• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    勉略宁矿集区铜厂铜-铁矿床成因:黄铜矿Re-Os定年和硫化物原位硫同位素制约

    栾燕 王瑞廷 钱壮志 孙晓辉 郑崔勇 张天运 丁坤

    栾燕, 王瑞廷, 钱壮志, 孙晓辉, 郑崔勇, 张天运, 丁坤, 2022. 勉略宁矿集区铜厂铜-铁矿床成因:黄铜矿Re-Os定年和硫化物原位硫同位素制约. 地球科学, 47(1): 259-276. doi: 10.3799/dqkx.2021.265
    引用本文: 栾燕, 王瑞廷, 钱壮志, 孙晓辉, 郑崔勇, 张天运, 丁坤, 2022. 勉略宁矿集区铜厂铜-铁矿床成因:黄铜矿Re-Os定年和硫化物原位硫同位素制约. 地球科学, 47(1): 259-276. doi: 10.3799/dqkx.2021.265
    Luan Yan, Wang Ruiting, Qian Zhuangzhi, Sun Xiaohui, Zheng Cuiyong, Zhang Tianyun, Ding Kun, 2022. Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyrite and In-Situ Sulfur Isotope Compositions of Sulfides. Earth Science, 47(1): 259-276. doi: 10.3799/dqkx.2021.265
    Citation: Luan Yan, Wang Ruiting, Qian Zhuangzhi, Sun Xiaohui, Zheng Cuiyong, Zhang Tianyun, Ding Kun, 2022. Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyrite and In-Situ Sulfur Isotope Compositions of Sulfides. Earth Science, 47(1): 259-276. doi: 10.3799/dqkx.2021.265

    勉略宁矿集区铜厂铜-铁矿床成因:黄铜矿Re-Os定年和硫化物原位硫同位素制约

    doi: 10.3799/dqkx.2021.265
    基金项目: 

    国家自然科学基金项目 41603040

    陕西省自然科学基础研究计划项目 2019JM-160

    中央高校基本科研业务费专项资金资助项目 300102271201

    中央高校基本科研业务费专项资金资助项目 300102270203

    详细信息
      作者简介:

      栾燕(1986-), 女, 讲师, 博士, 主要从事岩浆岩及其相关矿床的研究. ORCID: 0000-0002-7840-174X. E-mail: luanyan1234@163.com

      通讯作者:

      孙晓辉, ORCID: 0000-0002-0018-8002. E-mail: sunxiaohui@chd.edu.cn

    • 中图分类号: P597

    Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyrite and In-Situ Sulfur Isotope Compositions of Sulfides

    • 摘要:

      铜厂铜-铁矿床在成矿时代、成矿物质来源及矿床成因等方面存在较大争议,限制了其成矿模式的建立以及进一步的找矿实践. 利用黄铜矿Re-Os同位素对该矿床进行定年,并利用LA-MC-ICP-MS技术对黄铜矿、黄铁矿及磁黄铁矿等硫化物开展原位硫同位素研究. 分析结果显示,5件黄铜矿Re-Os同位素等时线年龄为484±34 Ma(MSWD=8.7),表明铜厂铜-铁矿床形成于早古生代加里东期. 铜厂铜-铁矿床上部铜矿床中黄铜矿(+9.75‰~+13.1‰)和黄铁矿(+9.22‰~+13.9‰)的δ34S值略高于下部铁矿床中黄铜矿(+8.66‰~+10.9‰)、黄铁矿(+8.85‰~+11.0‰)和磁黄铁矿(+7.93‰~+9.28‰). 计算得到早期成矿热液的δ34S∑S值约为+10.6‰,晚期成矿热液的δ34S∑S值约为+12.3‰,说明矿床硫是地幔硫混染海水硫形成的,热化学还原在海水硫酸盐还原过程中起到关键作用. 铜厂铜-铁矿床的形成可分为两期:新元古代晋宁期,Rodinia超大陆裂解导致勉略宁地区发生海底火山喷发形成富含Fe、Cu的初始矿源层;早古生代加里东期,大陆边缘持续的裂解和裂陷形成勉略海槽并导致强烈的岩浆活动,富含挥发分及硫的岩浆热液混合海水硫,并从细碧岩中萃取Fe、Cu等成矿物质,早期成矿热液在铜厂地区深部形成铁矿床,随着磁铁矿和硫化物的沉淀,成矿热液演化到晚期阶段并沿断裂构造带向上运移,在铜厂地区浅部形成铜矿床.

