Vertical Slip Distribution along Immature Active Thrust and Its Implications for Fault Evolution: A Case Study from Linze Thrust, Hexi Corridor
-
摘要:
活动断裂地表位错定量研究对理解断裂活动习性和构建多周期地震复发模型有重要意义. 前人基于高精度地形数据对断裂地表位错分布开展了大量定量研究,但是关于累积位错变形沿新生逆冲断层的走向分布特征依然不清楚. 本文选择河西走廊内部新生临泽逆冲断裂(< 20 ka)为例,利用UAV(unmanned aerial vehicle)航测方法采集了断裂沿线约8 km长、2.5 km宽的高精度(0.5 m)地形数据,开展了精细地貌填图(1∶500)、断层垂直位错测量(73个)、断层活动定量参数分析以及野外地质调查等工作. 研究揭示,新生临泽逆冲断裂主要由2条左阶展布分支逆冲断层组成(L1和L2),阶区宽度约260 m. 位错测量揭示,断层最大和最小累积位错分别为4.5 m和0.2 m,累积垂直位错呈明显不对称三角形分布,断层上位移亏损点与断层几何形态变化区域明显对应. 断裂位错定量参数分析显示,临泽断裂结构不成熟,两个分支断裂后期会在破裂长度和位错增加下逐渐贯通. 因此,可能需要注意后期强震活动造成新生逆冲断层向盆地内部拓展,及其对邻近城镇带来的直接和衍生灾害效应.
Abstract:Slip distribution is necessary for the understanding and construction of rupture behavior along active faults. Although large number of researches have been focused on this issue using high-resolution topographic data, the slip distribution along immature active thrusts is still unclear. Two significantly different scenarios exist on this issue until this day. One is the large variation triangular distribution, and the other is comparatively uniform distribution. Using 8 km length, 2.5 km width and 0.5 m resolution UAV derived DEM data; we mapped in detail the geomorphic units, measured 73 vertical separations, and analyzed the parameters of the surface rupture. The Linze thrust is mainly composed of two left stepping branches, and the width of the step is ~260 m. The triangular slip distribution, with maximum and minimum vertical throws of 4.5 m and 0.2 m, respectively, reveals progressively lateral propagation of the thrust. The analysis of surface rupture parameters for the Linze thrust reveals the immature structure and the trend of connection and propagation of the segmented branches. Thus, more attention possibly should be paid to the influence of the propagation and connection of the thrust for the neighboring counties.
-
图 1 临泽断裂及其周缘活动构造图
白色线段为断层,断层数据源自Xu et al.(2010). 黑色箭头代表GPS速度场,数据源自Liang et al.(2013). 红色线段为地表破裂带,数据源自Xu et al.(2010). 蓝色线段为本文研究对象临泽断裂,黑框为UAV数据扫描区
Fig. 1. Active tectonic map around Linze thrust
图 2 临泽断裂区域获得的高精度(0.5 m)地形数据
白色方框为图 3位置;a. DEM图;b. 山影图;c. 坡度图
Fig. 2. High-resolution topographic (0.5 m) data along Linze thrust
图 6 临泽断裂定量参数分析与断层发育演化模式
a. 断裂结构成熟度分析(修改自Manighetti et al., 2007);b. 分支断裂贯通发育模式;c. 破裂长度与最大位错演化模式,修改自Kim et al.(2000)
Fig. 6. The analysis of surface rupture parameters and evolution model for the Linze thrust
表 1 临泽断裂垂直位错测量结果
Table 1. Vertical offset measurements results along Linze thrust
编号 纬度N 经度E 距离
(m)断层走向
NE(°)倾角
(°)倾角误差
(°)位错值
(m)误差
(m)地貌面 0 39° 5' 30.733' 100° 4' 10.503' 0 169 50 10 0.6 0.1 F2 1 39° 5' 26.137' 100° 4' 12.071' 142 174 50 10 1 0.1 F2 2 39° 5' 21.200' 100° 4' 11.674' 309 190 50 10 1.7 0.2 F2 3 39° 5' 15.774' 100° 4' 10.302' 476 189 50 10 0.2 0.2 F2 4 39° 5' 11.685' 100° 4' 10.193' 607 159 50 10 0.9 0.2 F2 5 39° 5' 6.949' 100° 4' 11.854' 743 141 50 10 2.3 0.1 F2 6 39° 5' 4.707' 100° 4' 15.390' 846 153 50 10 2.7 0.1 F2 7 39° 5' 1.149' 100° 4' 16.562' 975 158 50 10 2.4 0.1 