Sedimentary Characteristics and Lake Basin Evolution of Salinized Lake Basin of Qingshuiying Formation in Yinchuan Basin
-
摘要: 银川盆地发育厚层新生界,其中清水营组是咸化湖盆发育的时期,也是烃源岩最为发育的层段,因此明确清水营组的沉积特征及湖盆演化具有重要的地质意义和勘探意义. 综合利用野外露头、钻井岩心、测井及有机地球化学资料,对银川盆地古近纪晚期清水营组的岩性、岩相类型进行分析总结,明确沉积环境. 利用岩电特征、小波变换对清水营组进行沉积旋回识别与划分,在此基础上分析湖盆演化. 清水营组岩性主要为灰色泥岩、棕红色泥岩、含石膏泥岩、石膏及薄层细砂岩、粉砂岩等,共有四种岩相组合类型. 清水营组可划分3个四级旋回,对应清水营组咸化湖盆的3个演化阶段:SQ1为裂陷初期咸化湖盆的发育阶段;SQ2为强烈裂陷期,湖盆水体深度有所增大,盐湖鼎盛阶段;SQ3期水体变浅,湖盆范围变大,封闭性减弱,由咸水湖演化成淡水湖.Abstract: Thick Cenozoic strata are developed in the Yinchuan Basin, among which the Qingshuiying Formation is the period of salinized lake basin development and the most developed layer of hydrocarbon source rocks. Therefore, it is of great geological significance and exploration significance to clarify the sedimentary characteristics and lake basin evolution of the Qingshuiying Formation. In this paper, the lithology and petrographic types of the Late Paleoproterozoic Qingshuiying Formation in the Yinchuan Basin are analyzed and summarized using field outcrops, drill cores, logs and organic geochemical data to clarify the depositional environment. The sedimentary cyclogenesis of the Qingshuiying Formation was identified and classified using rock-electric characteristics and wavelet transform, and the evolution of the lake basin was analyzed on this basis. The lithology of the Qingshuiying Formation is mainly gray mudstone, brown-red mudstone, gypsum-bearing mudstone, gypsum and thin-bedded fine sandstone and siltstone, etc., and there are four types of petrographic assemblages. The Qingshuiying Formation can be divided into three four-order sedimentary cycles, corresponding to the three evolutionary stages of the salinized lake basin of the Qingshuiying Formation. SQ1 is the development stage of the salinized lake basin at the early stage of rifting. SQ2 is the period of strong rifting, in which the depth of the water body of the lake basin has increased, and the salinized lake is at its peak stage. SQ3 is the period when the water body becomes shallow, in which the scope of the lake basin becomes larger, the closure weakens, and the saline lake evolves into a freshwater lake.
-
图 1 银川盆地区域构造图及盆地地层与新近系岩性柱状图
据范高功和王利(2002)、何宗昊等(2013)修改.∈.寒武系;O.奥陶系;C.石炭系;P.二叠系;M.中生界;E.古近系
Fig. 1. Regional tectonic map and basin stratigraphy and Neoproterozoic lithology column of Yinchuan Basin
图 5 银参4井钻井取心岩性特征
a. 块状灰色泥岩,清水营组,3 175.00 m;b. 块状灰色膏质泥岩,石膏成团块状,清水营组,3 715.80 m;c. 厚层盐岩,清水营组,3 582.00~ 3 595.50 m;d. 块状棕红色泥岩,清水营组,3 563.20 m;e. 块状深灰色泥岩,清水营组,2 581.10 m;f. 块状棕红色膏质泥岩,石膏呈脉状分布,清水营组,3 660.00 m;g. 水平层理灰色泥岩,清水营组,2 519.55 m;h. 脉状层理细砂岩,与底部泥岩突变接触,清水营组,3 576.25 m;i. 块状灰色细砂岩,碳屑发育,清水营组,2 183.00 m
Fig. 5. Lithologic characteristics of the core drilled from the Yincan4 Well
表 1 清水营组岩相类型划分
Table 1. Petrographic type classification of Qingshuiying Formation
分类 颜色 岩性 岩相 泥岩类 棕红色 泥岩 棕红色泥岩相 浅棕色 泥岩 浅棕色泥岩 灰绿色 泥岩 灰绿色泥岩 灰白色 泥岩 灰白色泥岩 砂岩类 浅棕色 粉砂岩 浅棕色粉砂岩 浅棕色 泥质粉砂岩 浅棕色泥质粉砂岩 灰色 细砂岩 灰色细砂岩 盐岩类 棕褐色 膏质白云岩 棕褐色膏质白云岩 黄灰色 膏岩 黄灰色膏岩 混合岩类 棕红色 含灰泥岩 棕红色含灰泥岩 棕褐色 白云质泥岩 棕褐色白云质泥岩 -