       

    • 图  1  勉略宁矿集区地质构造略图(据岳素伟等,2013

      Fig.  1.  Simplified geological map of the Mian-Lue-Ning area (from Yue et al., 2013)

      图  2  铜厂矿田地质简图(a)和铜-铁矿床地质剖面示意图(b)

      a.据王瑞廷等(2012); b.据任小华(2008)

      Fig.  2.  Simplified geological map of the Tongchang ore field (a) and geological cross-section of the Tongchang copper-iron deposit (b)

      图  3  铜厂铜-铁矿床矿石手标本及显微照片

      a、b.下部铁矿床磁铁矿矿石;c.下部铁矿床硫化物矿石;d~f.下部铁矿床含硫化物的磁铁矿矿石;g~i.上部部铜矿床硫化物矿石. Py.黄铁矿;Po.磁黄铁矿;Mt.磁铁矿;Ccp.黄铜矿;Q.石英;Cc.方解石;Srp.蛇纹石. 圆圈代表原位硫同位素分析点位

      Fig.  3.  Hand specimens and microphotographs of the ores from the Tongchang copper-iron deposit

      图  4  铜厂铜-铁矿床矿化蚀变共生序列

      线条的粗细分别代表主要和次要矿物

      Fig.  4.  Paragenetic sequence of ore and alteration minerals in the Tongchang copper-iron deposit

      图  5  铜厂铜-铁矿床黄铜矿Re-Os同位素等时线年龄(a)和187Os/188Os-1/192Os图解(b)

      Fig.  5.  Re-Os isotope isochrone age (a) and 187Os/188Os vs. 1/192Os (b) of chalcopyrite from the Tongchang copper-iron deposit

      图  6  铜厂铜-铁矿床硫化物原位硫同位素组成直方图

      Fig.  6.  In-situ S isotopic composition histogram of sulfide from the Tongchang copper-iron deposit

      图  7  铜厂铜-铁矿床成矿流体δ34S∑S值计算图

      Fig.  7.  δ34S∑S calculation diagram of the ore-forming fluid of the Tongchang copper-iron deposit

      图  8  铜厂铜-铁矿床硫化物原位硫同位素组成

      底图据Li and Santosh(2014

      Fig.  8.  In-situ S isotopic composition of sulfide from the Tongchang copper-iron deposit

      图  9  铜厂铜-铁矿床成矿模式

      Fig.  9.  Metallogenic model of the Tongchang copper-iron deposit

      表  1  铜厂铜-铁矿床及岩浆岩形成时代

      Table  1.   Ages of the Tongchang copper-iron deposit and magmatic rocks

      地层/矿体/岩体 方法 年龄(Ma) 资料来源
      碧口群 上部浅变质中酸性火山岩 锆石SHRIMP U-Pb同位素年龄 790±15~776±13 闫全人等,2003
      下部基性火山岩 840±10
      铜厂矿田 铜厂铜矿床 矿化闪长岩中辉钼矿Re-Os同位素模式年龄 889 丁振举等,1998
      脉状铜矿石中黄铜矿Rb-Sr等时线年龄 359
      铜厂闪长岩 闪长岩 锆石SHRIMP
      U-Pb同位素年龄
      842±6.5 叶霖等,2009
      早期闪长岩 锆石LA-ICP-MS
      U-Pb同位素年龄
      879±7 王伟等,2011
      中期石英闪长岩 848±5~840±7
      含矿钠长岩脉 843±7
      晚期花岗闪长岩 824±5
      闪长岩 锆石LA-ICP-MS
      U-Pb同位素年龄
      843.7±3.9 宫相宽等,2013
      下载: 导出CSV

      表  2  LA-MC-ICP-MS工作参数

      Table  2.   LA-MC-ICP-MS operation conditions

      MC-ICP-MS工作参数 激光工作参数
      仪器型号 Nu Plasma 1700 仪器型号 RESOlution M50-LR
      RF射频功率 1 300 W 激光能量密度 3.5~4 J/cm2
      等离子气(Ar)流速 13 L/min 载气(He)流量 280 mL/min
      补充气(Ar)流量 0.96 L/min 束斑 20~37 μm
      背景时间 30 s 频率 3~4 Hz
      积分时间 50 s 剥蚀方式 点剥蚀
      下载: 导出CSV