F2 8 39° 4' 58.190' 100° 4' 17.899' 1 050 157 50 10 3.8 0.2 F2 9 39° 4' 54.723' 100° 4' 19.618' 1 167 160 50 10 1.7 0.1 F2 10 39° 4' 51.609' 100° 4' 21.583' 1 279 159 50 10 1.2 0.2 F2 11 39° 4' 48.927' 100° 4' 22.820' 1 374 158 50 10 1.2 0.2 F2 12 39° 4' 46.364' 100° 4' 23.339' 1 460 150 50 10 2.1 0.2 F2 13 39° 4' 42.359' 100° 4' 26.337' 1 607 150 50 10 2.8 0.1 F2 14 39° 4' 39.744' 100° 4' 28.014' 1 707 145 50 10 3 0.1 F2 15 39° 4' 37.681' 100° 4' 28.862' 1 773 166 50 10 2.3 0.1 F2 16 39° 4' 34.802' 100° 4' 29.411' 1 865 165 50 10 2.3 0.2 F2 17 39° 4' 32.413' 100° 4' 30.280' 1 950 156 50 10 3.8 0.1 F2 18 39° 4' 30.269' 100° 4' 31.172' 2 028 164 50 10 2.7 0.1 F2 19 39° 4' 27.502' 100° 4' 31.344' 2 112 161 50 10 2.1 0.2 F2 20 39° 4' 24.157' 100° 4' 32.466' 2 239 161 50 10 1.7 0.1 F2 21 39° 4' 20.572' 100° 4' 32.348' 2 356 185 50 10 2.9 0.2 F2 22 39° 4' 16.836' 100° 4' 31.192' 2 491 191 50 10 2.9 0.1 F2 23 39° 4' 13.686' 100° 4' 30.199' 2 584 175 50 10 4 0.2 F2 24 39° 4' 10.610' 100° 4' 32.145' 2 679 178 50 10 3.2 0.2 F2 25 39° 4' 0.537' 100° 4' 31.277' 2 998 175 50 10 3 0.2 F2 26 39° 3' 57.045' 100° 4' 33.341' 3 106 178 50 10 4.4 0.4 F2 27 39° 3' 53.598' 100° 4' 33.113' 3 219 170 50 10 4.5 0.3 F2 28 39° 3' 49.077' 100° 4' 33.475' 3 359 165 50 10 2.1 0.1 F2 29 39° 3' 41.619' 100° 4' 35.108' 3 595 161 50 10 0.7 0.1 F2 30 39° 3' 38.216' 100° 4' 36.808' 3 704 152 50 10 1 0.1 F2 31 39° 3' 35.084' 100° 4' 37.448' 3 825 154 50 10 1.6 0.2 F2 32 39° 3' 34.382' 100° 4' 47.025' 3 912 151 50 10 0.8 0.1 F2 33 39° 3' 30.379' 100° 4' 50.060' 4 051 151 50 10 3.3 0.1 F2 34 39° 3' 28.199' 100° 4' 51.188' 4 127 149 50 10 2.5 0.2 F2 35 39° 3' 24.443' 100° 4' 53.794' 4 263 157 50 10 2.7 0.1 F2 36 39° 3' 21.040' 100° 4' 54.314' 4 367 172 50 10 2.8 0.1 F2 37 39° 3' 18.204' 100° 4' 54.598' 4 462 176 50 10 2.8 0.1 F2 38 39° 3' 10.995' 100° 4' 54.467' 4 695 166 50 10 3.9 0.2 F2 39 39° 3' 8.746' 100° 4' 55.506' 4 769 168 50 10 4 0.1 F2 40 39° 3' 5.682' 100° 4' 55.674' 4 869 168 50 10 3.5 0.2 F2 41 39° 3' 1.787' 100° 4' 56.538' 4 995 161 50 10 2.8 0.2 F2 42 39° 3' 0.022' 100° 5' 0.533' 5 077 164 50 10 2.6 0.2 F2 43 39° 2' 57.647' 100° 5' 2.312' 5 159 168 50 10 2.5 0.1 F2 44 39° 2' 54.040' 100° 5' 2.725' 5 274 168 50 10 3.5 0.2 F2 45 39° 2' 51.184' 100° 5' 3.121' 5 382 174 50 10 4.4 0.2 F2 46 39° 2' 43.744' 100° 5' 5.075' 5 619 148 50 10 2.2 0.2 F2 47 39° 2' 42.836' 100° 5' 7.833' 5 674 151 50 10 3 0.1 F2 48 39° 2' 39.958' 100° 5' 9.362' 5 776 133 50 10 4.3 0.1 F2 49 39° 2' 37.789' 100° 5' 9.871' 5 854 145 50 10 3.8 0.1 F2 50 39° 2' 35.932' 100° 5' 12.211' 5 934 147 50 10 3.1 0.1 F2 51 39° 2' 34.096' 100° 5' 13.585' 6 014 156 50 10 3.1 0.1 F2 52 39° 2' 31.842' 100° 5' 14.657' 6 102 162 50 10 2.8 0.1 F2 53 39° 2' 30.281' 100° 5' 15.090' 6 156 165 50 10 2.6 0.1 F2 54 39° 2' 27.567' 100° 5' 17.019' 6 235 167 50 10 2.6 0.1 F2 55 39° 2' 25.833' 100° 5' 20.420' 6 311 167 50 10 2.1 0.1 F2 56 39° 2' 24.125' 100° 5' 20.820' 6 371 173 50 10 0.7 0.1 F2 57 39° 2' 21.663' 100° 5' 20.890' 6 458 170 50 10 0.2 