Sedimentary-Geochemical Characteristics and Potash-Prospecting Potential of Gypsum-Salt Layer in Western Kuqa Depression
-
摘要:
库车坳陷西段深部(5 141~5 218 m埋深)已有古近纪固体钾石盐矿(化)层的发现,但对该区域的膏盐层特征及成钾条件、找钾方向仍需做进一步的系统研究. 以油气钻井深部膏盐层岩屑为主要对象,对库车坳陷西段膏盐层的沉积、岩石学特征以及钾、溴氯系数、Sr和S同位素等地球化学特征进行研究,并对该区盐构造特征及演化进行分析. 结果表明,钾及溴氯系数指示秋里塔格构造带以南羊塔-却勒一带成钾条件良好;库姆格列木群膏泥岩段-白云岩段-膏盐岩段沉积特征、钾、溴氯系数以及Sr和S同位素特征指示秋里塔格构造带以北的大北等区域存在潜在成钾区;库姆格列木群砂砾岩段-膏泥岩段沉积特征及盐构造演化分析均表明羊塔-却勒一带可能在成盐期为有利成钾的次级凹陷,且后期保存较好. 综合分析认为库车坳陷西段秋里塔格构造带以南羊塔-却勒一带成钾条件最为有利,且北部存在多个包括大北区在内的找钾远景区.
Abstract:The Paleogene solid potassium salt mineralization has been found in the deep layer (5 141-5 218 m) of western Kuqa Depression, but it is still necessary to further study on the characteristics of gypsum-salt layer, potash conditions and potash-prospecting in the region. Taking the gypsum-salt layer debris in deep oil and gas drillings as object, in this paperit performs research on sedimentary and petrological characteristics of gypsum-salt layer, as well as potassium content, bromine-chlorine coefficient, Sr and S isotopes and other characteristics in western Kuqa Depression. Besides in this paper it also analyzes the salt tectonic characteristics and evolution in the region. The results show that the potassium and bromine-chlorine coefficients are good in Quele-Yangta belt in the south of the Qiulitage tectonic zone, which proves to be a good condition for potash formation. Sedimentary characteristics of Kumugeliemu Group, potassium content, bromine-chlorine coefficient, Sr and S isotopic characteristics indicate the potential potassium formation in the Dabei area, north of the Qiulitage structure belt. Sedimentary characteristics of Kumugeliemu Group and the analysis of the salt structure evolution reveal that Quele-Yangta belt is a favorable secondary depression for potassium in the salt-forming period, which is better preserved in the later period. It is considered that Quele-Yangta belt which is located in the south of Qiulitage tectonic zone in the western Kuqa Depression is the most advantageous area for potassium exploration, besides, there are several potash prospecting areas in the north of Qiulitage, including Dabei district.
-
Key words:
- Kuqa Depression /
- sedimentology /
- petrology /
- geochemistry /
- salt structure /
- potash
-
图 6 库车坳陷西段盐构造演化剖面(据汪新等,2010)
Fig. 6. Salt structure evolution profiles in western Kuqa Depression (from Wang et al., 2010)
表 1 库车坳陷西段库姆格列木群沉积特征
Table 1. Sedimentary characteristics of Kumugeliemu Group in western Kuqa Depression
系 统 群 段 岩性特征 平均厚度(m) 沉积相 淡┅┅┅┅咸 古近系 始新统 库姆格列木群 含膏泥岩段 中厚-巨厚层状泥岩与厚层状膏质泥岩互层
夹中厚层状泥膏岩,上部夹中厚层粉砂岩6~838
(190)咸水湖相 膏盐岩段 中厚-巨厚层状岩盐、泥质岩盐夹中厚层状
泥岩、膏质泥岩、泥膏岩、石膏与中厚-巨厚层状盐质泥岩16~3 673
(659.6)盐湖相 古新统 白云岩段 浅灰色中厚层状含灰白云岩,微含膏质 2~150
(20)潟湖相 膏泥岩段 中厚-巨厚层状泥岩、膏质泥岩、石膏、泥质岩盐与中厚层状泥膏岩不等厚互层,夹中厚层状粉砂质泥岩、盐岩,中部夹中厚层状灰质泥岩 6.5~1 170
(102.3)浅湖-潟湖相 砂砾岩段 中厚层状泥质粉砂岩、细砂岩夹薄-中厚层状粉砂质泥岩,底为一薄层砾状砂岩 2.5-121.5
(26.6)冲积扇-滨湖相 -