      表  3  铜厂铜-铁矿床黄铜矿Re-Os同位素测试数据

      Table  3.   Re-Os isotopic data of chalcopyrite from the Tongchang copper-iron deposit

      样品编号 Re(10-9) ±2σ Os(10-12) ±2σ 187Re/188Os ±2σ 187Os/188Os ±2σ 1/192Os(1012)
      T17-8 1 110 27 8.763 0.056 1 455.34 37.06 10.74 0.06 0.671
      T17-11 3 371 10 19.27 0.10 7 209.31 41.84 58.05 0.39 1.101
      T17-12 1 562 30 10.53 0.23 2 184.00 63.49 15.90 0.42 0.717
      T17-13 1.298 0.028 21.09 0.14 447.35 10.04 4.03 0.02 0.176
      T17-17 0.794 0 0.010 0 63.99 0.37 76.52 1.06 2.28 0.02 0.049
      T17-20 4 814 24 31.15 0.19 3 164.05 25.39 25.04 0.28 0.345
      下载: 导出CSV

      表  4  铜厂铜-铁矿床硫化物原位硫同位素组成

      Table  4.   In-situ S isotopic composition of sulfide from the Tongchang copper-iron deposit

      样品类型 样品编号 δ34S(‰) 样品类型 样品编号 δ34S(‰)
      上部黄铜矿 TC15-5 +12.3 上部黄铁矿 T17-8 +13.8
      +12.5 T17-9 +12.9
      TC15-17 +10.5 T17-11 +12.4
      +10.5 T17-13 +12.7
      +9.75 T17-16 +12.4
      +10.6 T17-19 +12.4
      +9.90 T17-20 +12.4
      TC15-18 +12.7 T17-22 +13.9
      TC15-38 +12.9 T17-23 +12.7
      T17-8 +12.8 T17-25 +12.3
      T17-9 +12.2 下部黄铜矿 yjb-3 +10.6
      T17-11 +12.4 yjb-5 +10.6
      T17-13 +12.7 yjb-6 +10.9
      T17-16 +12.1 Y17-7 +8.76
      T17-19 +12.6 Y17-8 +8.85
      T17-20 +12.4 Y17-12 +8.66
      T17-22 +12.7 下部黄铁矿 yjb-3 +10.8
      T17-23 +12.7 yjb-5 +10.7
      T17-25 +13.1 yjb-6 +11.0
      上部黄铁矿 TC15-5 +13.6 Y17-7 +8.95
      TC15-17 -1.02 +9.48
      -0.96 +9.05
      +9.22 +8.71
      +10.3 +8.97
      +12.8 Y17-8 +9.64
      +4.51 Y17-12 +9.54
      -1.96 下部磁黄铁矿 Y17-7 +9.20
      +1.25 +9.28
      +11.2 +9.07
      +10.9 +7.93
      TC15-18 +12.6 +8.74
      +12.5
      TC15-38 +12.9
      +13.0
      下载: 导出CSV
    • [1] Barra, F., Ruiz, J., Mathur, R., et al., 2003. A Re-Os Study of Sulfide Minerals from the Bagdad Porphyry Cu-Mo Deposit, Northern Arizona, USA. Mineralium Deposita, 38(5): 585-596. https://doi.org/10.1007/s00126-002-0341-0
      [2] Basuki, N. I., Taylor, B. E., Spooner, E. T. C., 2008. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Economic Geology, 103(4): 783-799. https://doi.org/10.2113/gsecongeo.103.4.783
      [3] Chang, Z. S., Large, R. R., Maslennikov, V., 2008. Sulfur Isotopes in Sediment-Hosted Orogenic Gold Deposits: Evidence for an Early Timing and a Seawater Sulfur Source. Geology, 36(12): 971-974. https://doi.org/10.1130/g25001a.1
      [4] Chaussidon, M., Lorand, J. P., 1990. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. https://doi.org/10.1016/0016-7037(90)90018-g
      [5] Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for In Situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107-116. https://doi.org/10.1039/c6ja00270f
      [6] Chen, W., Wan, Y.S., Li, H.Q., et al., 2011. Isotope Geochronology: Technique and Application. Acta Geologica Sinica, 85(11): 1917-1947 (in Chinese with English abstract).
      [7] Chen, W., Zhao, X.F., Li, X.C., et al., 2019. An Overview on the Characteristics and Origin of Iron-Oxide Copper Gold (IOCG) Deposits in China. Acta Petrologica Sinica, 35(1): 99-118 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.07
      [8] Chen, W. T., Zhou, M. F., 2014. Ages and Compositions of Primary and Secondary Allanite from the Lala Fe-Cu Deposit, SW China: Implications for Multiple Episodes of Hydrothermal Events. Contributions to Mineralogy and Petrology, 168: 1043. https://doi.org/10.1007/s00410-014-1043-1