0.3 F2 58 39° 2' 19.349' 100° 5' 20.424' 6 528 167 50 10 1.5 0.1 F2 59 39° 2' 17.051' 100° 5' 17.861' 6 613 176 50 10 1.5 0.1 F2 60 39° 2' 12.581' 100° 5' 17.449' 6 755 174 50 10 0.1 0.2 F2 61 39° 2' 10.317' 100° 5' 20.121' 6 847 177 50 10 1.8 0.2 F2 62 39° 2' 7.953' 100° 5' 21.145' 6 931 184 50 10 2.4 0.3 F2 63 39° 2' 4.702' 100° 5' 20.878' 7 037 188 50 10 0.4 0.1 F2 64 39° 2' 1.498' 100° 5' 20.033' 7 142 185 50 10 0.3 0.3 F2 65 39° 5' 25.261' 100° 3' 42.254' 91 158 60 10 3.2 0.3 F2 66 39° 5' 21.777' 100° 3' 42.968' 205 157 60 10 4.3 0.3 F2 67 39° 5' 18.679' 100° 3' 43.910' 292 155 60 10 3.7 0.2 F2 69 39° 5' 12.253' 100° 3' 47.177' 508 148 60 10 4.5 0.1 F2 74 39° 4' 56.518' 100° 3' 57.976' 978 145 60 10 1 0.1 F2 76 39° 3' 52.685' 100° 4' 6.297' 2 998 139 60 10 1.8 0.1 F2 77 39° 3' 50.608' 100° 4' 8.444' 3 106 143 60 10 1.6 0.1 F2 78 39° 3' 48.414' 100° 4' 9.956' 3 219 135 60 10 1.3 0.1 F2 -
[1] Allen, M. B., Walters, R. J., Song, S., et al., 2017. Partitioning of Oblique Convergence Coupled to the Fault Locking Behavior of Fold-and-Thrust Belts: Evidence from the Qilian Shan, Northeastern Tibetan Plateau. Tectonics, 36(9-10): 1679-1698. https://doi.org/10.1002/2017TC004476 [2] Avouac, J. P., Tapponnier, P., Bai, M., et al., 1993. Active Thrusting and Folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. Journal of Geophysical Research: Solid Earth, 98(B4): 6755-6804. https://doi.org/10.1029/92jb01963 [3] Bi, H. Y., Zheng, W. J., Ge, W. P., et al., 2018. Constraining the Distribution of Vertical Slip on the South Heli Shan Fault (Northeastern Tibet) from High-Resolution Topographic Data. Journal of Geophysical Research: Solid Earth, 123(3): 2484-2501. https://doi.org/10.1002/2017jb014901 [4] Bürgmann, R., Pollard, D. D., Martel, S. J., 1994. Slip Distributions on Faults: Effects of Stress Gradients, Inelastic Deformation, Heterogeneous Host-Rock Stiffness, and Fault Interaction. Journal of Structural Geology, 16(12): 1675-1690. https://doi.org/10.1016/0191-8141(94)90134-1 [5] Cartwright, J. A., Trudgill, B. D., Mansfield, C. S., 1995. Fault Growth by Segment Linkage: An Explanation for Scatter in Maximum Displacement and Trace Length Data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319-1326. https://doi.org/10.1016/0191-8141(95)00033-A [6] Chen, T., Jing, L. Z., Shao, Y. X., et al., 2018. Geomorphic Offsets along the Creeping Laohu Shan Section of the Haiyuan Fault, Northern Tibetan Plateau. Geosphere, 14(3): 1165-1186. https://doi.org/10.1130/ges01561.1 [7] Chen, X. H., Shao, Z. G., Xiong, X. S., et al., 2019. Early Cretaceous Overthrusting of Yumu Mountain and Hydrocarbon Prospect on the Northern Margin of the Qilian Orogenic Belt. Acta Geoscientica Sinica, 40(3): 377-392 (in Chinese with English abstract). [8] Cheng, J., Rong, Y. F., Magistrale, H., et al., 2020. Earthquake Rupture Scaling Relations for Mainland China. Seismological Research Letters, 91(1): 248-261. https://doi.org/10.1785/0220190129 [9] Cowie, P. A., Scholz, C. H., 1992. Displacement-Length