[1] Bloch, M. R., Schnerb, J., 1953. On the Cl-/Br- Ratio and the Distribution of Br- Ions in Liquids and Solids during Evaporation of Bromide-Containing Chloride Solutions. Bull. Res. Council Isr. , 3: 151-158. http://www.researchgate.net/publication/281425642_On_the_Cl-Br-_ratio_and_the_distribution_of_Br-_ions_in_liquids_and_solids_during_evaporation_of_bromide-containing_chloride_solutions [2] Cao, Y.T., Yang, H.J., Liu, C.L., et al., 2010. Response on Sediment of Evaporate in Kuqa Basin from Paleogene to Neogene Period and Himalayan Tectonic Phase. Acta Sedimentologica Sinica, 28(6): 1054-1065 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201006003.htm [3] Chen, S.P., Tang, L.J., Qi, J.F., et al., 2007. Roles of Salt in Deformation: Compression of the Salt-Related Structures between Kuqa Depression and Dongpu Depression. Acta Geologica Sinica, 81(6): 745-754 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE200706002.htm [4] Cheng, H.D., Ma, H.Z., Tan, H.B., et al., 2008. Geochemical Characteristics of Bromide in Potassium Deposits: Review and Research Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 399-408 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200804014.htm [5] Deng, X. L., Wei, Z., Zhao, Y. H., et al., 2014. Formation Mechanism of Potash Deposits in the Kuqa Depression and Their Prediction. Acta Geologica Sinica (English Edition), 88(S1): 208-210. https://doi.org/10.1111/1755-6724.12269_5 [6] Fan, Q., Fan, T.L., Li, Y.F., et al., 2020. Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform. Earth Science, 45(1): 285-302 (in Chinese with English abstract). [7] Guan, W.S., Han, J.F., Liu, Y.F., et al., 2020. Characteristics of Hydrocarbon Migration of YM32 Lower Paleozoic Buried Hill Reservoirs in North Tarim Basin. Earth Science, 45(4): 1315-1326 (in Chinese with English abstract). [8] Guo, X.P., Ding, X.Z., He, X.X., et al., 2002. New Progress in the Study of Marine Transgressional Events and Marine Strata of the Meso-Cenozoic in the Tarim Basin. Acta Geologica Sinica, 76(3): 299-307 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/20023/6594923.html [9] Han, N.N., 2007. Evaporitic Rock's Characteristics of the Paleogene-Neogene in Kuqa Basin and Its Relations with the Palaeo-Environment (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [10] Jia, C. Z., Zhang, S. B., Wu, S. Z., 2004. Stratigraphy of the Tarim Basin and Adjacent Areas. Science Press, Beijing (in Chinese). [11] Lei, G. L., Wang, X., Wu, C., et al., 2014. Characteristics and Deformation Mechanism of Salt Structures in Kuqa Depression, Tarim Basin. Petroleum Industry Press, Beijing (in Chinese). [12] Li, R.X., Wei, J.Y., Yang, W.D., et al., 2000. Variations of Ratio of 87Sr/86Sr in Seawater with Time Implications for Sea Level Changes and Global Correlation. Advance in Earth Sciences, 15(6): 729-733 (in Chinese with English abstract). [13] Li, W.F., Wang, C.S., Gao, Z.Z., et al., 2000. Sedimentary Evolution of Mesozoic Era in Kuche Depression, Tarim Basin. Acta Sedimentologica Sinica, 18(4): 534-538 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb200004009 [14] Liu, C.L., Cao, Y.T., Yang, H.J., et al., 2013. Discussion on Paleogene-Neogene Environmental Change of Salt Lakes in Kuqa Foreland Basin and Its Potash-Forming Effect. Acta Geoscientica Sinica, 34(5): 547-558 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201305005.htm [15] Liu, Q., Chen, Y. H., Li, Y. C., 1987. Mesozoic and Cenozoic Terrigenous Detrital Chemical Salt Type Deposits