Comparison on the Characteristics of Cassiterite-Bearing and Barren Granites in the Beidashan Region, Southern Great Xing'an Range
-
摘要: 近年来,人们在大兴安岭南部发现了多处与白垩纪花岗岩相关的锡多金属矿床,但并非所有该时期的花岗岩都与锡矿伴生.为了解花岗岩伴生锡矿的形成条件,本文对内蒙古北大山岩体中的含锡石(磨盘山)与不含锡石(窟窿山)花岗岩开展了锡石U-Pb年龄、锆石U-Pb年龄、全岩地球化学及矿物地球化学分析测试,并进行岩石学、年代学和岩浆演化物理化学条件的对比.结果表明,窟窿山石英正长斑岩和磨盘山黑云母花岗岩的锆石U-Pb加权平均年龄分别为140.2±0.7 Ma和139.9±0.7 Ma,磨盘山黑云母花岗岩锡石U-Pb加权平均年龄为134.9±1.4 Ma,时代均属于早白垩世.全岩地球化学分析结果表明,这些岩石具有高硅(SiO2=64.96%~76.71%),富碱(Na2O+K2O=8.28%~9.03%),过铝质(Al2O3=12.42%~15.88%)的特点.相对富集Th、Pb、Hf等元素,亏损Nb、Ta、Ti、Sr、P等元素.轻稀土相对重稀土明显富集,Eu异常明显.窟窿山石英正长斑岩与磨盘山黑云母花岗岩在哈克图解上,随着SiO2含量增加,TiO2、FeOT、Al2O3、CaO、Na2O、P2O5含量逐渐降低,呈现较好的负相关关系,暗示二者具有同源性.但窟窿山样品的DI值为89,Sn含量为2×10‒6;磨盘山样品具有较高的DI值(96~98),Sn含量高(15×10‒6~36×10‒6).从矿物学特征反演的物理化学条件推测,窟窿山岩体经历了温度降低、氧逸度升高的过程,而磨盘山岩体在降温过程中氧逸度进一步降低.另外,在流体卤素含量上,黑云母的Ⅳ(F)、Ⅳ(Cl)指示磨盘山花岗岩(Ⅳ(F)=0.95~1.15,Ⅳ(Cl)=-3.66~-3.54)相较于窟窿山石英正长斑岩(Ⅳ(F)=1.24~1.28,Ⅳ(Cl)=-2.96~-2.52)具有更高富集程度的Cl和F含量.综上,低氧逸度、高演化程度和高的F、Cl丰度是影响北大山地区花岗岩是否含锡的重要原因.Abstract: Recently, many tin polymetallic deposits related to Cretaceous granite have been discovered in the southern part of the Great Xing'an Range. However, not all granites of this period are associated with tin deposits. To obtain a better understanding of the formation conditions of granite associated tin deposits, (Method) in this paper, the cassiterite U-Pb age, zircon U-Pb age, whole rock geochemistry and mineral chemistry analysis of the cassiterite-bearing granites (the Mopanshan area) and barren granites (the Kulongshan area) in the Beidashan pluton were carried out. The geochronology, geochemistry and physical-chemical conditions of magma evolution were compared. The U-Pb weighted average zircon ages of the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite are 140.2±0.7 Ma and 139.9±0.7 Ma, respectively, and the cassiterite U-Pb weighted average age of the Mopanshan area is 134.9±1.4 Ma. All of them are Early Cretaceous in age. The whole rock geochemical analysis results show that these rocks are rich in silicon (SiO2=64.96%-76.71%), alkali (Na2O+ K2O=8.28%-9.03%), and aluminum (Al2O3=12.42%-15.88%). For trace elements, they are relatively enriched in elements such as Th, Pb, and Hf, and deficient in elements such as Nb, Ta, Ti, Sr, and P. For rare earth elements, they show significant enriched HREEs than LREEs, and Eu negative anomaly is unusually obvious. As the content of SiO2 increases, the content of TiO2, FeOT, Al2O3, CaO, Na2O, and P2O5 gradually decreases, showing a good negative correlation, suggesting a homogeneous magmatic source. However, the DI value of the Kulongshan sample is 89 and the Sn content is 2×10-6; the Mopanshan samples have a higher DI value (96-98) and higher Sn content (15×10-6~36×10-6). Based on the physical- chemical conditions inverted from mineralogy, the Kulongshan granite has experienced a process of oxygen fugacity increase during cooling, while the oxygen fugacity of the Mopanshan granite has further decreased during the cooling process. In addition, in terms of fluid halogen content, the Ⅳ (F) and Ⅳ (Cl) of biotite indicate the Mopanshan granite (Ⅳ(F)=0.95-1.15; Ⅳ(Cl)=-3.66--3.54) compared to the Kulongshan porphyritic quartz syenite (Ⅳ(F)=1.24-1.28; Ⅳ(Cl)=-2.96--2.52) has a higher concentration of Cl and F. In summary, low oxygen fugacity, high degree of evolution, and high F and Cl abundance, are the main factors affecting enrichment of cassiterite in granite in the Beidashan area.