Scaling Relationship for Faults: Data Synthesis and Discussion. Journal of Structural Geology, 14(10): 1149-1156. https://doi.org/10.1016/0191-8141(92)90066-6 [10] Duan, B. C., Oglesby, D. D., 2006. Heterogeneous Fault Stresses from Previous Earthquakes and the Effect on Dynamics of Parallel Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 111(B5): B05309. https://doi.org/10.1029/2005jb004138 [11] Gaudemer, Y., Tapponnier, P., Meyer, B., et al., 1995. Partitioning of Crustal Slip between Linked, Active Faults in the Eastern Qilian Shan, and Evidence for a Major Seismic Gap, the 'Tianzhu Gap', on the Western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599-645. https://doi.org/10.1111/j.1365-246X.1995.tb01842.x [12] Guo, P., Han, Z. J., Dong, S. P., et al., 2019. Surface Rupture and Slip Distribution along the Lenglongling Fault in the NE Tibetan Plateau: Implications for Faulting Behavior. Journal of Asian Earth Sciences, 172: 190-207. https://doi.org/10.1016/j.jseaes.2018.09.008 [13] Gupta, A., Scholz, C. H., 2000. A Model of Normal Fault Interaction Based on Observations and Theory. Journal of Structural Geology, 22(7): 865-879. https://doi.org/10.1016/S0191-8141(00)00011-0 [14] Hetzel, R., Hampel, A., Gebbeken, P., et al., 2019. A Constant Slip Rate for the Western Qilian Shan Frontal Thrust during the Last 200 ka Consistent with GPS-Derived and Geological Shortening Rates. Earth and Planetary Science Letters, 509: 100-113. https://doi.org/10.1016/j.epsl.2018.12.032 [15] Hu, X. F., Chen, D. B., Pan, B. T., et al., 2019. Sedimentary Evolution of the Foreland Basin in the NE Tibetan Plateau and the Growth of the Qilian Shan since 7 Ma. GSA Bulletin, 131(9-10): 1744-1760. https://doi.org/10.1130/b35106.1 [16] Huang, X. N., Yang, X. P., Yang, H. B., et al., 2021. Re-Evaluating the Surface Rupture and Slip Distribution of the AD 1609 M7 1/4 Hongyapu Earthquake along the Northern Margin of the Qilian Shan, NW China: Implications for Thrust Fault Rupture Segmentation. Frontiers in Earth Science, 9: 633820. https://doi.org/10.3389/feart.2021.633820 [17] Institute of Geology, Lanzhou Institute of Seismology, China Earthquake Administration, 1993. Active Fault Zones in Qilian Mountains and Hexi Corridor Regions. Seismological Press, Beijing (in Chinese). [18] Jin, Q., He, W. G., Shi, Z. G., et al., 2011. Palaeo-Earthquake Study on the Northern Yumushan Active Fault. Seismology and Geology, 33(2): 347-355 (in Chinese with English abstract). [19] Kang, W. J., Xu, X. W., Oskin, M. E., et al., 2020. Characteristic Slip Distribution and Earthquake Recurrence along the Eastern Altyn Tagh Fault Revealed by High-Resolution Topographic Data. Geosphere, 16(1): 392-406. https://doi.org/10.1130/ges02116.1 [20] Kang, W. J., Xu, X. W., Yu, G. H., et al., 2020. Comparison Study of Two Kinds of Codes to Measure Fault-Offsets Based on Matlab: A Case Study on Eastern Altyn Tagh Fault. Seismology and Geology, 42(3): 732-747 (in Chinese with English