      [9] Chen, X., Xue, C. J., 2016. Origin of H2S in Uragen Large-Scale Zn-Pb Mineralization, Western Tien Shan: Bacteriogenic Structure and S-Isotopic Constraints. Acta Petrologica Sinica, 32(5): 1301-1314 (in Chinese with English abstract).
      [10] Chen, Y. L., Yang, Z. F., Zhao, D. Z., 2005. Isotope Geochronology and Geochemistry. Geological Publishing House, Beijing, 261-275 (in Chinese).
      [11] Deng, X. H., Wang, J. B., Pirajno, F., et al., 2016. Re-Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China. Ore Geology Reviews, 77: 72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014
      [12] Ding, Z.J., Yao, S.Z., Zhou, Z.G., et al., 1998. Metallogenic Chronology and Its Geologic Significace of Tongchang Copper Ore Deposit, Shaanxi Province. Journal of Xi'an Engineering University, 20(3): 24-27 (in Chinese with English abstract).
      [13] Elsgaard, L., Isaksen, M. F., Jørgensen, B. B., et al., 1994. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin Hydrothermal Vent Area: Influence of Temperature and Substrates. Geochimica et Cosmochimica Acta, 58(16): 3335-3343. https://doi.org/10.1016/0016-7037(94)90089-2
      [14] Gannoun, A., Burton, K. W., Day, J. M. D., et al., 2016. Highly Siderophile Element and Os Isotope Systematics of Volcanic Rocks at Divergent and Convergent Plate Boundaries and in Intraplate Settings. Reviews in Mineralogy and Geochemistry, 81(1): 651-724. https://doi.org/10.2138/rmg.2016.81.11
      [15] Gong, X.K., Chen, D.L., Zhao, J., 2013. Studies on Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotope Composition of the Tongchang Diorites, Shaanxi Province. Northwestern Geology, 46(3): 50-63 (in Chinese with English abstract).
      [16] Han, R.S., Jin, S.C., Liu, C.Q., et al., 2000. Deposit Types and Their Characteristics in Tongchang Orefield, Mian County-Lueyang-Yangpingguan Area, Shaanxi. Geology and Prospecting, 36(4): 11-15, 40 (in Chinese with English abstract).
      [17] Hou, L., Ding, J., Deng, J., et al., 2015. Geology, Geochronology, and Geochemistry of the Yinachang Fe-Cu-Au-REE Deposit of the Kangdian Region of SW China: Evidence for a Paleo-Mesoproterozoic Tectono-Magmatic Event and Associated IOCG Systems in the Western Yangtze Block. Journal of Asian Earth Sciences, 103: 129-149. https://doi.org/10.1016/j.jseaes.2014.09.016
      [18] Huang, X.W., Qi, L., Gao, J.F., et al., 2016. Some Thoughts on Sulfide Re-Os Isotope Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 432-440 (in Chinese with English abstract).
      [19] Huang, X. W., Zhao, X. F., Qi, L., et al., 2013. Re-Os and S Isotopic Constraints on the Origins of Two Mineralization Events at the Tangdan Sedimentary Rock-Hosted Stratiform Cu Deposit, SW China. Chemical Geology, 347: 9-19. https://doi.org/10.1016/j.chemgeo.2013.03.020
      [20] Jiang, S. Y., Yang, J. H., Zhao, K. D., et al., 2000. Re-Os Isotope Tracer and Dating Methods in Ore Deposits Research. Journal of Nanjing University (Natural Sciences), 36(6): 669-677 (in Chinese with English abstract).
      [21] Jørgensen, B. B., Isaksen, M. F., Jannasch, H. W., 1992. Bacterial Sulfate Reduction above 100 ℃ in Deep-Sea Hydrothermal Vent Sediments. Science, 258(5089): 1756-1757. https://doi.org/10.1126/science.258.5089.1756
