Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions
-
摘要: 为了探究川藏交通廊道沿线典型岩石冻融循环条件下的劣化规律,选取昌都-林芝段的花岗岩、片麻岩和砂岩为试验对象,开展冻融循环条件下岩石加卸荷试验,结果表明:(1)随着冻融循环次数的增加,岩石抗压强度损失率达30%,粘聚力降幅达18.4%,内摩擦角降幅达10.5%,弹性模量逐渐下降,泊松比逐渐增加;(2)三轴压缩试验中,岩样的变形模量呈现与抗压强度类似的劣化趋势,但是变形模量的劣化幅度比抗压强度劣化幅度大;冻融循环作用下岩石抗压强度越大劣化程度越低,对砂岩的劣化最明显,片麻岩次之,花岗岩最小;(3)与三轴压缩试验相比,在卸围压试验中,冻融循环作用对岩石的卸荷量同样有劣化作用,卸荷程度较小时岩石劣化并不明显,随着卸荷量的逐渐增加,卸荷量大于80%时,岩石的变形模量呈指数型下降,泊松比呈指数型增加;(4)随着冻融循环次数的增加,三轴压缩试验中由拉张和剪切破坏造成的裂纹数量增多;卸围压试验中岩石以拉张破坏为主;岩石微裂纹数量增加的同时,不平整度增加,矿物颗粒之间的胶结状态变差;(5)综合试验结果分析,冻融作用对岩石劣化作用最强的为砂岩,其次是片麻岩,最弱为花岗岩.Abstract: In order to explore the degradation law of typical rock along Sichuan-Tibet traffic corridor under freeze-thaw cycles, granite, gneiss and sandstone of Changdu-Linzhi section of Sichuan-Tibet traffic corridor were selected as the test objects, and the loading and unloading tests of rock with different freeze-thaw cycles were carried out. The results show follows: (1) With the increase of freeze-thaw cycles, the loss rate of rock compressive strength is 30%, the cohesion decreases by 18.4%, the internal friction angle decreases by 10.5%, the elastic modulus decreases gradually, and the Poisson's ratio increases gradually. (2) In triaxial compression test, the deformation modulus of rock sample presents the degradation law similar to compressive strength. Freeze-thaw action has the most obvious degradation effect on sandstone, followed by gneiss and granite, which is proportional to the compressive strength of rock, and the degradation range of deformation modulus is larger than that of compressive strength. (3) Compared with compression test, in unloading confining pressure test, freeze-thaw cycle also has degradation effect on unloading amount of rock, and the rock degradation is not obvious when the unloading degree is small. With the gradual increase of unloading amount, when the unloading amount is greater than 80%, the deformation modulus of rock decreases exponentially and the Poisson's ratio increases exponentially. (4) With the increase of freeze-thaw cycles, the number of cracks caused by tensile and shear failure increases in triaxial compression tests. The rock of unloading confining pressure test is mainly tensile failure. When the number of micro-cracks increases, the degree of irregularity increases, and the cementation state between mineral particles becomes worse. (5) According to the comprehensive test results, freeze-thaw action has the strongest deterioration effect on sandstone, followed by gneiss, and the weakest is granite.
