Rapid Uplift Period of Eastern Himalayan Syntaxis: Evidence from Sedimentology in Central Myanmar Basin
-
摘要: 东喜马拉雅构造结快速隆升时间以及雅鲁藏布江和伊洛瓦底江是否曾经相连已经争论了超过半个世纪. 采用锆石U-Pb年代学等方法,对缅甸中央盆地新生代地层的“源‒汇”路径开展研究. 缅甸中央盆地始新统发育大量铬尖晶石、各坳陷的锆石年龄谱各不相同,表明该时期沉积物以盆地周边隆起为主要物源,不存在统一的源区;渐新世之后,源自区域变质岩的重矿物组合比例逐渐增加,盆地各坳陷碎屑锆石年龄谱特征趋于一致,均以40~ 70 Ma的主峰以及80~110 Ma次峰为特征,表明沉积物源区进入抹谷变质带,伊洛瓦底江雏形已经形成;由于缅甸中央盆地渐新统至下中新统完全没有喜马拉雅造山带信息,认为该时期雅鲁藏布江‒伊洛瓦底江并未相连. 晚中新世‒更新世,喜马拉雅造山带特征组合十字石和蓝晶石以及110~130 Ma年龄峰的出现,表明伊洛瓦底江已经侵蚀到东喜马拉雅构造结,达到现今流域规模. 因此,东喜马拉雅构造结快速隆升的时间大约在晚中新世.Abstract: Rapid uplift period of formation of the eastern Himalayan syntaxis and the hypothesis of Tsangpo-Irrawaddy River connection have been debated for over half a century. A combination of detrital zircon U-Pb chronology and heavy mineral assemblages was employed to investigate the "source to sink" pathways of Cenozoic strata in Central Myanmar Basin (CMB). The Eocene sediments indicate an intrabasinal provenance and no uniform source area with the presence of large amounts of Chromian spinel as well as the heterogeneity of zircon age spectra between all depressions. Since Oligocene, it is found that local-derived source was gradually replaced by Mogok Metamorphic Belt(MMB) and Irrawaddy River began to develop, which is revealed by zircon age spectra in all depressions tending to be identical (with 40-70 Ma at major peaks and 80-110 Ma at secondary peaks) and heavy mineral assemblages derived from regional metamorphic rock constantly increasing. In addition, due to lack of signal of Himalayan orogenic belt in Central Myanmar Basin, it is believed that there is no possibility of Tsangpo-Irrawaddy connection during Oligocene and Early Miocene. In Late Miocene-Pleistocene, the occurrence of granatite and kyanite and 110-130 Ma age peaks representing Himalayan orogenic belt suggest that the Irrawaddy River had eroded to the eastern Himalayan syntaxis and attained a near-modern configuration of drainage networks. Consequently, rapid uplift of eastern Himalayan syntaxis should have occurred in the Late Miocene-Pleistocene.