      [22] Li, J., Wang, X. C., Xu, J. F., et al., 2015a. Disequilibrium-Induced Initial Os Isotopic Heterogeneity in Gram Aliquots of Single Basaltic Rock Powders: Implications for Dating and Source Tracing. Chemical Geology, 406: 10-17. https://doi.org/10.1016/j.chemgeo.2015.04.010
      [23] Li, X.C., Zhao, X.F., Zhou, M. F., et al., 2015b. Fluid Inclusion and Isotopic Constraints on the Origin of the Paleoproterozoic Yinachang Fe-Cu-(REE) Deposit, Southwest China. Economic Geology, 110(5): 1339-1369. https://doi.org/10.2113/econgeo.110.5.1339
      [24] Li, J., Zhang, J., Yin, L., 2018. Advances and Problems of Re-Os Isotope Analysis of Geological Samples. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2): 242-249 (in Chinese with English abstract).
      [25] Li, J., Zhong, L.F., Tu, X.L., et al., 2011. Platinum Group Elements and Re-Os Isotope Analyses for Geological Samples Using a Single Digestion Procedure. Geochimica, 40(4): 372-380 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201104007.htm
      [26] Li, S. R., Santosh, M., 2014. Metallogeny and Craton Destruction: Records from the North China Craton. Ore Geology Reviews, 56: 376-414. https://doi.org/10.1016/j.oregeorev.2013.03.002
      [27] Li, T.Z., Zhou, Q., Zhang, H.H., et al., 2017. Re-Os Isotopic Dating of Chalcopyrite from the Liwu-Type Copper Deposit in Western Sichuan and Its Metallogenic Significance. Acta Geologica Sinica, 91(12): 2727-2738 (in Chinese with English abstract).
      [28] Liu, B., Chen, W.F., Fang, Q.C., et al., 2020. Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area. Earth Science, 45(2): 389-399 (in Chinese with English abstract).
      [29] Liu, Y.D., Xie, H.F., Xu, L., et al., 2020. Sulfur Isotopic Geochemistry of the Zigangping Pb-Zn Deposit, Jiulong County, Sichuan Province. Geological Bulletin of China, 39(12): 2029-2036 (in Chinese with English abstract).
      [30] Lü, X.Q., Mao, Q.G., Guo, N.X., et al., 2020. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).
      [31] Luan, Y., Wang, R. T., Qian, Z. Z., et al., 2018. The Genesis of the Xujiagou Copper Deposit, Mian-Lue-Ning Area of Shaanxi Province, NW China: Constraints from Mineral Chemistry and In Situ Pb Isotope Composition. Geological Journal, 53(S1): 44-57. https://doi.org/10.1002/gj.2994
      [32] Luan, Y., Wang, R.T., Qian, Z.Z., et al., 2021. Geological Characteristics and Genesis of the Tongchang Copper-Iron Deposit in the Mian-Lue-Ning Ore- Cluster Region, Shaanxi Province. Acta Geologica Sinica, 95(3): 852-867 (in Chinese with English abstract).
      [33] Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [34] Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings-Old and New Insights. Sedimentary Geology, 140(1-2): 143-175. https://doi.org/10.1016/s0037-0738(00)00176-7
      [35] Machel, H. G., Krouse, H. R., Sassen, R., 1995. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Applied Geochemistry, 10(4): 373-389. https://doi.org/10.1016/0883-2927(95)00008-8
      [36] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551
      [37] Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York.
      [38] Pinckney, D. M., Rafter, T. A., 1972. Fractionation of Sulfur Isotopes during Ore Deposition in the Upper Mississippi Valley Zinc-Lead District. Economic Geology, 67(3): 315-328. https://doi.org/10.2113/gsecongeo.67.3.315
