• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    白云凹陷中深层有利储层特征及其分布预测

    谢晓军 熊连桥 白海强 黄饶 李飞跃 唐武 陈莹

    谢晓军, 熊连桥, 白海强, 黄饶, 李飞跃, 唐武, 陈莹, 2022. 白云凹陷中深层有利储层特征及其分布预测. 地球科学, 47(5): 1635-1651. doi: 10.3799/dqkx.2021.244
    引用本文: 谢晓军, 熊连桥, 白海强, 黄饶, 李飞跃, 唐武, 陈莹, 2022. 白云凹陷中深层有利储层特征及其分布预测. 地球科学, 47(5): 1635-1651. doi: 10.3799/dqkx.2021.244
    Xie Xiaojun, Xiong Lianqiao, Bai Haiqiang, Huang Rao, Li Feiyue, Tang Wu, Chen Ying, 2022. Characteristics of Favorable Reservoir and Its Distribution Prediction in Middle-Deep Layers in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(5): 1635-1651. doi: 10.3799/dqkx.2021.244
    Citation: Xie Xiaojun, Xiong Lianqiao, Bai Haiqiang, Huang Rao, Li Feiyue, Tang Wu, Chen Ying, 2022. Characteristics of Favorable Reservoir and Its Distribution Prediction in Middle-Deep Layers in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(5): 1635-1651. doi: 10.3799/dqkx.2021.244

    白云凹陷中深层有利储层特征及其分布预测

    doi: 10.3799/dqkx.2021.244
    基金项目: 

    “十三五”国家科技重大专项“中国近海富烃凹陷优选与有利勘探方向预测 2016ZX05024002

    详细信息
      作者简介:

      谢晓军(1978-),男,高级工程师,博士,主要从事沉积与储层地质研究工作.ORCID:0000-0002-6331-0626. E-mail:xiexj@cnooc.com.cn

      通讯作者:

      熊连桥,ORCID: 0000-0003-4053-1087.E-mail: xionglq2@cnooc.com.cn

    • 中图分类号: P618

    Characteristics of Favorable Reservoir and Its Distribution Prediction in Middle-Deep Layers in Baiyun Sag, Pearl River Mouth Basin

    • 摘要: 白云凹陷中深层未探明油气资源潜力巨大,储层总体为低孔低渗储层,为了识别海域中深层有利储层的特征,寻找能用于指导有利储层宏观分布预测的主控因素,并对有利储层空间分布进行预测,对白云凹陷5A构造开展了研究.通过储层岩石学、储层物性特征及建设性成岩作用分析等微观方面与储层相带识别、厚层砂体发育的前积复合体预测、砂体与孔隙度地震反演及裂缝分布识别等宏观方面研究,对中深层有利储层“甜点”特征、宏观可识别的主控因素及空间分布规律开展分析.认为,白云5A构造辫状河三角洲平原与前缘中的分流河道和水下分流河道厚层中‒粗砂岩发育次生溶孔和微裂缝,可作为储层“甜点”;反映沉积微相的砂体厚度及反映建设性成岩作用的裂缝是宏观可以识别的储层“甜点”主控因素,可通过地震外部形态的“上拱”、内幕结构的叠置及微地貌的低洼3个特征在地震上识别厚层砂体发育的前积复合体;综合厚层砂体识别、砂体及孔隙度预测、裂缝分布识别三方面成果,认为白云5A构造中深层C块东部为储层“甜点”发育区.

       

    • 图  1  白云凹陷地理位置及地质分层

      Fig.  1.  Location of Baiyun sag and its strata

      图  2  BY5B井恩平组上部‒珠海组六段沉积相综合柱状图

      Fig.  2.  Depositional facies of the upper Enping Formation and the sixth member of Zhuhai Formation in BY5B well

      图  3  白云凹陷中深层岩石学特征

      a.含砾中‒粗砂岩,恩平组,5 094~5 092 m,PY33井;b. 含砾中‒粗砂岩,砾石磨圆度较高,恩平组,5 107 m,BY5A井;c. 细‒中粒岩屑砂岩,珠海组下部,5 064~5 066 m,BY5B井;d. 含泥中‒细粒岩屑石英砂岩,珠海组上部,4 249.4 m,BY5B井