-
图 1 雅鲁藏布江‒伊洛瓦底江假说(a)及顺次袭夺模型中雅鲁藏布江‒伊洛瓦底江的连接(b)(Clark et al., 2004)
Fig. 1. Tsangpo-Irrawaddy hypothesis (a) and Tsangpo-Irrawaddy connection in successive capture model (b) (Clark et al., 2004)
图 2 缅甸周缘陆块及构造单元(a)及样品分布位置(b)
据Licht et al.(2019)、Zhang et al.(2017)和Robinson et al.(2014)
Fig. 2. Continental blocks and tectonic units around Myanmar (a) and sample location (b)
图 3 缅甸周缘潜在源区锆石U-Pb年龄
数据来源:印缅山脉三叠纪浊积岩(Sevastjanova et al., 2016;Yao et al., 2017);西缅岛弧带(Mitchell,1993;Barley et al., 2003;Mitchell et al., 2012;Gardiner et al., 2017, 2018;Zhang et al., 2017);缅中花岗岩带(Barley et al., 2003;Mitchell et al., 2012;Gardiner et al., 2017, 2018);掸邦高原(Cai et al., 2017);滇缅岩浆岩带(Xie et al., 2016);波密‒察隅岩浆岩带(Chiu et al., 2009;Xie et al., 2016);冈底斯弧(Wen et al., 2008;Ji et al., 2009;Chu et al., 2011);喜马拉雅造山带(DeCelles et al., 2004)
Fig. 3. Zircon U-Pb ages of potential sources around Myanmar
表 1 本文样品及相关研究样品信息
Table 1. Information of samples from this paper and related study
样号 位置 地层年龄 重矿物 锆石 参考文献 M75 沙林坳陷 中‒晚始新世 √ √ 本文 W3 钦敦坳陷 中‒晚始新世 √ Wang et al., 2014 R1 睡宝坳陷 中‒晚始新世 √ Robinson et al., 2014 MY5 沙林坳陷 早渐新世 √ √ 本文 M10 沙林坳陷 晚渐新世 √ √ 本文 AZY1 睡宝坳陷 晚渐新世 √ Zhang et al., 2019 M06 沙林坳陷 早中新世 √ √ 本文 R3 睡宝坳陷 早中新世 √ Robinson et al., 2014 R5 睡宝坳陷 中中新世 √ √ Robinson et al., 2014 W1 钦敦坳陷 中中新世 √ Wang et al., 2014 M90 沙林坳陷 晚中新世‒更新世 √ √ 本文 Y3‒3 沙林坳陷 晚中新世‒更新世 √ Zhang et al., 2019 M89 沙林坳陷 现代 √ √ 本文 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [2] Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 1-11. https://doi.org/10.1029/2002TC001398 [3] Bertrand, G., Rangin, C., Maluski, H., et al., 2001. Diachronous Cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): The Trace of the Northward Migration of the Indian Syntaxis. Journal of Asian Earth Sciences, 19(5): 649-659. https://doi.org/10.1016/S1367-9120(00)00061-4 [4] Blum, M., Rogers, K., Gleason, J., et al., 2018. Allogenic and Autogenic Signals in the Stratigraphic Record of the Deep-Sea Bengal Fan. Scientific Reports, 8(1): 1-13. https://doi.org/10.1038/S41598-018-25819-5 [5] Brookfield, M. E., 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: Rivers Draining Southwards. Geomorphology, 22(3-4): 285-312. https://doi.org/10.1016/S0169-555X(97)00082-2 [6] Cai, F. L., Ding, L., Yao, W., et al., 2017. Provenance and Tectonic Evolution of Lower Paleozoic-Upper Mesozoic Strata from Sibumasu Terrane, Myanmar. Gondwana Research, 41: 325-336. https://doi.org/10.1016/j.gr.2015.03.005 [7] Chen, W. H., Yan, Y., Clift, P. D., et al., 2020. Drainage Evolution and Exhumation History of the Eastern Himalaya: Insights from the Nicobar Fan, Northeastern Indian Ocean. Earth and Planetary Science Letters, 548: 116472. https://doi.org/10.1016/j.epsl.2020.116472 [8] Chiu, H. Y., Chung, S. L., Wu, F. Y., et al., 2009. Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet. Tectonophysics, 477(1-2): 3-19. https://doi.org/10.1016/j.tecto.2009.02.034 [9] Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3-4): 479-486. https://doi.org/10.1016/j.epsl.2011.05.020 [10] Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): TC1006. https://doi.org/10.1029/2002TC001402 [11] Compston, W., Williams, I. S., Kirschvink, J. L., et al., 1992. Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 149(2): 171-184. https://doi.org/10.1144/gsjgs.149.2.0171 [12] DeCelles, P. G., Gehrels, G. E., Najman, Y., et al., 2004. Detrital Geochronology and Geochemistry of Cretaceous-Early Miocene Strata of Nepal: Implications for Timing and Diachroneity of Initial Himalayan Orogenesis. Earth and Planetary Science Letters, 227(3-4): 313-330. https://doi.org/10.1016/j.epsl.2004.08.019 [13] Gardiner, N. J., Robb, L. J., Searle, M. P., et al., 2017. The Bawdwin Mine, Myanmar: A Review of Its Geological Setting and Genesis. Geological Society London Memoirs, 48(1): 669-686. https://doi.org/10.1144/M48.30 [14] Gardiner, N. J., Searle, M. P., Morley, C. K., et al., 2018. The Crustal Architecture of Myanmar Imaged through Zircon U-Pb, Lu-Hf and O Isotopes: Tectonic and Metallogenic Implications. Gondwana Research, 62: 27-60. https://doi.org/10.1016/j.gr.2018.02.008 [15] Garzanti, E., Wang, J. G., Vezzoli, G., et al., 2016. Tracing Provenance and Sediment Fluxes in the Irrawaddy River Basin (Myanmar). Chemical Geology, 440: 73-90. https://doi.org/10.1016/j.chemgeo.2016.06.010 [16] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [17] Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract). [18] Licht, A., Dupont-Nivet, G., Win, Z., et al., 2019. Paleogene Evolution of the Burmese Forearc Basin and Implications for the History of India-Asia Convergence. GSA Bulletin, 131(5-6): 730-748. https://doi.org/10.1130/B35002.1 [19] Licht, A., Reisberg, L., France-Lanord, C., et al., 2016. Cenozoic Evolution of the Central Myanmar Drainage System: Insights from Sediment Provenance in the Minbu Sub-Basin. Basin Research, 28(2): 237-251. https://doi.org/10.1111/bre.12108 [20] Liu, C. Z., Chung, S. L., Wu, F. Y., et al., 2016. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites. Geology, 44(4): 311-314. https://doi.org/10.1130/G37342.1 [21] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [22] Metcalfe, I., 2011. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3-21. https://doi.org/10.1016/j.gr.2010.02.016 [23] Mitchell, A. H. G., 1993. Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region. Journal of the Geological Society, 150(6): 1089-1102. https://doi.org/10.1144/gsjgs.150.6.1089 [24] Mitchell, A. H. G., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean? Journal of Asian Earth Sciences, 56: 1-23. https://doi.org/10.1016/j.jseaes.2012.04.019 [25] Naing, T. T., Bussien, D. A., Winkler, W. H., et al., 2013. Provenance Study on Eocene-Miocene Sandstones of the Rakhine Coastal Belt, Indo-Burman Ranges of Myanmar: Geodynamic Implications. Geological Society, London, Special Publications, 386(1): 195-216. https://doi.org/10.1144/SP386.10 [26] Najman, Y., Bickle, M., BouDagher-Fadel, M., et al., 2008. The Paleogene Record of Himalayan Erosion: Bengal Basin, Bangladesh. Earth and Planetary Science Letters, 273(1-2): 1-14. https://doi.org/10.1016/j.epsl.2008.04.028 [27] Orme, D. A., Carrapa, B., Kapp, P., 2015. Sedimentology, Provenance and Geochronology of the Upper Cretaceous-Lower Eocene Western Xigaze Forearc Basin, Southern Tibet. Basin Research, 27(4): 387-411. https://doi.org/10.1111/bre.12080 [28] Rangin, C., Maurin, T., Masson, F., 2013. Combined Effects of Eurasia/Sunda Oblique Convergence and East-Tibetan Crustal Flow on the Active Tectonics of Burma. Journal of Asian Earth Sciences, 76: 185-194. https://doi.org/10.1016/j.jseaes.2013.05.018 [29] Ravikant, V., Wu, F. Y., Ji, W. Q., 2011. U-Pb