., et al., 2021a. Influence of the Rock Mass Structure and Lithology on the Dynamic Response Characteristics of Steep Rock Slopes during Earthquakes. Journal of Tsinghua University (Science and Technology), 61(8): 873-880(in Chinese with English abstract). [23] Song, D. Q., Huang, J., Liu, X. L., 2021b. Dynamic Response of Layered Rock Slopes under Earthquakes. Journal of Hunan University (Natural Sciences), 48(5): 113-120(in Chinese with English abstract). [24] Song, D. Q., Huang, J., Liu, X. L., et al., 2021c. Dynamic Response Analysis of Rock Bank Slope of a Bridge across Jinsha River under Earthquake. Advanced Engineering Sciences, 53(2): 45-53(in Chinese with English abstract). [25] Song, D. Q., Liu, X. L., Chen, Z., et al., 2021. Influence of Tunnel Excavation on the Stability of a Bedded Rock Slope: A Case Study on the Mountainous Area in Southern Anhui, China. KSCE Journal of Civil Engineering, 25: 114-123. https://doi.org/10.1007/s12205-020-0831-6 [26] Sui, C. Y., Gao, B., Shen, Y. S., et al., 2017. Shaking Table Tests and Analysis on Tunnel Structures with High Steep Slope. Journal of Vibration and Shock, 36(19): 186-194(in Chinese with English abstract). [27] Wang, F. F., Jiang, X. L., Niu, J. Y., et al., 2018. Experimental Study on Seismic Dynamic Characteristics of Shallow-Bias Tunnel with a Small Space. Shock and Vibration, 6412841. https://doi.org/10.1155/2018/6412841 [28] Wang, F. F., Jiang, X. L., Yang, H., et al., 2017. Tests and Numerical Simulation for Acceleration Response Laws of a Shallow Buried Small Spacing Tunnel with Asymmetrical Pressure. Journal of Vibration and Shock, 36(17): 238-247(in Chinese with English abstract). [29] Wang, S. S., Gao, B., Zhou, Y., et al., 2015. Shaking Table Test on Tunnel Front Slope with Weak Intercalation. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 1): 2699-2705(in Chinese with English abstract). [30] Xing, J., Dong, X. B., He, X. N., 2018. Study on Engineering Geological Problems and Deformation Mechanism of Tunnel Portal Landslide. Journal of Catastrophology, 33(Suppl. 1): 14-29(in Chinese with English abstract). [31] Xue, Y. G., Kong, F. M., Yang, W. M., et al., 2020. Main Unfavorable Geological Conditions and Engineering Geological Problems along Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468(in Chinese with English abstract). [32] Yang, Z. P., Lai, Y. L., Liu, S. L., et al., 2019. Dynamic Stability and Failure Mode of Slopes with Overlying Weak Rock Mass under Frequent Micro-Seismic Actions. Chinese Journal of Rock Mechanics and Engineering, 41(12): 2297-2306(in Chinese with English abstract). [33] Yang, Z. P., Li, S. Q., Li, W. K., et al., 2021. Effect of Moisture Content on Dynamic Response Law and Failure Mode of Accumulation Slopes under Frequent Micro-Seismic Actions. Chinese Journal of Rock Mechanics and Engineering, 43(5): 822-831(in Chinese with English abstract). [34] Yang, Z. P., Liu, S. L., Liu, Y. Q., et al., 2018. Dynamic Stability Analysis of Bedding and Toppling Rock Slopes under Repeated Micro-Seismic Action. Chinese Journal of Rock Mechanics and Engineering, 40(7): 1277-1286(in Chinese with English abstract). [35] Zhang, Z. G., Zhang, C. P., Ma, B. B., et al., 2018. Physical Model Test and Numerical Simulation for Anchor Cable Reinforcements of Existing Tunnel under Action of Landslide. Rock and Soil Mechanics, 39(Suppl. 