      Fig.  3.  Lithology characteristics of middle-deep strata in Baiyun sag

      图  4  白云凹陷中深层恩平组上部(a)与珠海组(b)岩石矿物组分三角图

      Ⅰ.石英砂岩;Ⅱ.亚长石砂岩;Ⅲ.亚岩屑质砂岩;Ⅳ.长石砂岩;Ⅴ.岩屑质长石砂岩;Ⅵ.长石质岩屑砂岩;Ⅶ.岩屑砂岩

      Fig.  4.  QFR charts of the upper Enping Formation (a) and Zhuhai Formation (b) in the middle-deep strata in Baiyun sag

      图  5  白云5A构造中深层储层储集空间特征

      a.粒内溶孔,5 109 m,BY5A井;b.残余粒间孔,5 109 m,实测孔隙度为8.5%,渗透率为0.133 mD,BY5A井;c.颗粒破裂缝,5 134 m,微裂缝非常发育,BY5A井;d.颗粒破裂缝,5 134 m,BY5A井,实测孔隙度为13.4%,渗透率为10.9 mD

      Fig.  5.  Storage space characteristics of reservoir in the middle-deep strata in Baiyun 5A structure

      图  6  白云5A构造中深层储层物性特征

      Fig.  6.  Reservoir properties of the middle-deep strata in Baiyun 5A structure

      图  7  不同渗透率下限所属砂岩占比直方图

      Fig.  7.  Percentage histogram of different types of sandstone with different permeability

      图  8  单砂层厚度与单砂层平均渗透率的关系

      Fig.  8.  Relationship between the thickness and the average permeability of the single sandstone layers

      图  9  不同解释结论砂岩厚度与储层物性的关系

      Fig.  9.  Relationship between the thickness and the reservoir properties of different well-log interpretation results

      图  10  钻井揭示的砂体与预测砂体地震外部形态特征

      Fig.  10.  Seismic outlines of the sand bodies revealed by wells and the predicted area

      图  11  钻井揭示的前积复合体宽厚比特征

      Fig.  11.  Width and thickness ration of the progradation complex revealed by wells

      图  12  钻井揭示的厚砂体与预测厚砂体地震内幕结构特征

      Fig.  12.  Seismic inside structure of the sand bodies revealed by wells and the predicted area

      图  13  钻井揭示的不同层段砂地比与微地貌特征

      Fig.  13.  Sand ratio and micro relief characteristics of different strata revealed by wells in Baiyun 5A structure

      图  14  珠海组五段预测前积复合体地震相特征

      a.剖面位置见图14b;b.微地貌特征

      Fig.  14.  Seismic facies characteristics of the predicted progradation complex in the 5th section of Zhuhai Formation

      图  15  白云5A构造中深层岩石物理特征

      a.白云5A构造中深层Vp/Vs与纵波阻抗交汇特征;b.BY5A井不同深度气层、差气层、干层和泥岩Vp/Vs特征;c.气层、差气层、干层孔隙度与岩性识别因子(纵波阻抗×Vp/Vs)的关系

      Fig.  15.  Rock physical properties of the middle-deep strata in Baiyun 5A structure

      图  16  白云5A构造叠前Vp/Vs反演结果

      a. 岩性反演结果;b.孔隙度反演结果

      Fig.  16.  Prestack inversion results of Vp/Vs and porosity in Baiyun 5A structure

      图  17  白云5A构造T70各断块裂缝识别

      a. T70各断块最大似然属性特征;b.T70各断块增强似然属性特征

      Fig.  17.  Fracture identification of different fault blocks on T70 surface in Baiyun 5A structure

      图  18  白云5A构造中深层储层“甜点”预测

      a.中深层各圈闭厚层砂体叠置特征;b.白云5A构造恩平组上部孔隙度反演结果;c.最大似然属性反映的裂缝分布特征

      Fig.  18.  Reservoir "sweet point" prediction of the middle-deep strata in Bayun 5A structure