in China. Science & Technology Press, Beijing, 63-67 (in Chinese). [16] Ma, W.D., Ma, H.Z., 2008. Geological Evolution and Advance of Seeking Potash in Tarim Basin. Northwestern Geology, 41(2): 63-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200802011.htm [17] McCaffrey, M. A., Lazar, B., Holland, H. D., 1987. The Evaporation Path of Seawater and the Coprecipitation of Br- and K+ with Halite. Journal of Sedimentary Petrology, 57(5): 928-938. https://doi.org/10.1306/212f8cab-2b24-11d7-8648000102c1865d [18] Qiu, F.Q., Ding, Y., Wang, H., 2000. Source Analysis on Deposits of Kuche Basin. Xinjiang Geology, 18(3): 252-257 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200003013.htm [19] Qu, Y.H., 1997. On Origination of Clay Conglomerate Associated with Salt Sequences. Geology of Chemical Minerals, 19(3): 162-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC703.002.htm [20] Tan, H.B., 2005. Geochemical Research on Ancient Salt Rock and Prospect of Sylvite Deposit Formation in Western Tarim Basin (Dissertation). Chinese Academy of Sciences (Qinghai Institute of Salt Lakes), Xining (in Chinese with English abstract). [21] Tan, H.B., Ma, W.D., Ma, H.Z., et al., 2004. Hydrochemical Characteristics of Brines and Application to Locating Potassium in Western Tarim Basin. Geochimica, 33(2): 152-158 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHX200402005.htm [22] Tang, L.J., 1994. Evolution and Tectonic Patterns of Tarim Basin. Earth Science, 19(6): 742-754 (in Chinese with English abstract). http://www.researchgate.net/publication/287584269_Evolution_and_tectonic_patterns_of_Tarim_Basin [23] Tang, L.J., Yu, Y.X., Yang, W.J., et al., 2007. Paleo- Uplifts and Salt Structures and Their Influence on Hydrocarbon Accumulations in the Kuqa Depression. Acta Geologica Sinica, 81(2): 143-150 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200702001&dbcode=CJFD&year=2007&dflag=pdfdown [24] Tang, M., Liu, C.L., Jiao, P.C., 2009. Prognosis of Potash Resource Quantity in Eogene Rock Salt Strata of Kuqa Basin, Xinjiang. Mineral Deposits, 28(4): 503-509 (in Chinese with English abstract). [25] Tang, M., Ren, Y.G., Cao, Y.T., 2012. Characteristics of Evaporites Sedimentary Evolution in Paleogene- Neogene Basin and Analysis of Available Resources in Kuqa Basin. Journal of Salt Lake Research, 20(3): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YHYJ201203003.htm [26] Wang, B., Lei, G.L., Wu, C., et al., 2016. Division and Sedimentary Models for the Palaeogene Gypsum Mudstones in the Kuqa Depression, Xinjiang. Sedimentary Geology and Tethyan Geology, 36(3): 60-65 (in Chinese with English abstract). [27] Wang, S. L., Zheng, M. P., Liu, X. F., et al., 2013. Distribution of Cambrian Salt-Bearing Basins in China and Its Significance for Halite and Potash Finding. Journal of Earth Science, 24(2): 212-233. https://doi.org/10.1007/s12583-013-0319-0 [28] Wang, S.L., Zheng, M.P., Wang, Y.M., et al., 2019. Advances and Development History of Geochemistry on Salt Lakes in China. Science Technology and Engineering, 19(9): 1-9 (in Chinese with English abstract). [29] Wang, W., Yin, H. W., Jia, D., et al., 2017. A Sub-Salt Structural Model of the Kelasu Structure