-
Key words:
- Great Xing'an Range /
- Cretaceous /
- granite /
- tin deposits /
- zircon /
- mineral chemistry /
- physical-chemical condition /
- petrology
-
图 1 中国东北及邻区构造分区简图(a)和大兴安岭南段锡多金属矿床分布图(b) (改自Yang et al., 2019)
Fig. 1. Sketch geotectonic unit map of Northeast China and it's neighboring areas (a) and locations of Sn-polymetallic deposits in the southern Great Xing'an Range (b) (modified after Yang et al., 2019)
图 2 大兴安岭南段北大山岩体和锡矿分布图(改自管育春等, 2017)
Fig. 2. Distribution map of Beidashan and Sn-polymetallic deposits in the southern Great Xing'an Range (modified after Guan et al., 2017)
图 8 窟窿山石英正长斑岩和磨盘山花岗岩A/CNK-A/NK(a)、K2O-SiO2图解(b)
图a底图据Maniar and Piccoli(1989);图b底图据Rickwood(1989)
Fig. 8. A/CNK-A/NK diagram (a)、K2O-SiO2 (b) of the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite
图 9 窟窿山石英正长斑岩和磨盘山黑云母花岗岩微量元素蛛网图(a)和稀土元素配分图(b)
标准化数据来自Sun and McDonough(1989)
Fig. 9. Primitive mantle-normalized trace element and chondrite-normalize REE diagramsof the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite
图 10 窟窿山石英正长斑岩和磨盘山黑云母花岗岩锆石稀土元素配分模式
Fig. 10. Chondrite-normalized REE diagrams for zircons of the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite
图 11 窟窿山石英正长斑岩和磨盘山黑云母花岗岩10TiO2-FeOT-MgO分类图解(a)和Fe2++Mn-Mg-AlⅥ+Fe3++Ti分类图解(b)
图a底图据Nachit et al.(2005);图b底图据Foster(1960)
Fig. 11. 10TiO2-FeOT-MgO (a) and Fe2++Mn-Mg-AlⅥ+Fe3++Ti (b) classifications of biotite compositions of the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite
图 14 窟窿山样品、磨盘山样品和Sn-W-Be矿床的Ⅳ(F)和Ⅳ(Cl)对比
Sn-W-Be数据来自Munoz(1984)
Fig. 14. Comparisons of Ⅳ(F) and Ⅳ(Cl) among samples from the Kulongshan area, the Mopanshan area and Sn-W-Be deposit
表 1 窟窿山石英正长斑岩和磨盘山黑云母花岗岩锆石LA⁃ICP⁃MS U⁃Pb定年结果
Table 1. LA-ICP-MS U-Pb dating results of zircon from the Kulongshan porphyritic quartz syenite and Mopanshan biotite granite