[1] Chen, G. H., Yu, J., Zhang, X. Z., 2007. Logging Sequence Stratigraphic Division Based on Wavelet Time⁃Frequency Analysis. Xinjiang Petroleum Geology, 28(3): 355-358 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.2007.03.027 [2] Donoho, D. L., 1995. De⁃Noising by Soft⁃Thresholding. IEEE Transactions on Information Theory, 41(3): 613-627. https://doi.org/10.1109/18.382009 [3] Fan, G. G., Wang, L., 2002. Geological Condition Analysis of Ground Hot Water Formation in Yinchuan Basin. Journal of Xi'an Engineering University, 24(3): 28-31 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2002.03.008 [4] Gao, D., Hu, M. Y., Li, A. P., et al., 2021. High⁃Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520-3534 (in Chinese with English abstract). [5] Hao, Z. W., Wang, J. D., Cui, H. Z., et al., 2011. Hydrocarbon Generation Capacity Analysis of Cenozoic Erathem, Yinchuan Basin. Petroleum Geology and Recovery Efficiency, 18(5): 31-33, 113 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2011.05.008 [6] He, Z. H., Wu, X. F., Hou, X. B., et al., 2013. Research on Source Rock Prediction Method for Paleogene Qingshuiying Group of Yinchuan Basin. Science Technology and Engineering, 13(23): 6840-6845 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2013.23.034 [7] Hu, T., Pang, X. Q., Jiang, F. J., et al., 2021. Factors Controlling Differential Enrichment of Organic Matter in Saline Lacustrine Rift Basin: A Case Study of Third Member Shahejie Fm in Dongpu Depression. Acta Sedimentologica Sinica, 39(1): 140-152 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1875510015300469 [8] Hu, T., Pang, X. Q., Jiang, S., et al., 2018. Oil Content Evaluation of Lacustrine Organic⁃Rich Shale with Strong Heterogeneity: A Case Study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel, 221: 196-205. https://doi.org/10.1016/j.fuel.2018.02.082 [9] Kuang, L. C., Tang, Y., Lei, D. W., et al., 2012. Formation Conditions and Exploration Potential of Tight Oil in the Permian Saline Lacustrine Dolomitic Rock, Junggar Basin, NW China. Petroleum Exploration and Development, 39(6): 657-667 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380412600950 [10] Li, L., Liu, A. W., Qi, Z. X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract). [11] Li, M. W., Chen, Z. H., Ma, X. X., et al., 2019. Shale Oil Resource Potential and Oil Mobility Characteristics of the Eocene⁃Oligocene Shahejie Formation, Jiyang Super⁃Depression, Bohai Bay Basin of China. International Journal of Coal Geology, 204: 130-143. https://doi.org/10.1016/j.coal.2019.01.013 [12] Li, W., Zhang, Y. Y., Ni, M. J., et al., 2020. Genesis of Alkaline Lacustrine Deposits in the Lower Permian Fengcheng Formation of the Mahu Sag, Northwestern Junggar Basin: Insights from a Comparison with the Worldwide Alkaline Lacustrine Deposits. Acta Geologica Sinica, 94(6): 1839-1852 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.06.013 [13] Lin, A. M., Hu, J. M., Gong, W. B., 2015. Active Normal Faulting and the Seismogenic Fault of the 1 739 M∼8.0 Pingluo Earthquake in the Intracontinental Yinchuan Graben, China. Journal of Asian Earth Sciences, 114: 155-173. https://doi.org/10.1016/j.jseaes.2015.04.036 [14] Liu, X. B., Hu, J. M., Shi, W., et al., 2020. Palaeogene⁃Neogene Sedimentary and Tectonic Evolution of the Yinchuan Basin, Western North China Craton. International Geology Review, 62(1): 53-71. https://doi.org/10.1080/00206814.2019.1591309 [15] Lowenstein, T. K., Dolginko, L. A. C., García⁃Veigas, J., 