in the Kuqa Foreland Basin, Northwest China. Marine and Petroleum Geology, 88: 115-126. https://doi.org/10.1016/j.marpetgeo.2017.08.008 [30] Wang, W., Yin, H.W., Zhou, P., et al., 2019. Deformation Characteristics and Mechanism of Salt-Related Fold Thrust Belt in Tarim Basin. Xinjiang Petroleum Geology, 40(1): 68-73 (in Chinese with English abstract). [31] Wang, X., Wang, Z.M., Xie, H.W., et al., 2010. Cenozoic Salt Tectonics and Physical Models in the Kuqa Depression of Tarim Basin, China. Scientia Sinica Terrae, 40(12): 1655-1668 (in Chinese). doi: 10.1360/zd2010-40-12-1655 [32] Wei, Z., Deng, X. L., Zhao, Y. H., et al., 2014. Discovery of Potassium-Bearing Cuttings from the Well Yangta 4 in the Kuqa Depression and Seam Division. Acta Geologica Sinica (English Edition), 88(S1): 265-266. https://doi.org/10.1111/1755-6724.12269_21 [33] Wen, L., Li, Y. J., Zhang, G. Y., et al., 2017. Evolution of Fold-Thrust Belts and Cenozoic Uplifting of the South Tianshan Mountain Range in the Kuqa Region, Northwest China. Journal of Asian Earth Sciences, 135: 327-337. https://doi.org/10.1016/j.jseaes.2017.01.002 [34] Wu, G.H., Wang, Z.M., Liu, Y.K., et al., 2004. Kinematics Characteristics of the Kuqa Depression in the Tarim Basin. Geological Review, 50(5): 476-483 (in Chinese with English abstract). [35] Wu, H., Zhao, M. J., Zhuo, Q. G., et al., 2016. Quantitative Analysis of the Effect of Salt on Geothermal Temperature and Source Rock Evolution: A Case Study of Kuqa Foreland Basin, Western China. Petroleum Exploration and Development, 43(4): 602-610. https://doi.org/10.1016/s1876-3804(16)30070-2 [36] Wu, K., Liu, C.L., Jiao, P.C., et al., 2014. Geochemical Characteristics and Ore-Prospecting Indicators of Salt-Bearing Series in No. 1 Exploratory Drill Hole of Kuqa Basin, Xinjiang. Mineral Deposits, 33(5): 1011-1019 (in Chinese with English abstract). [37] Wu, Z.Y., Yin, H.W., Wang, X., et al., 2015. The Structural Features and Formation Mechanism of Exposed Salt Diapirs in the Front of Fold-Thrust Belt, western Kuqa Depression. Journal of Nanjing University (Natural Sciences), 51(3): 612-625 (in Chinese with English abstract). [38] Xing, W. L., Liu, C. L., Wang, A. J., et al., 2013. Analysis of Petrology, Mineralogy and K-Forming Environment of Paleogene Evaporites in Kuqa Foreland Basin: A Case Study of Drill Hole DZK01. Acta Geoscientica Sinica, 34(5): 559-566 (in Chinese with English abstract). [39] Xu, Y., Liu, C.L., Jiao, P.C., et al., 2017. Geochemical Characteristics and Potash Formation Analysis of Paleocene-Eocene Evaporites in Kuqa Depression of Xinjiang: A Case Study of Borehole KL4. Acta Petrologica et Mineralogica, 36(5): 755-764 (in Chinese with English abstract). [40] Yin, G., Wang, C.S., 1998. Strontium and Sulfur Isotope Compositions and the Significance of the Palaeo-Oceanic Geology in the Middle Cretaceous in the South Tibet. Acta Sedimentologica Sinica, 16(1): 107-111 (in Chinese with English abstract). [41] Yin, H.W., Wang, Z., Wang, X., et al., 2011. Characteristics and Mechanics of Cenozoic Salt-Related Structures in Kuqa Foreland Basins: Insights from Physical Modeling and Discussion. Geological Journal of China Universities, 17(2): 308-317 (in