测点号 U Th Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 年龄(Ma) 谐和度(%) (10‒6) 207Pb/235U 1σ 206Pb/238U 1σ 20BDS02-3-1 166 86.9 0.52 0.048 3 0.003 5 0.146 0 0.010 0 0.021 9 0.000 5 137.7 9.1 139.8 3.2 102 20BDS02-3-2 156 67.7 0.43 0.051 6 0.004 2 0.152 0 0.012 0 0.021 6 0.000 7 143.0 10.0 138.0 4.4 97 20BDS02-3-3 173 134 0.77 0.049 9 0.004 1 0.148 0 0.012 0 0.021 7 0.000 6 139.0 10.0 138.3 3.8 99 20BDS02-3-4 322 298 0.93 0.048 2 0.003 2 0.139 2 0.008 8 0.021 0 0.000 4 131.9 7.9 133.9 2.7 102 20BDS02-3-5 373 140 0.38 0.050 6 0.003 8 0.152 0 0.012 0 0.021 9 0.000 6 144.0 10.0 139.4 4.0 97 20BDS02-3-6 141 77.5 0.55 0.049 7 0.003 7 0.151 0 0.011 0 0.022 0 0.000 6 143.0 11.0 140.0 3.5 98 20BDS02-3-7 109 41.7 0.38 0.050 1 0.004 6 0.156 0 0.013 0 0.022 9 0.000 6 146.0 12.0 145.6 3.6 100 20BDS02-3-8 204 101 0.49 0.052 0 0.003 4 0.158 0 0.011 0 0.022 1 0.000 5 148.2 9.2 140.7 3.3 95 20BDS02-3-9 262 128 0.49 0.047 0 0.002 9 0.145 8 0.009 5 0.022 4 0.000 4 137.7 8.4 143.0 2.8 104 20BDS02-3-10 162 118 0.73 0.050 7 0.004 0 0.152 0 0.011 0 0.021 9 0.000 5 143.0 10.0 139.8 3.3 98 20BDS02-3-11 98.7 62.7 0.64 0.055 6 0.006 5 0.163 0 0.018 0 0.022 0 0.000 9 151.0 16.0 140.0 5.4 93 20BDS02-3-12 154 76.1 0.49 0.050 5 0.004 7 0.161 0 0.015 0 0.023 0 0.000 6 151.0 13.0 146.5 3.8 97 20BDS02-3-13 132 65.3 0.49 0.051 6 0.004 6 0.154 0 0.013 0 0.021 8 0.000 7 144.0 12.0 139.2 4.3 97 20BDS02-3-14 114 49.2 0.43 0.051 2 0.005 5 0.153 0 0.015 0 0.022 1 0.000 7 145.0 14.0 140.8 4.6 97 20BDS02-3-15 110 42.2 0.38 0.048 4 0.005 5 0.148 0 0.015 0 0.021 8 0.000 9 139.0 14.0 139.1 5.8 100 20BDS02-3-16 192 112 0.58 0.049 9 0.004 6 0.148 0 0.012 0 0.021 8 0.000 7 140.0 11.0 138.8 4.6 99 20BDS02-3-17 182 84.4 0.46 0.052 4 0.004 5 0.155 0 0.013 0 0.021 7 0.000 7 146.0 11.0 138.1 4.1 95 20BDS02-3-18 121 57.4 0.47 0.045 2 0.004 9 0.145 0 0.016 0 0.023 4 0.000 8 136.0 14.0 149.1 4.7 110 20BDS02-3-19 100 41.2 0.41 0.050 5 0.006 9 0.145 0 0.018 0 0.022 0 0.000 8 139.0 17.0 140.3 5.1 101 20BDS02-3-20 80.1 33.6 0.42 0.048 7 0.005 8 0.152 0 0.017 0 0.022 9 0.000 8 142.0 15.0 146.1 5.2 103 20BDS02-3-21 46.2 17.6 0.38 0.048 1 0.006 5 0.148 0 0.019 0 0.023 1 0.000 9 138.0 17.0 146.9 5.8 106 20BDS02-3-22 228 118 0.52 0.050 9 0.003 4 0.152 0 0.010 0 0.021 9 0.000 5 143.1 9.0 139.6 3.4 98 20BDS02-3-23 145 100 0.69 0.052 5 0.004 