Age and Hf Isotopic Constraints of Detrital Zircons from the Himalayan Foreland Subathu Sub-Basin on the Tertiary Palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304(3-4): 356-368. https://doi.org/10.1016/j.epsl.2011.02.009 [30] Robinson, R. A. J., Brezina, C. A., Parrish, R. R., et al., 2014. Large Rivers and Orogens: The Evolution of the Yarlung Tsangpo-Irrawaddy System and the Eastern Himalayan Syntaxis. Gondwana Research, 26(1): 112-121. https://doi.org/10.1016/j.gr.2013.07.002 [31] Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3): TC3014. https://doi.org/10.1029/2006TC002083 [32] Sevastjanova, I., Hall, R., Rittner, M., et al., 2016. Myanmar and Asia United, Australia Left behind Long Ago. Gondwana Research, 32: 24-40. https://doi.org/10.1016/j.gr.2015.02.001 [33] Tun, S. T., Watkinson, I. M., 2017. The Sagaing Fault, Myanmar. Geological Society London Memoirs, 48(1): 413-441. https://doi.org/10.1144/M48.19 [34] Van Hattum, M. W. A., Hall, R., Pickard, A. L., et al., 2013. Provenance and Geochronology of Cenozoic Sandstones of Northern Borneo. Journal of Asian Earth Sciences, 76: 266-282. https://doi.org/10.1016/j.jseaes.2013.02.033 [35] Wang, J. G., Wu, F. Y., Tan, X. C., et al., 2014. Magmatic Evolution of the Western Myanmar Arc Documented by U-Pb and Hf Isotopes in Detrital Zircon. Tectonophysics, 612-613: 97-105. https://doi.org/10.1016/j.tecto.2013.11.039 [36] Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003 [37] Xie, J. C., Zhu, D. C., Dong, G. C., et al., 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in Southern Tibet through Magmatic Correlation. Gondwana Research, 39: 217-229. https://doi.org/10.1016/j.gr.2016.02.007 [38] Yao, W., Ding, L., Cai, F. L., et al., 2017. Origin and Tectonic Evolution of Upper Triassic Turbidites in the Indo-Burman Ranges, West Myanmar. Tectonophysics, 721: 90-105. https://doi.org/10.1016/j.tecto.2017.09.016 [39] Zeng, Q. G., Wang, B. D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). [40] Zhang, J. Y., Yin, A., Liu, W. C., et al., 2012. Coupled U-Pb Dating and Hf Isotopic Analysis of Detrital Zircon of Modern River Sand from the Yalu River (Yarlung Tsangpo) Drainage System in Southern Tibet: Constraints on the Transport Processes and Evolution of Himalayan Rivers. Geological Society of America Bulletin, 124(9-10): 1449-1473. https://doi.org/10.1130/B30592.1 [41] Zhang, P., Mei, L. F., Hu, X. L., et al., 2017. Structures, Uplift, and Magmatism of the Western Myanmar Arc: Constraints to Mid-Cretaceous-Paleogene Tectonic Evolution of the Western Myanmar Continental Margin. Gondwana Research, 52: 18-38. https://doi.org/10.1016/j.gr.2017.09.002 [42] Zhang, P., Najman, Y., Mei, L. F., et al., 2019. Palaeodrainage Evolution of the Large Rivers of East Asia, and Himalayan-Tibet Tectonics. Earth-Science Reviews, 192: 601-630. https://doi.org/10.1016/j.earscirev.2019.02.003 [43] Zhao, X. C., Liu, C. Y., Wang, J. Q., et al., 2020. Provenance Analyses of Lower Cretaceous Strata in the Liupanshan Basin: From Paleocurrents Indicators, Conglomerate Clast Compositions, and Zircon U-Pb Geochronology. Journal of Earth Science, 31(4): 757-771. https://doi.org/10.1007/s12583-020-1324-8 [44] 李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. doi: 10.3799/dqkx.2020.197 [45] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152