Chinese with English abstract). [42] Yu, H.B., Qi, J.F., Yang, X.Z., et al., 2016. Analysis of Mesozoic Prototype Basin in Kuqa Depression, Tarim Basin. Xinjiang Petroleum Geology, 37(6): 644-653, 666 (in Chinese with English abstract). [43] Zhang, X.Y., Cheng, H.D., Tan, H.B., et al., 2015. Late Cretaceous Potash Evaporites in Savannakhet Basin of Middle Laos: Geochemical Evidences of Non-Marine Inputs. Acta Petrologica Sinica, 31(9): 2783-2793 (in Chinese with English abstract). [44] Zhang, Z.G., Gao, J.L., Zhang, X.W., 2010. Geochemistry of Sulfur Isotope of Paleo-Evaporites in Tarim Basin. Gansu Geology, 19(1): 32-37 (in Chinese with English abstract). [45] Zhao, B., Wang, X., 2016. Evidence of Early Passive Diapirism and Tectonic Evolution of Salt Structures in the western Kuqa Depression (Quele Area), Southern Tianshan (NW China). Journal of Asian Earth Sciences, 125: 138-151. https://doi.org/10.1016/j.jseaes.2016.05.021 [46] Zheng, C.F., Hou, G.T., Zhan, Y., et al., 2016. An Analysis of Cenozoic Tectonic Stress Fields in the Kuqa Depression. Geological Bulletin of China, 35(1): 130-139 (in Chinese with English abstract). [47] Zheng, M.P., Hou, X.H., Yu, C.Q., et al., 2015. The Leading Role of Salt Formation Theory in the Breakthrough and Important Progress in Potash Deposit Prospecting. Acta Geoscientica Sinica, 36(2): 129-139 (in Chinese with English abstract). [48] Zheng, M.P., Yuan, H.R., Zhang, Y.S., et al., 2010. Regional Distribution and Prospects of Potash in China. Acta Geologica Sinica, 84(11): 1523-1553 (in Chinese with English abstract). [49] Zheng, M.P., Zhang, Z., Zhang, Y.S., et al., 2012. Potash Exploration Characteristics in China: New Understanding and Research Progress. Acta Geoscientica Sinica, 33(3): 280-294 (in Chinese with English abstract). [50] 曹养同, 杨海军, 刘成林, 等, 2010. 库车盆地古‒新近纪蒸发岩沉积对喜马拉雅构造运动期次的响应. 沉积学报, 28(6): 1054-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201006003.htm [51] 陈书平, 汤良杰, 漆家福, 等, 2007. 盐在变形中的作用: 库车坳陷与东濮坳陷盐构造对比研究. 地质学报, 81(6): 745-754. doi: 10.3321/j.issn:0001-5717.2007.06.003 [52] 程怀德, 马海州, 谭红兵, 等, 2008. 钾盐矿床中Br的地球化学特征及研究进展. 矿物岩石地球化学通报, 27(4): 399-408. doi: 10.3969/j.issn.1007-2802.2008.04.011 [53] 樊奇, 樊太亮, 李一凡, 等, 2020. 塔里木地台北缘早寒武世古海洋氧化‒还原环境与优质海相烃源岩发育模式. 地球科学, 45(1): 285-302. doi: 10.3799/dqkx.2018.128 [54] 管文胜, 韩剑发, 刘永福, 等, 2020. 塔里木盆地北部YM32下古生界潜山油气藏油气运移. 地球科学, 45(4): 1315-1326. doi: 10.3799/dqkx.2019.144 [55] 郭宪璞, 丁孝忠, 何希贤, 等, 2002. 塔里木盆地中新生代海侵和海相地层研究的新进展. 地质学报, 76(3): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200203002.htm [56] 韩宁宁, 2007. 库车盆地古近系‒新近系蒸发岩特征及其与古环境的关系(博士学位论文). 北京: 中国地质大学. [57] 贾承造, 张师本, 吴绍祖, 2004. 塔里木盆地及周边地层. 北京: 科学出版社. [58] 雷刚林, 汪新, 吴超, 等, 2014. 塔里木盆地库车坳陷盐相关构造特征及变形机理. 北京: 石油工业出版社. [59] 李荣西, 魏家庸, 杨卫东, 等, 2000. 用87Sr/86Sr研究海平面变化与全球对比问题. 地球科学进展, 15(6): 729-733. doi: 10.3321/j.issn:1001-8166.2000.06.019 [60] 李维锋, 王成善, 高振中, 等, 2000. 塔里木盆地库车坳陷中生代沉积演化. 沉积学报, 18(4): 534-538. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200004008.htm [61] 刘成林, 曹养同, 杨海军, 等, 2013. 库车前陆盆地古近纪‒新近纪盐湖环境变迁及其成钾效应探讨. 地球学报, 34(5): 547-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305005.htm [62] 刘群, 陈郁华, 李银彩, 1987. 中国中、新生代陆源碎屑‒化学岩型盐类沉积. 北京: 科学技术出版社, 63-67. [63] 马万栋, 马海州, 2008. 塔里木盆地地质环境演化及钾矿寻找研究进展. 