    • [1] Chen, Y., Han, Y. X., Bian, L. Z., et al., 2020. Difference between Eastern and Western Paleogene Sedimentary Systems in Deep Waters off the Northern South China Sea Continental Margin and Its Effect on Source Rock Distribution. Oil & Gas Geology, 41(5): 1028-1037 (in Chinese with English abstract).
      [2] Deng, M., Zhao, J. S., Jin, B. Q., et al., 2019. Reservoir Quality Evaluation of Middle-Deep Formations Based on Paleo-Geomorphology Analysis: A Case Study of Sha-2 Formation in X Oilfield of Bohai Bay, China. Fault-Block Oil & Gas Field, 26(2): 147-152 (in Chinese with English abstract).
      [3] Du, W. B., Sun, G. H., Huang, Y. J., et al., 2015. Reservoir Prediction Based on Seismic Multi-Attributes Analysis: An Example from Paleogene Enping Formation of Enping Sag in the Pearl River Mouth Basin. Marine Geology Frontiers, 31(8): 62-70 (in Chinese with English abstract).
      [4] Fang, J. N., 2013. Evolution of Sedimentary System and Source-Reservoir-Caprock Association in Tertiary of Pearl River Mouth Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [5] Guo, Z. F., Liu, Z., Lü, R., et al., 2012. Predrill Prediction of Formation Pressure Using Seismic Data in Deep-Water Area of Baiyun Depression, Northern South China Sea. Oil Geophysical Prospecting, 47(1): 126-132, 188, 198 (in Chinese with English abstract).
      [6] Han, Y. X., Chen, Y., Yang, H. C., et al., 2017. "Source to Sink" of Enping Formation and Its Effects on Oil and Gas Exploration in Baiyun Sag, Pearl River Mouth Basin. China Petroleum Exploration, 22(2): 25-34 (in Chinese with English abstract).
      [7] Han, Y. X., Yang, H. Z., Chen, Y., et al., 2016. The Evaluation Methods of Mid-Deep Litho-Stratigraphic Traps in Deep-Water and Less-Well Blocks: A Case Study of Target Baiyun 11 in Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 37(S1): 68-78 (in Chinese with English abstract).
      [8] Hao, F., Zou, H. Y., Ni, J. H., et al., 2002. Evolution of Overpressured Systems in Sedimentary Basins and Conditions for Deep Oil/Gas Accumulation. Earth Science, 27(5): 610-615 (in Chinese with English abstract).
      [9] Henry, W. P., Venkatarathnam, K., Liu, H. Q., 2019. An Overview of Deep-Water Turbidite Deposition. Acta Sedimentologica Sinica, 37(5): 879-903 (in Chinese with English abstract).
      [10] Holditch, S. A., 2006. Tight Gas Sands. Journal of Petroleum Technology, 58(6): 86-93. doi: 10.2118/103356-JPT
      [11] Hu, M. Y., Shen, J., Hu, D., 2013. Reservoir Characteristics and Its Main Controlling Factors of the Pinghu Formation in Pinghu Structural Belt, Xihu Depression. Oil & Gas Geology, 34(2): 185-191 (in Chinese with English abstract).
      [12] Jiang, Z. X., Lin, S. G., Pang, X. Q., et al., 2006. The Comparison of Two Types of Tight Sand Gas Reservoir. Petroleum Geology and Experiment, 28(3): 210-214, 219 (in Chinese with English abstract).
      [13] Lai, J., Wang, G. W., Huang, L. X., et al., 2015. Quantitative Classification and Logging Identification Method for Diagenetic Facies of Tight Sandstones. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 128-138 (in Chinese with English abstract).
      [14] Lei, C., 2019. Influence of High Thermal Background on Deep Water Reservoir Quality in the Baiyun Sag, Pearl River Mouth Basin (Dissertation). Northwest University, Xi'an (in Chinese with English abstract).
      [15] Li, C., Luo, J. L., Hu, H. Y., et al., 2019. Thermodynamic Impact on Deepwater Sandstone Diagenetic Evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 44(2): 572-587 (in Chinese with English abstract).
      [16] Liang, J. S., Wang, Q., Hao, L. W., et al., 2011. Application of Diagenetic Facies Analysis to Reservoir Prediction in Deep Water Area of the Northern South China Sea: A Case Study from Baiyun Sag, Zhujiangkou Basin. Acta Sedimentologica Sinica, 29(3): 503-511 (in Chinese with English abstract).