2016. Influence of Magmatic⁃Hydrothermal Activity on Brine Evolution in Closed Basins: Searles Lake, California. Geological Society of America Bulletin, 128(9/10): 1555-1568. https://doi.org/10.1130/b31398.1 [16] Lowenstein, T. K., Risacher, F., 2009. Closed Basin Brine Evolution and the Influence of Ca⁃Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquatic Geochemistry, 15(1-2): 71-94. https://doi.org/10.1007/s10498⁃008⁃9046⁃z [17] Maiti, S., Tiwari, R. K., 2005. Automatic Detection of Lithologic Boundaries Using the Walsh Transform: A Case Study from the KTB Borehole. Computers & Geosciences, 31(8): 949-955. https://doi.org/10.1016/j.cageo.2005.01.016 [18] Osleger, D. A., 1991. Subtidal Carbonate Cycles: Implications for Allocyclic versus Autocyclic Controls. Geology, 19(9): 917-920. https://doi.org/10.1130/0091⁃7613(1991)0190917: sccifa>2.3.co;2 doi: 10.1130/0091⁃7613(1991)0190917:sccifa>2.3.co;2 [19] Sun, D. P., Li, B. X., Ma, Y. H., et al., 1995. An Investigation on Evaporating Experiments for Qinghai⁃Lake Water, China. Journal of Salt Lake Research, 3(2): 10-19 (in Chinese with English abstract). [20] Sun, Z. L., Wang, F. R., Hou, Y. G., et al., 2020. Main Controlling Factors and Modes of Organic Matter Enrichment in Salt Lake Shale. Earth Science, 45(4): 1375-1387 (in Chinese with English abstract). [21] Wang, L. B., Hou, G. F., Bian, B. L., et al., 2020. The Role of Modern Alkaline Lakes in Explaining the Sedimentary Environment of the Fengcheng Formation, Mahu Depression. Acta Sedimentologica Sinica, 38(5): 913-922 (in Chinese with English abstract). [22] Wang, Y. H., Zhao, P. X., Zuo, Q. M., et al., 2011. An Application of the Wavelet Transformation to Sequence Stratigraphy: A Case Study of the Huangliu Formation in the Yinggehai Basin, Northern South China Sea. Sedimentary Geology and Tethyan Geology, 31(4): 58-63 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2011.04.009 [23] Weedon, G. P., 2003. Time⁃Series Analysis and Cyclostratigraphy. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511535482 [24] Wu, S. Q., Chen, F. L., Jiang, Z. X., et al., 2020. Origin of Qianjiang Formation Dolostone in Qianjiang Sag, Jianghan Basin. Oil & Gas Geology, 41(1): 201-208 (in Chinese with English abstract). [25] Wu, X. F., Cui, H. Z., Huan, Y. L., 2014. Method for Identifying Lacustrine Sedimentary Cycles and Application in Yinchuan Basin. Xinjiang Petroleum Geology, 35(5): 587-592 (in Chinese with English abstract). [26] Xie, G. G., Zheng, J., 2016. Cycle Division Based on Matlab Wavelet Analysis and Its Geologic Implication: A Case Study of Pinghu Formation in Pb⁃1 Well of Pingbei Section in Baojiao Slope Belt of Xihu Sag, Donghai Basin. Xinjiang Petroleum Geology, 37(2): 169-172 (in Chinese with English abstract). [27] Xun, Z. F., Yu, J. F., Zhang, X., et al., 2017. Application of Wavelet Transform in High⁃Resolution Sequence Stratigraphic Classification. Shandong Land and Resources, 33(9): 77-81 (in Chinese with English abstract). [28] Yang, W. Q., Wang, X. J., Jiang, Y. L., et al., 2018. Quantitative Reconstruction of Paleoclimate and Its Effects on Fine⁃Grained Lacustrine Sediments: A Case Study of the Upper Es4 and Lower Es3 in Dongying Sag. Petroleum Geology and Recovery Efficiency, 