abstract). [21] Kim, Y. S., Andrews, J. R., Sanderson, D. J., 2000. Damage Zones around Strike-Slip Fault Systems and Strike-Slip Fault Evolution, Crackington Haven, Southwest England. Geosciences Journal, 4(2): 53-72. https://doi.org/10.1007/BF02910127 [22] Klinger, Y., Etchebes, M., Tapponnier, P., et al., 2011. Characteristic Slip for Five Great Earthquakes along the Fuyun Fault in China. Nature Geoscience, 4(6): 389-392. https://doi.org/10.1038/ngeo1158 [23] Liang, S. M., Gan, W. J., Shen, C. Z., et al., 2013. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements. Journal of Geophysical Research: Solid Earth, 118(10): 5722-5732. https://doi.org/10.1002/2013jb010503 [24] Liu, J., Chen, T., Zhang, P. Z., et al., 2013. Illuminating the Active Haiyuan Fault, China by Airborne Light Detection and Ranging. Chinese Science Bulletin, 58(1): 41-45 (in Chinese). doi: 10.1360/972012-1526 [25] Liu, X. W., Yuan, D. Y., Zheng, W. J., et al., 2019. Holocene Slip Rate of the Frontal Thrust in the Western Qilian Shan, NE Tibetan Plateau. Geophysical Journal International, 219(2): 853-865. https://doi.org/10.1093/gji/ggz325 [26] Manighetti, I., Campillo, M., Bouley, S., et al., 2007. Earthquake Scaling, Fault Segmentation, and Structural Maturity. Earth and Planetary Science Letters, 253(3-4): 429-438. https://doi.org/10.1016/j.epsl.2006.11.004 [27] Manighetti, I., Campillo, M., Sammis, C., et al., 2005. Evidence for Self-Similar, Triangular Slip Distributions on Earthquakes: Implications for Earthquake and Fault Mechanics. Journal of Geophysical Research: Solid Earth, 110(B5): B05302. https://doi.org/10.1029/2004jb003174 [28] Manighetti, I., Caulet, C., de Barros, L., et al., 2015. Generic Along-Strike Segmentation of Afar Normal Faults, East Africa: Implications on Fault Growth and Stress Heterogeneity on Seismogenic Fault Planes. Geochemistry, Geophysics, Geosystems, 16(2): 443-467. https://doi.org/10.1002/2014gc005691 [29] Manighetti, I., Perrin, C., Gaudemer, Y., et al., 2020. Repeated Giant Earthquakes on the Wairarapa Fault, New Zealand, Revealed by Lidar-Based Paleoseismology. Scientific Reports, 10(1): 2124. https://doi.org/10.1038/s41598-020-59229-3 [30] Palumbo, L., Hetzel, R., Tao, M. X., et al., 2009. Deciphering the Rate of Mountain Growth during Topographic Presteady State: An Example from the NE Margin of the Tibetan Plateau. Tectonics, 28(4): C4017. https://doi.org/10.1029/2009tc002455 [31] Pang, W., He, W. G., Zhang, B., 2019. Preliminary Study of New Faulting Characteristic of the Linze Fault. Journal of Seismological Research, 42(1): 120-132 (in Chinese with English abstract). [32] Philip, H., Rogozhin, E., Cisternas, A., et al., 1992. The Armenian Earthquake of 1988 December 7: Faulting and Folding, Neotectonics and Palaeoseismicity. Geophysical Journal International, 110(1): 141-158. https://doi.org/10.1111/j.1365-246X.1992.tb00718.x [33] Ren, J. J., Xu, X. W., Zhang, S. M., et al., 2019. Late Quaternary Slip Rates and Holocene Paleoearthquakes of the Eastern Yumu