      [17] Luo, S. B., Zhang, Z. T., Guo, W., et al., 2017. Seismic Response Characteristics of the Middle-Deep High-Quality Sand Bodies at the Southwest Margin of Baiyun Depression. Journal of Geology, 41(2): 282-291 (in Chinese with English abstract).
      [18] Ma, M., Chen, G. J., Li, C., et al., 2017. Quantitative Analysis of Porosity Evolution and Formation Mechanism of Good Reservoir in Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Natural Gas Geoscience, 28(10): 1515-1526 (in Chinese with English abstract).
      [19] Mou, W. W., Wang, Q., Tian, B., et al., 2017. The Diagenetic Facies Logging Response Characteristics of Medium-Deep Reservoirs in the North Slope of Baiyun Sag, Pearl River Mouth Basin. Natural Gas Geoscience, 28(10): 1601-1612 (in Chinese with English abstract).
      [20] Shao, L., Cui, Y. C., Qiao, P. J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo-Drainage System Evolution. Journal of Palaeogeography, 21(2): 216-231 (in Chinese with English abstract).
      [21] Straub, P., 2012. Quantifying the Hierarchical Organization of Compensation in Submarine Fans Using Surface Statistics. Journal of Sedimentary Research, 82(11/12): 889-898.
      [22] Tian, L. X., Zhang, Z. T., Pang, X., et al., 2020. Characteristics of Overpressure Development in the Mid-Deep Strata of Baiyun Sag and Its New Enlightenment in Exploration Activity. China Offshore Oil and Gas, 32(6): 1-11 (in Chinese with English abstract).
      [23] Wang, D. D., Li, H., Zhao, X. Y., et al., 2016. Characteristics of Natural Fractures and Their Influence on Dynamic Gas and Water Distribution in Xinchang Gas Field. Petroleum Geology & Experiment, 38(6): 748-756 (in Chinese with English abstract).
      [24] Wang, J. H., Peng, G. R., Liu, B. J., et al., 2019. Flattening Diagenesis of Clastic Rocks and Quantitative Characterization of Sedimentary Control on Reservoir Properties: A Case Study of Baiyun Sag in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 115-123 (in Chinese with English abstract).
      [25] Xiao, M., Wu, S. T., Yuan, X. J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583-020-1083-6
      [26] Xu, D. N., Yin, L., Qu, J. H., et al., 2015. Prediction Method of the Low Permeability Sandy-Conglomerate"Sweet Point"Reservoirs and Its Application: A Case Study of Mahu Depression Northern Slope Area in the Junggar Basin. Natural Gas Geoscience, 26(S1): 154-161 (in Chinese with English abstract).
      [27] Xu, Y. H., Yang, X. H., Mei, L. F., 2020. Reservoir Characteristics and Main Control Factors of Conglomerate Reservoir of El3 in the Northwest Steep Slope Zone of Weixinan Depression. Earth Science, 45(5): 1706-1721 (in Chinese with English abstract).
      [28] Yu, X. H., Li, S. L., Yang, Z. H., 2015. Discussion on Deposition-Diagenesis Genetic Mechanism and Hot Issues of Tight Sandstone Gas Reservoir. Lithologic Reservoirs, 27(1): 1-13 (in Chinese with English abstract).
      [29] Yuan, G. H., Cao, Y. C., Jia, Z. Z., et al., 2015. Research Progress on Anomalously High Porosity Zones in Deeply Buried Clastic Reservoirs in Petroliferous Basin. Natural Gas Geoscience, 26(1): 28-42 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201501004
      [30] Zeng, Z. W., Yang, X. H., Zhu, H. T., et al., 2017. Development Characteristics and Significance of Large Delta of Upper Enping Formation, Baiyun Sag. Earth Science, 42(1): 78-92 (in Chinese with English abstract).
      [31] Zhang, G. C., Chen, Y., Yang, H. C., et al., 2015. Stratigraphic-Lithologic Traps in the Enping Formation: A New Exploration Field in Deep Water Area of the Baiyun Sag, Pearl River Mouth Basin. China Offshore Oil and Gas, 27(6): 1-9 (in Chinese with English abstract).