西北地质, 41(2): 63-72. doi: 10.3969/j.issn.1009-6248.2008.02.007 [64] 邱芳强, 丁勇, 王辉, 2000. 库车盆地的沉积物源分析. 新疆地质, 18(3): 252-257. doi: 10.3969/j.issn.1000-8845.2000.03.008 [65] 曲懿华, 1997. 试论盐系中泥砾岩成因. 化工矿产地质, 19(3): 162-166. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC703.002.htm [66] 谭红兵, 2005. 塔里木盆地西部古盐岩地球化学与成钾预测研究(博士学位论文). 西宁: 中国科学院研究生院(青海盐湖研究所). [67] 谭红兵, 马万栋, 马海州, 等, 2004. 塔里木盆地西部古盐矿点卤水水化学特征与找钾研究. 地球化学, 33(2): 152-158. doi: 10.3321/j.issn:0379-1726.2004.02.006 [68] 汤良杰, 1994. 塔里木盆地构造演化与构造样式. 地球科学, 19(6): 742-754. doi: 10.3321/j.issn:1000-2383.1994.06.006 [69] 汤良杰, 余一欣, 杨文静, 等, 2007. 库车坳陷古隆起与盐构造特征及控油气作用. 地质学报, 81(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702001.htm [70] 唐敏, 刘成林, 焦鹏程, 2009. 库车盆地古近纪岩盐层中钾盐资源量预测研究. 矿床地质, 28(4): 503-509. doi: 10.3969/j.issn.0258-7106.2009.04.012 [71] 唐敏, 任永国, 曹养同, 2012. 库车盆地古近纪‒新近纪蒸发岩沉积演化特征及其资源效应初步探讨. 盐湖研究, 20(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201203003.htm [72] 王斌, 雷刚林, 吴超, 等, 2016. 新疆库车坳陷古近系膏泥岩层分层特征及沉积演化分析. 沉积与特提斯地质, 36(3): 60-65. doi: 10.3969/j.issn.1009-3850.2016.03.008 [73] 王淑丽, 郑绵平, 王永明, 等, 2019. 中国盐湖地球化学发展历程与研究进展. 科学技术与工程, 19(9): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201909001.htm [74] 汪伟, 尹宏伟, 周鹏, 等, 2019. 塔里木盆地含盐褶皱冲断带变形特征与变形机制. 新疆石油地质, 40(1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901011.htm [75] 汪新, 王招明, 谢会文, 等, 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htm [76] 邬光辉, 王招明, 刘玉魁, 等, 2004. 塔里木盆地库车坳陷盐构造运动学特征. 地质论评, 50(5): 476-483. doi: 10.3321/j.issn:0371-5736.2004.05.005 [77] 吴坤, 刘成林, 焦鹏程, 等, 2014. 新疆库车盆地钾盐科探1井含盐系地球化学特征及找钾指示. 矿床地质, 33(5): 1011-1019. doi: 10.3969/j.issn.0258-7106.2014.05.010 [78] 吴珍云, 尹宏伟, 汪新, 等, 2015. 库车坳陷西段褶皱‒冲断带前缘盐底辟构造特征及形成机制. 南京大学学报(自然科学版), 51(3): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503018.htm [79] 邢万里, 刘成林, 王安建, 等, 2013. 库车前陆盆地古近系蒸发岩岩石学、矿物学与成钾环境分析: 以DZK01孔岩心为例. 地球学报, 34(5): 559-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305006.htm [80] 徐洋, 刘成林, 焦鹏程, 等, 2017. 塔里木盆地库车坳陷古新统‒始新统蒸发岩地球化学特征及成钾分析: 以KL4井为例. 岩石矿物学杂志, 36(5): 755-764. doi: 10.3969/j.issn.1000-6524.2017.05.015 [81] 尹观, 王成善, 1998. 西藏南部中白垩世的锶、硫同位素组成及其古海洋地质意义. 沉积学报, 16(1): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199801018.htm [82] 尹宏伟, 王哲, 汪新, 等, 2011. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论. 高校地质学报, 17(2): 308-317. doi: 10.3969/j.issn.1006-7493.2011.02.016 [83] 余海波, 漆家福, 杨宪彰, 等, 2016. 塔里木盆地库车坳陷中生代原型盆地分析. 新疆石油地质, 37(6): 644-653, 666. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201606005.htm [84] 张西营, 程怀德, 谭红兵, 等, 2015. 老挝中部沙湾拿吉盆地晚白垩世钾盐蒸发岩: 非海相输入的地球化学证据. 岩石学报, 31(9): 2783-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509025.htm [85] 章振国, 高继雷, 张向文, 2010. 塔里木盆地古代蒸发岩硫同位素地球化学研究. 甘肃地质, 19(1): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201001007.htm [86] 郑淳方, 侯贵廷, 詹彦, 等, 2016. 库车坳陷新生代构造应力场恢复. 地质通报, 35(1): 130-139. doi: 10.3969/j.issn.1671-2552.2016.01.012 [87] 郑绵平, 侯献华, 于常青, 等, 2015. 成盐理论引领我国找钾取得重要进展. 地球学报, 36(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502001.htm [88] 郑绵平, 袁鹤然, 张永生, 等, 2010. 中国钾盐区域分布与找钾远景. 地质学报, 84(11): 1523-1553. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201011002.htm [89] 郑绵平, 张震, 张永生, 等, 2012. 我国钾盐找矿规律新认识和进展. 地球学报, 33(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203002.htm