-
表 1 各岩石主要矿物成分
Table 1. Main mineral components of each rock
岩性 主要矿物 含量(%) 花岗岩 石英 83.2 方解石 3.2 高岭石 11.6 片麻岩 石英 34.6 钠长石 32.6 伊利石 31.5 砂岩 石英 12.1 钠长石 59.0 伊利石 25.8 表 2 各岩石含水率参数
Table 2. Water content parameters of each rock
岩性 花岗岩 片麻岩 砂岩 天然含水率(%) 1.6 1.5 2.8 饱和含水率(%) 3.1 3.8 5.1 表 3 试验分组
Table 3. Test groups
试验方法 冻融循环次数(n) 岩组编号及数量 岩样规格(mm) 三轴压缩 0 A1(3个) 圆柱50×100 30 A2(3个) 60 A3(3个) 90 A4(3个) 卸围压 0 A5(3个) 30 A6(3个) 60 A7(3个) 90 A8(3个) 注:片麻岩、砂岩试验分组以B、C开头,试验分组类似. 表 4 岩石的粘聚力和内摩擦角参数
Table 4. Parameters of rock cohesion and internal friction angle
岩性 参数 冻融循环次数(n) 0 30 60 90 花岗岩 粘聚力(MPa) 9.29 8.95 8.82 8.77 内摩擦角(°) 51.78 51.60 51.06 50.12 片麻岩 粘聚力(MPa) 11.56 8.73 9.36 9.43 内摩擦角(°) 49.37 51.24 48.86 45.58 砂岩 粘聚力(MPa) 11.41 11.28 10.07 9.88 内摩擦角(°) 57.54 55.39 54.40 51.50 表 5 冻融后岩石的劣化度情况
Table 5. Degradation of rocks after freezing and thawing
破坏围压(MPa) 岩性 冻融循环n次后的劣化度(%) 30 60 90 3 花岗岩 3.0 6.3 10.9 片麻岩 12.4 15.8 26.0 砂岩 10.3 19.3 32.2 6 花岗岩 2.2 4.5 7.5 片麻岩 8.7 13.8 18.6 砂岩 9.2 17.9 22.5 9 花岗岩 2.3 5.5 10.1 片麻岩 5.0 11.9 23.5 砂岩 11.0 18.8 31.6 表 6 各岩石卸围压试验破坏围压参数
Table 6. Failure confining pressure parameters of rock unloading confining pressure test
冻融循环次数(n) 0 30 60 90 初始围压(MPa) 3 6 9 3 6 9 3 6 9 3 6 9 破坏围压σd(MPa) 花岗岩 1.61 5.21 7.42 1.75 5.38 7.87 2.01 5.12 7.87 2.08 5.44 8.02 片麻岩 1.22 3.61 6.93 1.42 4.51 7.69 2.12 5.15 8.12 2.62 5.67 8.29 砂岩 1.70 4.21 7.66 2.03 4.51 7.94 2.13 5.23 8.09 2.62 5.64 8.51 -
[1] Bayram, F., 2012. Predicting Mechanical Strength Loss of Natural Stones after Freeze-Thaw in Cold Regions. Cold Regions Science and Technology, 83-84: 98-102. https://doi.org/10.1016/j.coldregions.2012.07.003 [2] Chen, Z. J., Wang, L. H., Wang, S. M., et al., 2017. Loading and Unloading Mechanical Characteristics of Rock under Freezing-Thawing Cycles. Journal of Yangtze River Scientific Research Institute, 34(1): 98-103(in Chinese with English abstract). [3] Deng, H. F., Qi, Y., Li, J. L., et al., 2021. Degradation Mechanism of Intermittent Jointed Sandstone under Water-Rock Interaction. Chinese Journal of Geotechnical Engineering, 43(4): 634-643(in Chinese with English abstract). [4] Deng, L., Wang, H., Li, K. J., 2021. Analysis of Deformational Mechanism and Stability Evaluation of Lacustrine Deposit within the Corridor of Sichuan-Tibet Railway: An Example from an Outcrop at Songzong Town. Earth Science, 47(3): 959-973(in Chinese with English abstract). [5] Du, S. H., 2019. Researches on the Characteristics of High In-Situ Stress in the Changdu-Nyingchi Section of Sichuan-Tibet Railway. Sichuan-Tibet Railway, 5: 175-179(in Chinese with English abstract). [6] Fang, J. C., Deng, H. F., Qi, Y., et al., 2019. Analysis of Changes in the Micromorphology of Sandstone Joint Surface under Dry-Wet Cycling. Advances in Materials Science and Engineering, 2019: 8758203. https://doi.org/10.1155/2019/8758203 [7] Guo, C. B., Wang, B. D., Liu, J. K., et al., 2020. Main Progress and Achievements of the Geological Survey Project of Sichuan-Tibet Railway Traffic Corridor. Geological Survey of China, 7(6): 1-12(in Chinese with