      [32] Zhang, G. C., Yang, H. Z., Chen, Y., et al., 2014. The Baiyun Sag: A Giant Rich Gas-Generation Sag in the Deepwater Area of the Pearl River Mouth Basin. Natural Gas Industry, 34(11): 11-25 (in Chinese with English abstract).
      [33] Zhang, L. L., Shu, Y., Cai, G. F., et al., 2019. Eocene-Oligocene Sedimentary Environment Evolution and Its Impact on Hydrocarbon Source Conditions in Eastern Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 153-165 (in Chinese with English abstract).
      [34] Zhang, W., Hou, G. W., Xiao, X. G., et al., 2019. Genesis of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs in Xihu Sag, East China Sea Basin. China Offshore Oil and Gas, 31(3): 40-49 (in Chinese with English abstract).
      [35] Zhao, W. Z., Hu, S. Y., Wang, H. J., et al., 2013. Large-Scale Accumulation and Distribution of Medium-Low Abundance Hydrocarbon Resources in China. Petroleum Exploration and Development, 40(1): 1-13 (in Chinese with English abstract). doi: 10.1016/S1876-3804(13)60001-4
      [36] Zhao, Y. J., Yang, X. H., Zhu, H. T., et al., 2017. Distinct Sedimentary Backgrounds and Hydrocarbon Characteristics of Paleogene Enping Formation, Baiyun Sag. Geological Science and Technology Information, 36(3): 156-163 (in Chinese with English abstract).
      [37] Zhu, D. Y., Zhang, D. W., Zhang, R. Q., et al., 2015. Role of Oil Charge in Preservation of Deep Dolomite Reservoir Space. Acta Geologica Sinica, 89(4): 794-804 (in Chinese with English abstract).
      [38] Zhu, R. K., Bai, B., Cui, J. W., et al., 2013. Research Advances of Microstructure in Unconventional Tight Oil and Gas Reservoirs. Journal of Palaeogeography, 15(5): 615-623 (in Chinese with English abstract).
      [39] Zhu, R. K., Zou, C. N., Zhang, N., et al., 2009. Diagenetic Fluid Evolution and Tight Genetic Mechanism of Tight Sandstone Gas Reservoir: A Case Study of Xujiahe Formation of Upper Triassic in Sichuan Basin. Science in China (Series D: Earth Sciences), 39(3): 327-339 (in Chinese with English abstract).
      [40] Zhu, X. M., Pan, R., Zhu, S. F., et al., 2018. Research Progress and Core Issues in Tight Reservoir Exploration. Earth Science Frontiers, 25(2): 141-146 (in Chinese with English abstract).
      [41] 陈莹, 韩银学, 边立曾, 等, 2020. 南海北部深水区古近系沉积体系的东西差异及对烃源岩分布的影响. 石油与天然气地质, 41(5): 1028-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005014.htm
      [42] 邓猛, 赵军寿, 金宝强, 等, 2019. 基于古地貌分析的中深层沉积储层质量评价: 以渤海X油田沙二段为例. 断块油气田, 26(2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902004.htm
      [43] 杜文波, 孙桂华, 黄永健, 等, 2015. 基于地震多属性的储层预测: 以珠江口盆地恩平凹陷古近系恩平组为例. 海洋地质前沿, 31(8): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201508009.htm
      [44] 方竞男, 2013. 珠江口盆地第三系沉积体系演变与生储盖组合(硕士学位论文). 北京: 中国地质大学.
      [45] 郭志峰, 刘震, 吕睿, 等, 2012. 南海北部深水区白云凹陷钻前地层压力地震预测方法. 石油地球物理勘探, 47(1): 126-132, 188, 198. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201201019.htm
      [46] 韩银学, 陈莹, 杨海长, 等, 2017. 白云凹陷恩平组"源‒汇" 体系及其对油气勘探的影响. 中国石油勘探, 22(2): 25-34. doi: 10.3969/j.issn.1672-7703.2017.02.003
      [47] 韩银学, 杨海长, 陈莹, 等, 2016. 深水少井区中深层岩性地层圈闭评价方法: 以珠江口盆地白云凹陷恩平组白云11目标评价为例. 石油学报, 37(S1): 68-78. doi: 10.7623/syxb2016S1007
      [48] 郝芳, 邹华耀, 倪建华, 等, 2002. 沉积盆地超压系统演化与深层油气成藏条件. 地球科学, 27(5): 610-615. doi: 10.3321/j.issn:1000-2383.2002.05.022
      [49] Henry, W. P., Venkatarathnam, K., 刘化清, 2019. 深水浊流沉积综述. 沉积学报, 37(5): 879-903. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905002.htm
      [50] 胡明毅, 沈娇, 胡蝶, 2013. 西湖凹陷平湖构造带平湖组砂岩储层特征及其主控因素. 石油与天然气地质, 34(2): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201302009.htm
      [51] 姜振学, 林世国, 庞雄奇, 等, 2006. 两种类型致密砂岩气藏对比. 石油实验地质, 28(3): 210-214, 219. doi: 10.3969/j.issn.1001-6112.2006.03.003