      [39] Ren, X.H., 2008. Research on Metalliferous Deposit Mineralization and Survey and Prediction of Target Area for Mineral Prospecting Mian-Lue-Ning Region, Shaanxi (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      [40] Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826-842. https://doi.org/10.2113/gsecongeo.69.6.826
      [41] Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
      [42] Selby, D., Kelley, K. D., Hitzman, M. W., et al., 2009. Re-Os Sulfide (Bornite, Chalcopyrite and Pyrite) Systematics of the Carbonate-Hosted Copper Deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 104(3): 437-444. https://doi.org/10.2113/gsecongeo.104.3.437
      [43] Song, H., Song, S. W., 2015. Re-Os Dating of Chalcopyrite from the Lala IOCG Deposit in the Kangdian Copper Belt, China. Acta Geologica Sinica (English Edition), 89(2): 689-690. https://doi.org/10.1111/1755-6724.12464
      [44] Strauss, H., 2004. 4 Ga of Seawater Evolution: Evidence from the Sulfur Isotopic Composition of Sulfate. In: Amend, J.P., Edwards, K.J., Lyons, T.W., eds., Sulfur Biogeochemistry: Past and Present. Geological Society of America Special Papers, 379: 195-205. https://doi.org/10.1130/0-8137-2379-5.195
      [45] Wang, J. Y., 2001. Metallogenic Geological Background, Metallogenic Type, Ore Formation Rule and Ore- Prospecting Target of Mianluening Triangle Block in Qinling Orogenic Zone (Dissertation). Northwest University, Xi'an (in Chinese with English abstract).
      [46] Wang, R. T., Wang, D. S., Dai, J. Z., et al., 2012. Study on Synthetical Exploration Technology for Pb-Zn-Ag-Cu-Au Deposits in Major Mineralization Concentrated Region of Shaanxi Area in Qinling Orogenic Belt. Geological Publishing House, Beijing, 128-138 (in Chinese).
      [47] Wang, W., Liu, S. W, Wu, F. H, et al., 2011. Emplaced and Metallogenetic Times of Tongchang Diorities, Southern Shaanxi Province and Its Geological Implications. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(1): 91-102 (in Chinese with English abstract).
      [48] Wang, Y.F., Yang, H.M., 2016. Sulfur Isotope Tracing of Ore-Forming Hydrothermal Fluid for Metallic Sulfide Deposit. Advances in Earth Science, 31(6): 595-602 (in Chinese with English abstract).
      [49] Yan, Q. R., Wang, Z. Q., Yan, Z., et al., 2003. Age of Bikou Group Volcanic Rocks: SHRIMP Zircon U-Pb Dating Results. Geological Bulletin of China, 22(6): 456-458 (in Chinese).
      [50] Yang, Y. J., Han, X., Bian, X. W., et al., 2020a. An Analysis of Sedimentary Environment and Prototype Basin of Lueyang Group in the Mian-Lue-Ning Triangle Area, Shaanxi Province. Geological Bulletin of China, 39(10): 1549-1560 (in Chinese with English abstract).
      [51] Yang, Y. J., Han, X., Du, S. X., 2020b. Analysis of the Metallogenic System and Metallogenic Regularity in Mian-Lue-Ning Triangle Zone. Bulletin of Science and Technology, 36(7): 4-13 (in Chinese with English abstract).
      [52] Ye, L., Cheng, Z. T., Lu, L. N., et al., 2009. Petrological Geochronology and Zircon SHRIMP U-Pb of Tongchang Diorites, Mianluening Area, Southern Shaanxi Province, China. Acta Petrologica Sinica, 25(11): 2866-2876 (in Chinese with English abstract).