English abstract). [8] Khanlari, G., Sahamieh, R. Z., Abdilor, Y., 2015. The Effect of Freeze-Thaw Cycles on Physical and Mechanical Properties of Upper Red Formation Sandstones, Central Part of Iran. Arabian Journal of Geosciences, 8(8): 5991-6001. https://doi.org/10.1007/s12517-014-1653-y [9] Lang, D. M., Li, T. C., 2020. Study on the Energy Evolution and Demage Constitutive of Rock Under Freeze-Thaw Cycles. Mining Research and Development, 40(4): 74-78(in Chinese with English abstract). [10] Lin, M. L., Jeng, F. S., Tsai, L. S., et al., 2005. Wetting Weakening of Tertiary Sandstones: Microscopic Mechanism. Environmental Geology, 48(2): 265-275. https://doi.org/10.1007/s00254-005-1318-y [11] Lü, J. T., Wang, Z. H., Zhou, C. H., 2003. Discussion on the Occurrence of Yigong Landslide in Tibet. Earth Science, 28(1): 107-110(in Chinese with English abstract). [12] Luo, X. D., Jiang, N., Zuo, C. Q., et al., 2014. Damage Characteristics of Altered and Unaltered Diabases Subjected to Extremely Cold Freeze-Thaw Cycles. Rock Mechanics and Rock Engineering, 47(6): 1997-2004. https://doi.org/10.1007/s00603-013-0516-2 [13] Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract). [14] Wang, L. H., Jiang, Z. R., Li, J. L., et al., 2016. The Bedding Sandstone Unloading Mechanical Properties Experimental Study in the Freeze-Thaw Cycle Conditions. Journal of Glaciology and Geocryology, 38(4): 1052-1058(in Chinese with English abstract). [15] Xu, G. M., Liu, Q. S., 2005. Analysis of Mechanism of Rock Failure Due to Freeze-Thaw Cycling and Mechanical Testing Study on Frozen-Thawed Rocks. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3076-3082(in Chinese with English abstract). [16] Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551(in Chinese with English abstract). [17] Xue, Y. G., Kong, F. M., Yang, W. M., et al., 2020. Main Unfavorable Geological Conditions and Engineering Geological Problems along Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468(in Chinese with English abstract). [18] Yamabe, T., Neaupane, K. M., 2001. Determination of Some Thermo-Mechanical Properties of Sirahama Sandstone under Subzero Temperature Condition. Int. J. Rock Mech. Mini. Sci., 38(7): 1029-1034. doi: 10.1016/S1365-1609(01)00067-3 [19] Yang, G. S., Pu, Y. B., Ma, W., 2002. Discussion on the Damage Propagation for the Rock under the Frost and Thaw Condition of Frigid Zone. Journal of Experimental Mechanics, 17(2): 220-226(in Chinese with English abstract). [20] Yu, J., Fu, G. F., Chen, X., et al., 2015. Experimental Study on Mechanical Properties of Sandstone after Freezing-Thawing Cycles under Triaxial Confining Pressure Unloading. Chinese Journal of Rock Mechanics and Engineering, 34(10): 2001-2009(in Chinese with English abstract). [21] Zhang, H. M., Yang, G. S., 2011. Freeze-Thaw Cycling and Mechanical Experiment and Damage Propagation Characteristics of Rock. Journal of China University of Mining & Technology, 40(1): 140-145, 151(in Chinese with English abstract). [22] Zhang, H. M., Yang, G. S., 2013. Experimental