      [52] 赖锦, 王贵文, 黄龙兴, 等, 2015. 致密砂岩储集层成岩相定量划分及其测井识别方法. 矿物岩石地球化学通报, 34(1): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501021.htm
      [53] 雷川, 2019. 珠江口盆地白云凹陷高热背景对深水区储层质量的影响(博士学位论文). 西安: 西北大学.
      [54] 李弛, 罗静兰, 胡海燕, 等, 2019. 热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响. 地球科学, 44(2): 572-587. doi: 10.3799/dqkx.2017.618
      [55] 梁建设, 王琪, 郝乐伟, 等, 2011. 成岩相分析方法在南海北部深水区储层预测的应用: 以珠江口盆地白云凹陷为例. 沉积学报, 29(3): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201103012.htm
      [56] 骆帅兵, 张忠涛, 郭伟, 等, 2017. 白云凹陷西南区块中‒深层优质砂岩体地震响应特征. 地质学刊, 41(2): 282-291. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201702018.htm
      [57] 马明, 陈国俊, 李超, 等, 2017. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征. 天然气地球科学, 28(10): 1515-1526. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710006.htm
      [58] 牟炜卫, 王琪, 田兵, 等, 2017. 珠江口盆地白云凹陷北坡中深部储层成岩相测井响应特征. 天然气地球科学, 28(10): 1601-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710015.htm
      [59] 邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      [60] 田立新, 张忠涛, 庞雄, 等, 2020. 白云凹陷中深层超压发育特征及油气勘探新启示. 中国海上油气, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006001.htm
      [61] 王丹丹, 李浩, 赵向原, 等, 2016. 新场气田储层裂缝特征及其与动态气水分布的关系. 石油实验地质, 38(6): 748-756. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606008.htm
      [62] 王家豪, 彭光荣, 柳保军, 等, 2019. 碎屑岩成岩拉平处理及沉积作用控制储层物性的定量表征——以珠江口盆地白云凹陷为例. 石油学报, 40(S1): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1010.htm
      [63] 许多年, 尹路, 瞿建华, 等, 2015. 低渗透砂砾岩"甜点"储层预测方法及应用: 以准噶尔盆地玛湖凹陷北斜坡区三叠系百口泉组为例. 天然气地球科学, 26(S1): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2015S1019.htm
      [64] 徐燕红, 杨香华, 梅廉夫, 2020. 涠西南凹陷西北陡坡带流三段砂砾岩储层特征与主控因素. 地球科学, 45(5): 1706-1721. doi: 10.3799/dqkx.2019.174
      [65] 于兴河, 李顺利, 杨志浩, 2015. 致密砂岩气储层的沉积‒成岩成因机理探讨与热点问题. 岩性油气藏, 27(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201501002.htm
      [66] 远光辉, 操应长, 贾珍臻, 等, 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展. 天然气地球科学, 26(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501005.htm
      [67] 曾智伟, 杨香华, 朱红涛, 等, 2017. 白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义. 地球科学, 42(1): 78-92. doi: 10.3799/dqkx.2017.006
      [68] 张功成, 陈莹, 杨海长, 等, 2015. 恩平组岩性地层圈闭: 白云凹陷深水区天然气勘探新领域. 中国海上油气, 27(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201506001.htm
      [69] 张功成, 杨海长, 陈莹, 等, 2014. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷. 天然气工业, 34(11): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411003.htm
      [70] 张丽丽, 舒誉, 蔡国富, 等, 2019. 珠江口盆地东部始新世‒渐新世沉积环境演变及对烃源条件的影响. 石油学报, 40(S1): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm
      [71] 张武, 侯国伟, 肖晓光, 等, 2019. 西湖凹陷低渗储层成因及优质储层主控因素. 中国海上油气, 31(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903005.htm
      [72] 赵文智, 胡素云, 王红军, 等, 2013. 中国中低丰度油气资源大型化成藏与分布. 石油勘探与开发, 40(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301002.htm
      [73] 赵玉娟, 杨香华, 朱红涛, 等, 2017. 白云凹陷古近系恩平组沉积背景差异及其烃类特征. 地质科技情报, 36(3): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703022.htm
      [74] 朱东亚, 张殿伟, 张荣强, 等, 2015. 深层白云岩储层油充注对孔隙保存作用研究. 地质学报, 89(4): 794-804. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201504011.htm
      [75] 朱如凯, 白斌, 崔景伟, 等, 2013. 非常规油气致密储集层微观结构研究进展. 古地理学报, 15(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305008.htm
      [76] 朱如凯, 邹才能, 张鼐, 等, 2009. 致密砂岩气藏储层成岩流体演化与致密成因机理: 以四川盆地上三叠统须家河组为例. 中国科学(D辑: 地球科学), 39(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm
      [77] 朱筱敏, 潘荣, 朱世发, 等, 2018. 致密储层研究进展和热点问题分析. 地学前缘, 25(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm
    • 加载中
    图(18)
    计量
    • 文章访问数:  343
    • HTML全文浏览量:  43
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-24
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回