Shan Fault, Northeast Tibet: Implications for Kinematic Mechanism and Seismic Hazard. Journal of Asian Earth Sciences, 176: 42-56. https://doi.org/10.1016/j.jseaes.2019.02.006 [34] Ren, Z. K., Zhang, Z. Q., Chen, T., et al., 2016. Clustering of Offsets on the Haiyuan Fault and Their Relationship to Paleoearthquakes. Geological Society of America Bulletin, 128(1-2): 3-18. https://doi.org/10.1130/b31155.1 [35] Scholz, C. H., Dawers, N. H., Yu, J. Z., et al., 1993. Fault Growth and Fault Scaling Laws: Preliminary Results. Journal of Geophysical Research: Solid Earth, 98(B12): 21951-21961. https://doi.org/10.1029/93jb01008 [36] Segall, P., Pollard, D. D., 1980. Mechanics of Discontinuous Faults. Journal of Geophysical Research: Solid Earth, 85: 4337-4350. https://doi.org/10.1029/JB085iB08p04337 [37] Stewart, N., Gaudemer, Y., Manighetti, I., et al., 2018. "3D_Fault_Offsets, " a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults. Journal of Geophysical Research: Solid Earth, 123(1): 815-835. https://doi.org/10.1002/2017jb014863 [38] Ta, W. Q., Xiao, H. L., Qu, J. J., et al., 2004. Measurements of Dust Deposition in Gansu Province, China, 1986-2000. Geomorphology, 57(1-2): 41-51. https://doi.org/10.1016/S0169-555X(03)00082-5 [39] Tapponnier, P., Meyer, B., Avouac, J. P., et al., 1990. Active Thrusting and Folding in the Qilian Shan, and Decoupling between Upper Crust and Mantle in Northeastern Tibet. Earth and Planetary Science Letters, 97(3-4): 382-383, 387-403. https://doi.org/10.1016/0012-821X(90)90053-Z [40] Wei, Z. Y., He, H. L., Sun, W., et al., 2020. Investigating Thrust-Fault Growth and Segment Linkage Using Displacement Distribution Analysis in the Active Duzhanzi Thrust Fault Zone, Northern Tian Shan of China. Journal of Structural Geology, 133: 103990. https://doi.org/10.1016/j.jsg.2020.103990 [41] Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111 [42] Wilkins, S. J., Gross, M. R., 2002. Normal Fault Growth in Layered Rocks at Split Mountain, Utah: Influence of Mechanical Stratigraphy on Dip Linkage, Fault Restriction and Fault Scaling. Journal of Structural Geology, 24(9): 1413-1429. https://doi.org/10.1016/S0191-8141(01)00154-7 [43] Xiong, J. G., Li, Y. L., Zhong, Y. Z., et al., 2017. Latest Pleistocene to Holocene Thrusting Recorded by a Flight of Strath Terraces in the Eastern Qilian Shan, NE Tibetan Plateau. Tectonics, 36(12): 2973-2986. https://doi.org/10.1002/2017tc004648 [44] Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. https://doi.org/10.1130/G25462A.1. [45] Xu, X. W., Yeats, R. S., Yu, G. H., 2010. Five Short Historical Earthquake Surface Ruptures near the Silk Road, Gansu Province, China. Bulletin of the Seismological Society of America, 100(2): 541-561. https://doi.org/10.1785/0120080282 [46] Yang, H. B., Yang, X. P., Huang, X. N., et al., 2018. New Constraints on Slip Rates of the Fodongmiao-Hongyazi Fault in the Northern Qilian Shan, NE Tibet, from the 10Be Exposure Dating of Offset Terraces. Journal of Asian Earth Sciences, 151: 131-147. https://doi.org/10.1016/j.jseaes.2017.10. 