Study of Damage Deterioration and Mechanical Properties for Freezing-Thawing Rock. Journal of China Coal Society, 38(10): 1756-1762(in Chinese with English abstract). [23] Zhang, L. T., 2020. Study on Creep Properties and Model of Sandstone under Freeze-Thaw Environment (Dissertation). Xi'an University of Science and Technology, Xi'an(in Chinese with English abstract). [24] Zhou, C. Y., Deng, Y. M., Tan, X. S., et al., 2003. Research on the Variation Regularities of Microstructures in the Testing of Interaction between Soft Rocks and Water. Acta Scientiarum Naturalium Universitatis Sunyatseni, 42(4): 98-102(in Chinese with English abstract). [25] Zhu, Z. D., Semerjan, M., Fang, R. J., et al., 2018. Unloading Strength Characteristics and Damage Characteristics of Sandstone under Freeze-Thaw Cycles. Journal of Yangtze River Scientific Research Institute, 35(3): 1-5, 12(in Chinese with English abstract). [26] 陈招军, 王乐华, 王思敏, 等, 2017. 冻融循环条件下岩石加卸荷力学特性研究. 长江科学院院报, 34(1): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201701020.htm [27] 邓华锋, 齐豫, 李建林, 等, 2021. 水-岩作用下断续节理砂岩力学特性劣化机理. 岩土工程学报, 43(4): 634-643. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104007.htm [28] 邓林, 王虎, 李开锦, 2021. 川藏交通廊道廊道湖相地层斜坡断错变形机理分析及其稳定性评价——以松宗镇湖相剖面为例. 地球科学, 47(3): 959-973. doi: 10.3799/dqkx.2021.141 [29] 杜世回, 2019. 川藏交通廊道昌都-林芝段高地应力特征探讨. 中国铁道学会, 5: 175-179. [30] 郭长宝, 王保弟, 刘建康, 等, 2020. 川藏交通廊道交通廊道地质调查工程主要进展与成果. 中国地质调查, 7(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202006001.htm [31] 郎东明, 李天成, 2020. 冻融循环作用下岩石能量演化及损伤本构研究. 矿业研究与开发, 40(4): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202004014.htm [32] 吕杰堂, 王治华, 周成虎, 2003. 西藏易贡大滑坡成因探讨. 地球科学, 28(1): 107-110. doi: 10.3321/j.issn:1000-2383.2003.01.018 [33] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏交通廊道工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070 [34] 王乐华, 姜照容, 李建林, 等, 2016. 冻融循环条件下层理砂岩卸荷力学特性试验研究. 冰川冻土, 38(4): 1052-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201604026.htm [35] 徐光苗, 刘泉声, 2005. 岩石冻融破坏机理分析及冻融力学试验研究. 岩石力学与工程学报, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012 [36] 许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm [37] 薛翊国, 孔凡猛, 杨为民, 等, 2020. 川藏交通廊道沿线主要不良地质条件与工程地质问题. 岩石力学与工程学报, 39(3): 445-468. [38] 杨更社, 蒲毅彬, 马巍, 2002. 寒区冻融环境条件下岩石损伤扩展研究探讨. 实验力学, 17(2): 220-226. doi: 10.3969/j.issn.1001-4888.2002.02.015 [39] 俞缙, 傅国锋, 陈旭, 等, 2015. 冻融循环后砂岩三轴卸围压力学特性试验研究. 岩石力学与工程学报, 34(10): 2001-2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510007.htm [40] 张慧梅, 杨更社, 2011. 岩石冻融力学实验及损伤扩展特性. 中国矿业大学报, 40(1): 140-145, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201101023.htm [41] 张慧梅, 杨更社, 2013. 冻融岩石损伤劣化及力学特性试验研究. 煤炭学报, 38(10): 1756-1762. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310008.htm [42] 张磊涛, 2020. 冻融环境下砂岩蠕变特性及其模型研究(硕士学位论文). 西安: 西安科技大学. [43] 周翠英, 邓毅梅, 谭祥韶, 等, 2003. 软岩在饱水过程中微观结构变化规律研究. 中山大学学报(自然科学版), 42(4): 98-102. doi: 10.3321/j.issn:0529-6579.2003.04.025 [44] 朱珍德, 色麦尔江·麦麦提玉苏普, 方若进, 等, 2018. 冻融循环作用下砂岩卸荷强度特性试验及损伤特性研究. 长江科学院报, 35(3): 1-5, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201803003.htm