25(2): 29-36 (in Chinese with English abstract). [29] Yu, K. H., Cao, Y. C., Qiu, L. W., et al., 2016. Brine Evolution of Ancient Lake and Mechanism of Carbonate Minerals during the Sedimentation of Early Permian Fengcheng Formation in Mahu Depression, Junggar Basin, China. Natural Gas Geoscience, 27(7): 1248-1263 (in Chinese with English abstract). [30] Zhang, Y. Y., Li, W., Tang, W. B., 2018. Tectonic Setting and Environment of Alkaline Lacustrine Source Rocks in the Lower Permian Fengcheng Formation of Mahu Sag. Xinjiang Petroleum Geology, 39(1): 48-54 (in Chinese with English abstract). [31] 陈钢花, 余杰, 张孝珍, 2007. 基于小波时频分析的测井层序地层划分方法. 新疆石油地质, 28(3): 355-358. doi: 10.3969/j.issn.1001-3873.2007.03.027 [32] 范高功, 王利, 2002. 银川盆地地下热水形成的地质条件分析. 西安工程学院学报, 24(3): 28-31. doi: 10.3969/j.issn.1672-6561.2002.03.008 [33] 高达, 胡明毅, 李安鹏, 等, 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制. 地球科学, 46(10): 3520-3534. doi: 10.3799/dqkx.2020.382 [34] 郝志伟, 王金铎, 崔红庄, 等, 2011. 银川盆地古近系清水营组生烃潜力分析. 油气地质与采收率, 18(5): 31-33, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201105011.htm [35] 何宗昊, 武向峰, 侯旭波, 等, 2013. 银川盆地古近系清水营组烃源岩预测方法研究. 科学技术与工程, 13(23): 6840-6845. doi: 10.3969/j.issn.1671-1815.2013.23.034 [36] 胡涛, 庞雄奇, 姜福杰, 等, 2021. 陆相断陷咸化湖盆有机质差异富集因素探讨——以东濮凹陷古近系沙三段泥页岩为例. 沉积学报, 39(1): 140-152. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101010.htm [37] 匡立春, 唐勇, 雷德文, 等, 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657-667. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206004.htm [38] 李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220 [39] 李威, 张元元, 倪敏婕, 等, 2020. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究: 来自全球碱湖沉积的启示. 地质学报, 94(6): 1839-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202006013.htm [40] 孙大鹏, 李秉孝, 马育华, 等, 1995. 青海湖湖水的蒸发实验研究. 盐湖研究, 3(2): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ502.001.htm [41] 孙中良, 王芙蓉, 侯宇光, 等, 2020. 盐湖页岩有机质富集主控因素及模式. 地球科学, 45(4): 1375-1387. doi: 10.3799/dqkx.2019.096 [42] 王力宝, 厚刚福, 卞保力, 等, 2020. 现代碱湖对玛湖凹陷风城组沉积环境的启示. 沉积学报, 38(5): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htm [43] 王亚辉, 赵鹏肖, 左倩媚, 等, 2011. 测井信号小波变换在层序地层划分中的应用——以南海北部莺歌海盆地D14井黄流组为例. 沉积与特提斯地质, 31(4): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201104009.htm [44] 吴世强, 陈凤玲, 姜在兴, 等, 2020. 江汉盆地潜江凹陷古近系潜江组白云岩成因. 石油与天然气地质, 41(1): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001019.htm [45] 武向峰, 崔红庄, 郇玉龙, 2014. 湖相沉积旋回识别方法在银川盆地中的应用. 新疆石油地质, 35(5): 587-592. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201405021.htm [46] 谢国根, 郑俊, 2016. 基于Matlab小波分析的旋回划分及其地质意义: 以东海盆地西湖凹陷保椒斜坡带平北段Pb⁃1井平湖组为例. 新疆石油地质, 37(2): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602009.htm [47] 寻知锋, 余继峰, 张霞, 等, 2017. 小波变换在高分辨率层序地层划分中的应用. 山东国土资源, 33(9): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201709014.htm [48] 杨万芹, 王学军, 蒋有录, 等, 2018. 湖泊古气候的量化恢复及其对细粒沉积的影响——以东营凹陷沙四段上亚段‒沙三段下亚段为例. 油气地质与采收率, 25(2): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802005.htm [49] 余宽宏, 操应长, 邱隆伟, 等, 2016. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理. 天然气地球科学, 27(7): 1248-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201607010.htm [50] 张元元, 李威, 唐文斌, 2018. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境. 新疆石油地质, 39(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201801012.htm