      [53] Ye, L., Liu, T.G., 1999. Study on the Stable Isotope in Tongchang Copper Deposit, Shaanxi Province. Journal of Mineralogy and Petrology, 19(4): 74-77 (in Chinese with English abstract).
      [54] Ye, L., Liu, T. G., Shao, S. X., 1997. Inclusion Geochemistry of Tongchang Cu Deposit in the Mian- Lue-Lin Area, South Shaanxi. Acta Mineralogica Sinica, 17(2): 194-199 (in Chinese with English abstract).
      [55] Ye, L., Yang, Y. L, Gao, W., et al., 2012. Source of Ore-Formation Materials of Tongchang Copper Ore Deposit in Southern Shaanxi Province, China. Journal of Jilin University (Earth Science Edition), 42(1): 92-103 (in Chinese with English abstract).
      [56] Yuan, S. D., Chou, I. M., Burruss, R. C., et al., 2013. Disproportionation and Thermochemical Sulfate Reduction Reactions in S-H2O-CH4 and S-D2O-CH4 Systems from 200 to 340 ℃ at Elevated Pressures. Geochimica et Cosmochimica Acta, 118(1): 263-275. https://doi.org/10.1016/j.gca.2013.05.021
      [57] Yue, S.W., Lin, Z.W., Deng, X.H., et al., 2013. C, H, O, S, Pb Isotopic Geochemistry of the Jianchaling Gold Deposit, Shaanxi Province. Geotectonica et Metallogenia, 37(4): 653-670 (in Chinese with English abstract). https://core.ac.uk/display/155683925
      [58] Zhao, B.S., Li, J., Long, X.P., et al., 2018. Re-Os Isochron Age of Pyrites from Meiling Cu Deposit in the Eastern Tianshan: A Case Study for the Os Isotopic Heterogeneity. Earth Science, 43(9): 2966-2979 (in Chinese with English abstract).
      [59] Zhao, X. F., Zhou, M. F., Su, Z. K., et al., 2017. Geology, Geochronology, and Geochemistry of the Dahongshan Fe-Cu-(Au-Ag) Deposit, Southwest China: Implications for the Formation of Iron Oxide Copper-Gold Deposits in Intracratonic Rift Settings. Economic Geology, 112(3): 603-628. https://doi.org/10.2113/econgeo.112.3.603
      [60] Zheng, Y. F., Chen, J. F., 2000. Stable Isotope Geochemistry. Science Press, Beijing, 218-247 (in Chinese).
      [61] Zhou, M. F., Zhao, X. F., Chen, W. T., et al., 2014. Proterozoic Fe-Cu Metallogeny and Supercontinental Cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam. Earth-Science Reviews, 139: 59-82. https://doi.org/10.1016/j.earscirev.2014.08.013
      [62] Zhou, S.H., 2008. Geological Characteristics and Geochemistry of Ore-Forming Fluid in the Tongchang Copper-Gold Polymetallic Deposit, Shaanxi. Geology in China, 35(2): 298-304 (in Chinese with English abstract).
      [63] 陈文, 万渝生, 李华芹, 等, 2011. 同位素地质年龄测定技术及应用. 地质学报, 85(11): 1917-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111010.htm
      [64] 陈伟, 赵新福, 李晓春, 等, 2019. 中国铁氧化物‒铜‒金(IOCG)矿床的基本特征及研究进展. 岩石学报, 35(1): 99-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901008.htm
      [65] 陈兴, 薛春纪, 2016. 西天山乌拉根大规模铅锌成矿中H2S成因: 菌生结构和硫同位素组成约束. 岩石学报, 32(5): 1301-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201605004.htm
      [66] 陈岳龙, 杨忠芳, 赵志丹, 2005. 同位素地质年代学与地球化学. 北京: 地质出版社, 261-275.
      [67] 丁振举, 姚书振, 周宗桂, 等, 1998. 陕西略阳铜厂铜矿成矿时代及地质意义. 西安工程学院学报, 20(3): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX803.005.htm
      [68] 宫相宽, 陈丹玲, 赵姣, 2013. 陕西铜厂闪长岩地球化学、锆石U-Pb定年及Lu-Hf同位素研究. 西北地质, 46(3): 50-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303003.htm
      [69] 韩润生, 金世昌, 刘丛强, 等, 2000. 陕西勉略阳区铜厂矿田矿床(化)类型及其特征. 地质与勘探, 36(4): 11-15, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200004003.htm
      [70] 黄小文, 漆亮, 高剑峰, 等, 2016. 关于硫化物Re-Os同位素定年的一些思考. 矿物岩石地球化学通报, 35(3): 432-440. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603006.htm