7 0.154 0 0.012 0 0.022 1 0.000 6 145.0 10.0 140.9 4.0 97 20BDS02-3-24 196 136 0.69 0.047 7 0.002 7 0.143 9 0.008 2 0.021 7 0.000 5 136.1 7.3 138.1 3.3 101 20BDS05-4-1 193 71.3 0.37 0.053 1 0.004 2 0.171 0 0.013 0 0.023 7 0.000 8 159.0 11.0 150.9 5.0 95 20BDS05-4-2 513 211 0.41 0.049 7 0.002 3 0.150 0 0.007 9 0.021 7 0.000 6 141.5 6.9 138.5 3.5 98 20BDS05-4-3 741 261 0.35 0.049 5 0.002 6 0.151 1 0.008 3 0.022 0 0.000 6 142.6 7.3 140.0 3.9 98 20BDS05-4-4 302 130 0.43 0.045 5 0.002 9 0.145 2 0.009 4 0.022 9 0.000 5 137.1 8.3 145.8 3.0 106 20BDS05-4-5 408 183 0.45 0.051 2 0.002 5 0.151 2 0.007 2 0.021 7 0.000 5 142.6 6.3 138.4 3.3 97 20BDS05-4-6 168 63.8 0.38 0.051 2 0.004 6 0.152 0 0.013 0 0.021 7 0.000 7 143.0 11.0 138.5 4.4 97 20BDS05-4-7 143 51.7 0.36 0.054 5 0.005 4 0.161 0 0.014 0 0.021 8 0.000 7 151.0 13.0 138.9 4.4 92 20BDS05-4-8 242 100 0.41 0.050 1 0.002 7 0.155 2 0.008 0 0.022 6 0.000 6 146.0 7.0 144.0 3.6 99 20BDS05-4-9 637 214 0.34 0.049 5 0.002 4 0.157 3 0.008 0 0.023 0 0.000 6 148.0 7.0 146.8 4.0 99 20BDS05-4-10 182 65.3 0.36 0.049 4 0.004 0 0.147 0 0.011 0 0.022 0 0.000 8 140.0 10.0 140.0 4.9 100 20BDS05-4-11 252 90.8 0.36 0.046 1 0.003 0 0.136 4 0.008 8 0.021 5 0.000 7 129.4 7.9 137.1 4.6 106 20BDS05-4-12 466 164 0.35 0.048 7 0.002 0 0.153 6 0.006 7 0.022 6 0.000 7 144.7 5.9 144.0 4.2 100 20BDS05-4-13 166 57.3 0.34 0.049 2 0.005 0 0.144 0 0.013 0 0.021 7 0.000 7 135.0 12.0 138.1 4.3 102 20BDS05-4-14 209 83.3 0.40 0.048 2 0.003 6 0.148 0 0.011 0 0.022 3 0.000 5 139.3 9.9 142.4 3.1 102 20BDS05-4-15 289 97.1 0.34 0.048 8 0.003 1 0.147 0 0.010 0 0.021 7 0.000 7 138.9 9.2 138.2 4.3 99 20BDS05-4-16 360 132 0.37 0.050 6 0.003 1 0.153 8 0.009 0 0.021 9 0.000 7 144.7 7.9 139.6 4.4 96 20BDS05-4-17 138 44.3 0.32 0.049 2 0.004 1 0.146 0 0.011 0 0.021 9 0.000 8 137.0 10.0 139.6 5.2 102 20BDS05-4-18 222 73.3 0.33 0.050 7 0.004 3 0.154 0 0.013 0 0.021 9 0.000 8 144.0 12.0 139.8 5.0 97 20BDS05-4-19 570 219 0.38 0.049 2 0.002 6 0.154 0 0.008 6 0.022 4 0.000 5 144.9 7.4 142.7 2.8 98 20BDS05-4-20 189 72.8 0.39 0.048 1 0.004 1 0.140 0 