1): 51-60(in Chinese with English abstract). [36] Zhou, H. F, Fu, W. X., Ye, F., et al., 2021. Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446(in Chinese with English abstract). [37] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333 [38] 程选生, 周欣海, 王平, 等, 2021. 黄土隧道结构的振动台模型试验研究. 中国公路学报, 34(6): 136-146. doi: 10.3969/j.issn.1001-7372.2021.06.014 [39] 崔光耀, 孟令瀚, 张军徽, 等, 2018. 隧道洞口软硬围岩交接段地震响应大型振动台模型试验研究. 工程科学与技术, 50(6): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201806012.htm [40] 崔光耀, 王明年, 于丽, 等, 2013. 汶川地震公路隧道洞口结构震害分析及震害机理研究. 岩土工程学报, 35(6): 1084-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306015.htm [41] 范凯祥, 申玉生, 高波, 等, 2019. 穿越软硬围岩隧道设置减震层振动台试验研究. 土木工程学报, 52(9): 109-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201909010.htm [42] 何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058 [43] 侯森, 陶连金, 赵旭, 等, 2015. SH波作用下山岭隧道洞口段结构动力响应研究. 岩石力学与工程学报, 34(2): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502015.htm [44] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110 [45] 刘国庆, 肖明, 陈俊涛, 等, 2018. 强震区隧洞洞口段地震响应数值模拟研究. 中南大学学报(自然科学版), 49(11): 2804-2812. doi: 10.11817/j.issn.1672-7207.2018.11.022 [46] 刘树林, 杨忠平, 刘新荣, 等, 2018. 频发微小地震作用下顺层岩质边坡的振动台模型试验与数值分析. 岩石力学与工程学报, 37(10): 2264-2276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810007.htm [47] 牛家永, 江学良, 杨慧, 等, 2017. 含小净距隧道岩石边坡地震动力响应特性研究. 自然灾害学报, 26(5): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201705015.htm [48] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏交通廊道对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. [49] 任洋, 李天斌, 赖林, 2020. 强震区隧道洞口段边坡动力响应特征离心振动台试验. 岩土力学, 41(5): 1605-1612, 1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005018.htm [50] 任洋, 王栋, 李天斌, 等, 2021. 川藏交通廊道雅安至新都桥段地应力特征及工程效应分析. 岩石力学与工程学报, 40(1): 65-76. [51] 宋丹青, 黄进, 刘晓丽, 等, 2021a. 地震作用下岩体结构及岩性对高陡岩质边坡动力响应特征的影响. 清华大学学报(自然科学版), 61(8): 873-880. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202108012.htm [52] 宋丹青, 黄进, 刘晓丽, 2021b. 地震作用下层状岩质边坡动力响应. 湖南大学学报(自然科学版), 48(5): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202105013.htm [53] 宋丹青, 黄进, 刘晓丽, 等, 2021c. 地震作用下金沙江某跨江桥梁岩质岸坡动力响应分析. 工程科学与技术, 53(2): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202102006.htm [54] 隋传毅, 高波, 申玉生, 等, 2017. 隧道高陡仰坡抗震性能振动台试验分析. 振动与冲击, 36(19): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201719029.htm [55] 王飞飞, 江学良, 杨慧, 等, 2017. 浅埋偏压小净距隧道加速度响应规律试验与数值模拟研究. 振动与冲击, 36(17): 238-247. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201717035.htm [56] 王帅帅, 高波, 周裕, 等, 2015. 隧道洞口含软弱夹层仰坡振动台试验研究. 岩石力学与工程学报, 34(增刊1): 2699-2705. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1014.htm [57] 邢军, 董小波, 贺晓宁, 2018. 隧道洞口滑坡工程地质问题与变形机理研究. 灾害学, 33(增刊1): 14-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2018S1003.htm [58] 薛翊国, 孔凡猛, 杨为民, 等, 2020. 川藏交通廊道沿线主要不良地质条件与工程地质问题. 岩石力学与工程学报, 39(3): 445-468. [59] 杨忠平, 来云亮, 刘树林, 等, 2019. 频发微震下上覆软弱岩体边坡动力稳定及失稳模式. 岩土工程学报, 41(12): 2297-2306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912022.htm [60] 杨忠平, 李诗琪, 李万坤, 等, 2021. 频发微震下含水率对堆积体斜坡动力响应规律及失稳模式的影响. 岩土工程学报, 43(5): 822-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105008.htm [61] 杨忠平, 刘树林, 刘永权, 等, 2018. 反复微震作用下顺层及反倾岩质边坡的动力稳定性分析. 岩土工程学报, 40(7): 1277-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807018.htm [62] 张治国, 张成平, 马兵兵, 等, 2018. 滑坡作用下既有隧道锚索加固的物理模型试验与数值模拟研究. 岩土力学, 39(增刊1): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1008.htm [63] 周洪福, 符文熹, 叶飞, 等, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097