034 doi: 10.1016/j.jseaes.2017.10.034 [47] Yang, S. F., Chen, H. L., Cheng, X. G., et al., 2007. Deformation Characteristics and Rules of Spatial Change for the Northern Qilianshan Thrust Belt. Earth Science Frontiers, 14(5): 211-221 (in Chinese with English abstract). [48] Yao, W. Q., Jing, L. Z., Oskin, M. E., et al., 2019. Reevaluation of the Late Pleistocene Slip Rate of the Haiyuan Fault near Songshan, Gansu Province, China. Journal of Geophysical Research: Solid Earth, 124(5): 5217-5240. https://doi.org/10.1029/2018jb016907 [49] Ye, Z., Gao, R., Li, Q. S., et al., 2015. Seismic Evidence for the North China Plate Underthrusting beneath Northeastern Tibet and Its Implications for Plateau Growth. Earth and Planetary Science Letters, 426: 109-117. https://doi.org/10.1016/j.epsl.2015.06.024 [50] Yu, G. H., Xu, X. W., Klinger, Y., et al., 2010. Fault-Scarp Features and Cascading-Rupture Model for the Mw 7.9 Wenchuan Earthquake, Eastern Tibetan Plateau, China. Bulletin of the Seismological Society of America, 100(5B): 2590-2614. https://doi.org/10.1785/0120090255 [51] Zhang, P. Z., Mao, F. Y., Slemmons, D. B., 1999. Rupture Terminations and Size of Segment Boundaries from Historical Earthquake Ruptures in the Basin and Range Province. Tectonophysics, 308(1-2): 37-52. https://doi.org/10.1016/S0040-1951(99)00089-X [52] Zhang, P. Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809-812. https://doi.org/10.1130/g20554.1 [53] Zheng, W. J., Zhang, P. Z., He, W. G., et al., 2013. Transformation of Displacement between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults. Tectonophysics, 584: 267-280. https://doi.org/10.1016/j.tecto.2012.01.006 [54] Zielke, O., Arrowsmith, J. R., Ludwig, L. G., et al., 2010. Slip in the 1857 and Earlier Large Earthquakes along the Carrizo Plain, San Andreas Fault. Science, 327(5969): 1119-1122. https://doi.org/10.1126/science.1182781 [55] Zuza, A. V., Cheng, X. G., Yin, A., 2016. Testing Models of Tibetan Plateau Formation with Cenozoic Shortening Estimates across the Qilian Shan-Nan Shan Thrust Belt. Geosphere, 12(2): 501-532. https://doi.org/10.1130/ges01254.1 [56] 陈宣华, 邵兆刚, 熊小松, 等, 2019. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景. 地球学报, 40(3): 377-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201903001.htm [57] 中国地震局地质研究所, 中国地震局兰州地震研究所. 1993. 祁连山‒河西走廊活动断裂系. 北京: 地震出版社. [58] 金卿, 何文贵, 史志刚, 等, 2011. 榆木山北缘断裂古地震特征研究. 地震地质, 33(2): 347-355. doi: 10.3969/j.issn.0253-4967.2011.02.008 [59] 康文君, 徐锡伟, 于贵华, 等, 2020. 2种基于Matlab平台的断层位移测量软件对比分析: 以阿尔金断裂东段为例. 地震地质, 42(3): 732-747. doi: 10.3969/j.issn.0253-4967.2020.03.013 [60] 刘静, 陈涛, 张培震, 等, 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构. 科学通报, 58(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htm [61] 庞炜, 何文贵, 张波, 2019. 临泽断裂新活动特征初步研究. 地震研究, 42(1): 120-132. doi: 10.3969/j.issn.1000-0666.2019.01.016 [62] 杨树锋, 陈汉林, 程晓敢, 等, 2007. 祁连山北缘冲断带的特征与空间变化规律. 地学前缘, 14(5): 211-221. doi: 10.3321/j.issn:1005-2321.2007.05.021