Geological Characteristics and Tectonic Settings of Mesozoic Continental Margin Magmatic Arc in Pearl River Mouth Basin
-
摘要: 明确珠江口盆地中生代陆缘岩浆弧特征及构造演化过程对于古潜山勘探至关重要.综合构造学、岩石学、年代学、地球化学与地球物理学现有成果,认为珠江口盆地基底主要为燕山期岩浆杂岩,以中酸性侵入岩为主,中生代岩浆活动以105~165 Ma最为强烈,发育了NE-NEE走向和NW-NWW走向两组中生代断裂.区域构造研究表明中生代期间,珠江口盆地处于古太平洋板片俯冲作用控制的陆缘岩浆弧构造环境,岩浆岩具有流体活动元素富集、Ta-Nb-Ti亏损的特征,形成复合火山岩-侵入岩“双层”岩性组合.重建了珠江口盆地中生代陆缘岩浆弧5个阶段的形成演化过程,揭示了珠江口盆地古潜山的成山背景.Abstract: The characteristics and tectonic evolution of Mesozoic continental margin magmatic arc are crucial to the buried hill exploration and research in Pearl River Mouth Basin. By integrating studies of structural geology, petrology, geochronology, geochemistry and geophysics, it is confirmed that the basement is mainly Yanshan period complex, the lithology is mostly intermediate-acidic igneous and the most intense magmatic event is between 105-165 Ma. Regional tectonic studies suggest that during Mesozoic period, Pearl River Mouth Basin was in the margin magmatic arc environment caused by the subducted paleo-Pacific Ocean Plate. The magmatic rocks are enriched with fluid-indication elements and depleted in Ta-Nb-Ti. "Double layers" of composite volcanic rocks and deep igneous rocks developed. This study has reconstructed five episodes of formation and tectonic evolution of Mesozoic continental margin volcanic arc in Pearl River Mouth Basin, and revealed the orogenic foundation of buried hills in Pearl River Mouth Basin.
-
图 8 珠江口盆地基底花岗岩类(Y+Nb)‒Rb构造环境判别
方框代表南海北部样品,圆圈为华南样品;数据张成晨等(2019)、Xu et al.(2016, 2017)、耿红燕等(2006)、徐夕生等(2007)、邱检生等(2004)、于津海等(2005)和周新民(2007)
Fig. 8. (Y+Nb)‒Rb tectonic setting discrimination by basement granite of Pearl River Mouth Basin
-
[1] Benjamin, C., Burgess, P. M., Robert, H., et al., 2011. Subsidence and Uplift by Slab-Related Mantle Dynamics: A Driving Mechanism for the Late Cretaceous and Cenozoic Evolution of Continental SE Asia? Geological Society, London, Special Publications, 355(1): 37-51. https://doi.org/10.1144/sp355.3 [2] Busby, C.J., Ingersoll, R.V., 2011. Tectonics of Sedimentary Basins. Blackwell Science, Cambridge. [3] Chen, C.M., Shi, H.S., Xu, S.C., et al., 2003. Formation Conditions of Tertiary Hydrocarbon Accumulation in the Eastern Pearl River Mouth Basin. Science Press, Beijing, 1-30 (in Chinese). [4] Chen, H.Z., Wu, X.J., Zhou, D., et al., 2005. Meso-Cenozoic Faults in Zhujiang River Mouth Basin and Their Geodynamic Background. Journal of Tropical Oceanography, 24(2): 52-61 (in Chinese with English abstract). [5] Chu, Y., Lin, W., Faure, M., et al., 2019. Cretaceous Episodic Extension in the South China Block, East Asia: Evidence from the Yuechengling Massif of Central South China. Tectonics, 38(10): 3675-3702. https://doi.org/10.1029/2019TC005516 [6] Cui, Y. C., Shao, L., Li, Z. X., et al., 2021. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36-52. https://doi.org/10.1016/j.gr.2021.06.021 [7] Engebretson, D. C., Cox, A., Gordon, R. G., 1985. Relative Motions between Oceanic and Continental Plates in the Pacific Basin. Geological Society of America Special Papers, 206: 1-60. https://doi.org/10.1130/spe206-p1 [8] Geng, H.Y., Xu, X.S., O'Reilly, S.Y., et al., 2006. Cretaceous Volcanic-Intrusive Magmatism in Western Guangdong and Its Geological Significance. Scientia Sinica Terrae, 36(7): 601-617 (in Chinese). [9] Isozaki, Y., Aoki, K., Nakama, T., et al., 2010. New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research, 18(1): 82-105. https://doi.org/10.1016/j.gr.2010.02.015 [10] Jia, X.H., Wang, Q., Tang, G.J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract). [11] Jiang, Y. H., Wang, G. C., Liu, Z., et al., 2015. Repeated Slab Advance-Retreat of the Palaeo-Pacific Plate underneath SE China. International Geology Review, 57(4): 472-491. https://doi.org/10.1080/00206814.2015.1017775 [12] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes. Earth Science, 45(2): 374-388 (in Chinese with English abstract). [13] Li, J.H., 2013. The Mesozoic Tectonic Evolution of South China-New Structural and Geochronological Constraints from the Dabashan, Yuanma Basin and Hengshan (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [14] Li, P.L., Liang, H.X., Dai, Y.D., 1998. Exploration Perspective of Basement Hydrocarbon Accumulations in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 12(6): 361-369 (in Chinese with English abstract). [15] Li, P.L., Liang, H.X., Dai, Y.D., et al., 1999. Origin and Tectonic Setting of the Yanshanian Igeneous Rocks in the Pearl River Mouth Basin. Guangdong Geology, 14(1): 1-8 (in Chinese with English abstract). [16] Li, S.Z., Suo, Y.H., Li, X.Y., et al., 2018. Mesozoic Plate Subduction in West Pacific and Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone. Chinese Science Bulletin, 63(16): 1550-1593 (in Chinese). doi: 10.1360/N972017-01113 [17] Li, X.H., Li, W.X., Li, Z.X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(9): 981-991(in Chinese) doi: 10.1360/csb2007-52-9-981 [18] Li, Z.X., Li, X.H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1 [19] Li, Z. X., Li, X. H., Chung, S. L., et al., 2012. Magmatic Switch-on and Switch-off along the South China Continental Margin since the Permian: Transition from an Andean-Type to a Western Pacific-Type Plate Boundary. Tectonophysics, 532-535: 271-290. https://doi.org/10.1016/j.tecto.2012.02.011 [20] Luan, X.W., Wang, J., Liu, H., et al., 2021. A Discussion on Tethys in Northern Margin of South China Sea. Earth Science, 46(3): 866-884 (in Chinese with English abstract). [21] Qiu, J.S., Hu, J., McInnes, B. I. A., et al., 2004. Geochronology, Geochemistry and Petrogenesis of the Loogwo Granodioritic Pluton in Guangdong Province. Acta Petrologica Sinica, 20(6): 62-73 (in Chinese with English abstract). [22] Shi, H. S., Li, C. F., 2012. Mesozoic and Early Cenozoic Tectonic Convergence-to-Rifting Transition Prior to Opening of the South China Sea. International Geology Review, 54(15): 1801-1828. https://doi.org/10.1080/00206814.2012.677136 [23] Shi, H.S., Shu, Y., Du, J. Y., et al., 2017. Petroleum Geology of Paleogene in Pearl River Mouth Basin. Geology Press, Beijing (in Chinese). [24] Tian, L.X., Liu, J., Zhang, X.T., et al., 2020a. Discovery and Accumulation Pattern of HZ26-6 Large-Medium Sized Pan-Buried Hill Oil and Gas Field in Pearl River Mouth Basin. China Offshore Oil and Gas, 32(4): 1-11 (in Chinese with English abstract). [25] Tian, L.X., Shi, H.S., Liu, J., et al., 2020b. Great Discovery and Significance of New Frontier Exploration in Huizhou Sag, Pearl River Mouth Basin. China Petroleum Exploration, 25(4): 22-30 (in Chinese with English abstract). [26] Wakita, K., 2000. Cretaceous Accretionary-Collision Complexes in Central Indonesia. Journal of Asian Earth Sciences, 18(6): 739-749. https://doi.org/10.1016/S1367-9120(00)00020-1 [27] Wang, Y.J., Fan, W.M., Guo, F., 2003. Geochemistry of Early Mesozoic Potassium-Rich Diorites-Granodiorites in Southeastern Hunan Province, South China: Petrogenesis and Tectonic Implications. Geochemical Journal, 37: 427-448. doi: 10.2343/geochemj.37.427 [28] Xing, G. F., Li, J. Q., Duan, Z., et al., 2021. Mesozoic-Cenozoic Volcanic Cycle and Volcanic Reservoirs in East China. Journal of Earth Science, 32(4): 742-765. https://doi.org/10.1007/s12583-021-1476-1 [29] Xu, C. H., Shi, H. S., Barnes, C. G., et al., 2016. Tracing a Late Mesozoic Magmatic Arc along the Southeast Asian Margin from the Granitoids Drilled from the Northern South China Sea. International Geology Review, 58(1): 71-94. https://doi.org/10.1080/00206814.2015.1056256 [30] Xu, C. H., Zhang, L., Shi, H. S., et al., 2017. Tracing an Early Jurassic Magmatic Arc from South to East China Seas. Tectonics, 36(3): 466-492. https://doi.org/10.1002/2016TC004446 [31] Xu, G. Q., Wu, S. H., Zhang, L., et al., 2013. Stratigraphic Division and Depositional Processes for the Mesozoic Basin in Northern South China Sea. Marine Geophysical Research, 34(3-4): 175-194. https://doi.org/10.1007/S11001-013-9201-9 [32] Xu, X.S., Lu, W.M., He, Z.Y., 2007. Age and Generation of Fogang Granite Batholith and Wushi Diorite-Hornblende Gabbro Body. Scientia Sinica Terrae, 37(1): 27-38 (in Chinese). [33] Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth-Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013 [34] Yi, H., Zhang, L., Lin, Z., 2012. Mesozoic Tectonic Framework and Basin Distribution Characteristics of Northern Margin of South China Sea. Petroleum Geology & Experiment, 34(4): 388-394 (in Chinese with English abstract). [35] Yu, J.H., Zhou, X.M., Zhao, L., et al., 2005. Mantle-Crust Interaction Generating the Wuping Granites: Evidenced from Sr-Nd-Hf-U-Pb Isotopes. Acta Petrologica Sinica, 21(3): 651-664 (in Chinese with English abstract). [36] Zhang, C.C., Xu, C.H., He, M., et al., 2019. Late Mesozoic Convergent Continental Margin with Magmatic Arc from East to South China Seas: A Review. Advances in Earth Science, 34(9): 950-961 (in Chinese with English abstract). [37] Zhong, G.J., Wu, S.M., Feng, C.M., 2011. Sedimentary Model of Mesozoic in the Northern South China Sea. Journal of Tropical Oceanography, 30(1): 43-48 (in Chinese with English abstract). [38] Zhou, D., Sun, Z., Chen, H.Z., et al., 2005. Mesozoic Lithofacies, Paleo-Geography, and Tectonic Evolution of the South China Sea and Surrounding Areas. Earth Science Frontiers, 12(3): 204-218 (in Chinese with English abstract). [39] Zhou, X.M., 2007. Petrogenesis of Late Mesozoic Granite and Dynamic Evolution of Lithosphere in Nanling Region. Science Press, Beijing, 403-649 (in Chinese). [40] Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/S0040-1951(00)00120-7 [41] Zhu, W. L., Cui, Y. C., Shao, L., et al., 2021. Reinterpretation of the Northern South China Sea Pre-Cenozoic Basement and Geodynamic Implications of the South China Continent: Constraints from Combined Geological and Geophysical Records. Acta Oceanologica Sinica, 40(2): 13-28. https://doi.org/10.1007/S13131-021-1757-7 [42] 陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社, 1-30. [43] 陈汉宗, 吴湘杰, 周蒂, 等, 2005. 珠江口盆地中新生代主要断裂特征和动力背景分析. 热带海洋学报, 24(2): 52-61. doi: 10.3969/j.issn.1009-5470.2005.02.007 [44] 耿红燕, 徐夕生, O'Reilly, S.Y., 等, 2006. 粤西白垩纪火山-侵入岩浆活动及其地质意义. 中国科学: 地球科学, 36(7): 601-617. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607001.htm [45] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 [46] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013 [47] 李建华, 2013. 华南中生代大地构造过程: 源于北部大巴山和中部沅麻盆地、衡山的构造变形及年代学约束(博士学位论文). 北京: 中国地质科学院. [48] 李平鲁, 梁慧娴, 戴一丁, 1998. 珠江口盆地基岩油气藏远景探讨. 中国海上油气(地质), 12(6): 361-369. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199806000.htm [49] 李平鲁, 梁慧娴, 戴一丁, 等, 1999. 珠江口盆地燕山期岩浆岩的成因及构造环境. 广东地质, 14(1): 1-8. [50] 李三忠, 索艳慧, 李玺瑶, 等, 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应. 科学通报, 63(16): 1550-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201816006.htm [51] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [52] 栾锡武, 王嘉, 刘鸿, 等, 2021. 关于南海北部特提斯的讨论. 地球科学, 46(3): 866-884. doi: 10.3799/dqkx.2020.332 [53] 邱检生, 胡建, McInnes, B. I. A., 等, 2004. 广东龙窝花岗闪长质岩体的年代学、地球化学及岩石成因. 岩石学报, 20(6): 62-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406005.htm [54] 施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社. [55] 田立新, 刘杰, 张向涛, 等, 2020a. 珠江口盆地惠州26-6大中型泛潜山油气田勘探发现及成藏模式. 中国海上油气, 32(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004001.htm [56] 田立新, 施和生, 刘杰, 等, 2020b. 珠江口盆地惠州凹陷新领域勘探重大发现及意义. 中国石油勘探, 25(4): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202004003.htm [57] 徐夕生, 鲁为敏, 贺振宇, 2007. 佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源. 中国科学: 地球科学, 37(1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701002.htm [58] 易海, 张莉, 林珍, 2012. 南海北部中生代构造格局与盆地发育特征. 石油实验地质, 34(4): 388-394. doi: 10.3969/j.issn.1001-6112.2012.04.008 [59] 于津海, 周新民, 赵蕾, 等, 2005. 壳幔作用导致武平花岗岩形成: Sr-Nd-Hf-U-Pb同位素证据. 岩石学报, 21(3): 651-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503008.htm [60] 张成晨, 许长海, 何敏, 等, 2019. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述. 地球科学进展, 34(9): 950-961. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201909009.htm [61] 钟广见, 吴世敏, 冯常茂, 2011. 南海北部中生代沉积模式. 热带海洋学报, 30(1): 43-48. doi: 10.3969/j.issn.1009-5470.2011.01.006 [62] 周蒂, 孙珍, 陈汉宗, 等, 2005. 南海及其围区中生代岩相古地理和构造演化. 地学前缘, 12(3): 204-218. doi: 10.3321/j.issn:1005-2321.2005.03.022 [63] 周新民, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社, 403-649.