0.011 0 0.021 6 0.000 6 134.1 9.2 137.7 3.9 103 20BDS05-4-21 654 242 0.37 0.049 4 0.002 5 0.153 6 0.008 6 0.022 2 0.000 5 144.7 7.6 141.4 2.8 98 20BDS05-4-22 490 310 0.63 0.048 7 0.002 2 0.139 0 0.005 8 0.020 8 0.000 4 131.9 5.2 132.5 2.4 100 20BDS05-4-23 616 227 0.37 0.050 0 0.002 0 0.149 7 0.005 4 0.021 8 0.000 4 142.3 5.1 139.0 2.6 98 20BDS05-4-24 576 180 0.31 0.049 3 0.002 2 0.146 5 0.006 2 0.021 7 0.000 4 138.5 5.5 138.1 2.7 100 20BDS05-4-25 156 58.3 0.37 0.051 3 0.004 7 0.149 0 0.013 0 0.021 4 0.000 8 140.0 11.0 136.2 4.8 97 表 2 磨盘山黑云母花岗岩锡石LA⁃ICP⁃MS U⁃Pb定年结果
Table 2. LA-ICP-MS U-Pb dating restules of cassiterites from the Mopanshan biotite granite
测点号 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 经207Pb校正的年龄(Ma) 206Pb/238U 1σ 20BDS05-4-3 0.047 3 0.002 2 0.141 7 0.005 2 0.021 3 0.000 2 136.7 1.845 8 20BDS05-4-4 0.056 4 0.003 3 0.169 4 0.009 1 0.021 4 0.000 3 132.8 2.657 3 20BDS05-4-6 0.047 6 0.003 0 0.141 0 0.007 7 0.021 3 0.000 2 136.6 2.168 5 20BDS05-4-7 0.050 0 0.002 0 0.146 2 0.005 2 0.021 0 0.000 2 133.3 1.860 7 20BDS05-4-9 0.053 8 0.002 4 0.162 2 0.007 4 0.021 6 0.000 2 135.3 1.738 4 20BDS05-4-10 0.054 9 0.002 1 0.164 3 0.006 1 0.021 6 0.000 3 134.7 2.117 8 20BDS05-4-11 0.101 3 0.002 3 0.358 1 0.008 0 0.025 6 0.000 2 131.9 9.119 2 20BDS05-4-13 0.063 8 0.001 6 0.204 9 0.005 4 0.023 3 0.000 1 140.4 2.573 4 20BDS05-4-14 0.070 2 0.019 5 0.166 9 0.009 1 0.021 3 0.001 5 125.1 13.372 4 20BDS05-4-15 0.060 6 0.001 4 0.179 6 0.004 2 0.021 5 0.000 1 131.1 1.997 2 20BDS05-4-17 0.050 6 0.001 7 0.149 0 0.005 3 0.021 3 0.000 2 135.1 1.357 6 表 3 窟窿山石英正长斑岩和磨盘山花岗岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Major (%) and trace (10‒6) element compositions from the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite
窟窿山石英正长斑岩 磨盘山黑云母花岗岩 样品号 20BDS02-3 20BDS05-09-31 20BDS05-10-10 20BDS05-10-14 SiO2 64.96 75.81 76.67 76.71 TiO2 0.49 0.08 0.09 0.08 Al2O3 15.88 12.42 12.52 12.60 Fe2O3 1.01 0.33 0.44 0.29 FeO 3.06 0.86 0.75 0.74 MnO 0.05 0.03 0.03 0.02 MgO 1.24 0.05 0.07 0.05 CaO 1.52 0.52 0.08 0.08 Na2O 4.04 3.69 3.29 3.51 K2O 