      [71] 蒋少涌, 杨竞红, 赵葵东, 等, 2000. 金属矿床Re-Os同位素示踪与定年研究. 南京大学学报(自然科学版), 36(6): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200006001.htm
      [72] 李杰, 张晶, 尹露, 2018. 地质样品的Re-Os同位素分析技术及存在的问题. 矿物岩石地球化学通报, 37(2): 242-249. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201802009.htm
      [73] 李杰, 钟立峰, 涂湘林, 等, 2011. 利用同一化学流程分析地质样品中的铂族元素含量和铼‒锇同位素组成. 地球化学, 40(4): 372-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201104007.htm
      [74] 李同柱, 周清, 张惠华, 等, 2017. 四川西部里伍式富铜矿床黄铜矿Re-Os定年及其成矿意义. 地质学报, 91(12): 2727-2738. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201712010.htm
      [75] 刘斌, 陈卫锋, 方启春, 等, 2020. 相山西部牛头山铅锌矿化体成矿物质来源: 原位硫同位素的制约. 地球科学, 45(2): 389-399. doi: 10.3799/dqkx.2018.395
      [76] 刘应冬, 谢海峰, 徐力, 等, 2020. 四川九龙县子杠坪铅锌矿床硫同位素地球化学特征. 地质通报, 39(12): 2029-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012018.htm
      [77] 吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228
      [78] 栾燕, 王瑞廷, 钱壮志, 等, 2021. 陕西省勉略宁矿集区铜厂铜‒铁矿床地质特征及其成因探讨. 地质学报, 95(3): 852-867. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103017.htm
      [79] 任小华, 2008. 陕西勉略宁地区金属矿床成矿作用与找矿靶区预测研究(博士学位论文). 西安: 长安大学.
      [80] 汪军谊, 2001. 秦岭"勉略宁"三角地块成矿地质背景、矿化类型、成矿规律及找矿方向(硕士学位论文). 西安: 西北大学.
      [81] 王瑞廷, 王东生, 代军治, 等, 2012. 秦岭造山带陕西段主要矿集区铅锌银铜金矿综合勘查技术研究. 北京: 地质出版社, 128-138.
      [82] 王伟, 刘树文, 吴峰辉, 等, 2011. 陕南铜厂闪长岩体的成岩、成矿时代及其地质意义. 北京大学学报(自然科学版), 47(1): 91-102. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201101016.htm
      [83] 王云峰, 杨红梅, 2016. 金属硫化物矿床的成矿热液硫同位素示踪. 地球科学进展, 31(6): 595-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201606008.htm
      [84] 闫全人, 王宗起, 闫臻, 等, 2003. 碧口群火山岩的时代——SHRIMP锆石U-Pb测年结果. 地质通报, 22(6): 456-458. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200306011.htm
      [85] 杨运军, 韩旭, 边小卫, 等, 2020a. 陕西勉略宁三角区略阳群沉积环境及原型盆地分析. 地质通报, 39(10): 1549-1560. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202010006.htm
      [86] 杨运军, 韩旭, 杜少喜, 2020b. 陕西勉略宁三角区成矿系统与成矿规律浅析. 科技通报, 36(7): 4-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB202007003.htm
      [87] 叶霖, 程增涛, 陆丽娜, 等, 2009. 陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学. 岩石学报, 25(11): 2866-2876. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911018.htm
      [88] 叶霖, 刘铁庚, 1999. 铜厂铜矿稳定同位素研究. 矿物岩石, 19(4): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199904015.htm
      [89] 叶霖, 刘铁庚, 邵树勋, 1997. 陕南勉宁略地区铜厂铜矿包裹体地球化学特征研究. 矿物学报, 17(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199702012.htm
      [90] 叶霖, 杨玉龙, 高伟, 等, 2012. 陕南铜厂铜矿床成矿物质来源探讨. 吉林大学学报(地球科学版), 42(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201015.htm
      [91] 岳素伟, 林振文, 邓小华, 等, 2013. 陕西省煎茶岭金矿C、H、O、S、Pb同位素地球化学示踪. 大地构造与成矿学, 37(4): 653-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304011.htm
      [92] 赵冰爽, 李杰, 龙晓平, 等, 2018. 东天山梅岭铜矿床黄铁矿Re-Os等时线年龄: Os同位素不均一的结果. 地球科学, 43(9): 2966-2979. doi: 10.3799/dqkx.2018.168
      [93] 郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社, 218-247.
      [94] 周圣华, 2008. 陕西铜厂铜金多金属矿床地质特征及成矿流体地球化学. 中国地质, 35(2): 298-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200802016.htm
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  480
    • HTML全文浏览量:  243
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-23
    • 网络出版日期:  2022-02-11
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回