4.99 4.85 4.99 5.34 P2O5 0.12 0.01 0.01 0.01 LOI 1.70 0.72 0.71 0.59 Mg# 41 9 12 10 A/CNK 1.07 1.01 1.14 1.08 DI 88.83 97.75 96.39 97.29 La 30.50 62.60 50.30 39.60 Ce 65.80 141.00 110.00 83.90 Pr 8.02 15.45 10.95 8.21 Nd 30.60 50.10 32.60 23.50 Sm 6.28 10.40 5.13 3.57 Eu 1.24 0.18 0.13 0.12 Gd 5.30 9.82 3.26 1.95 Tb 0.78 1.71 0.50 0.32 Dy 4.37 11.10 2.98 1.82 Ho 0.84 2.40 0.59 0.36 Er 2.20 7.46 1.69 1.14 Tm 0.32 1.28 0.29 0.22 Yb 2.16 8.71 1.97 1.39 Lu 0.35 1.33 0.30 0.23 V 48.00 < 5 6.00 < 5 Cr 10.00 < 10 < 10 < 10 Ni 3.70 0.40 0.30 0.40 Ga 24.40 26.80 25.80 25.10 Rb 109.00 574.00 606.00 575.00 Sr 321.00 22.80 18.00 20.50 Y 23.30 77.10 13.30 9.40 Zr 393.00 158.00 173.00 180.00 Nb 9.80 30.00 25.70 23.80 Ba 1 110.00 57.10 62.80 55.70 Hf 8.70 6.60 6.80 8.00 Ta 0.50 4.70 3.80 3.80 Pb 20.70 68.20 26.80 20.30 Th 9.15 93.10 75.90 71.20 U 2.42 16.10 27.80 14.75 Sn 2.00 15.00 17.00 36.00 ΣREE 157.52 323.36 220.56 166.21 LREE 142.44 279.73 209.11 158.90 HREE 15.08 43.63 11.45 7.31 LREE/HREE 9.45 6.41 18.26 21.74 表 4 窟窿山石英正长斑岩和磨盘山黑云母花岗岩锆石微量(10‒6)分析结果
Table 4. Results of trace element (10‒6) of zircon from the Kulongshan porphyritic quartz syenite and Mopanshan biotite granite
测点号 Ti Nb Ta Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu LREE-I指标 T(℃) lgƒO2 窟窿山 1 8.1 1.3 0.4 702.0 13.4 31.0 4.3 21.7 8.1 0.1 21.2 6.9 75.3 27.0 107.5 22.0 199.0 36.4 13 774.7 -16.0 2 5.2 1.0 0.4 638.0 - 5.2 0.1 1.1 3.4 0.1 19.1 5.7 65.1 23.0 103.7 19.3 179.0 33.0 78 732.5 -12.4 3 10.1 0.7 0.3 781.0 0.3 5.0 0.2 2.8 4.0 0.3 21.3 6.6 78.9 28.7 115.0 23.9 205.0 39.3 47 797.1 -15.4 4 13.9 2.3 0.5 3 800.0 0.1 6.9 0.9 17.9 37.7 1.9 152.0 46.1 483.0 152.0 576.0 99.0 884.0 157.0 40 831.3 -23.2 5 1.1 2.4 0.8 1 130.0 0.0 4.7 0.0 0.9 4.0 0.1 27.7 8.6 117.0 39.9 162.0 37.3 363.0 66.8 155 607.9 -11.5 6 9.8 0.6 0.3 1 338.0 0.0 3.2 0.2 4.9 9.4 0.4 46.1 13.4 152.0 50.2 205.0 39.9 358.0 61.2 47 794.0 -20.2 7 8.7 0.5 0.3 531.0 - 2.1 0.1 1.2 2.7 0.2 14.0 4.4 49.4 18.8 77.4 16.6 149.5 30.3 60 781.9 -15.6 8 7.1 1.9 0.7 768.0 - 6.7 0.0 1.4 3.6 0.0 20.8 6.3 79.4 25.5 112.1 24.0 196.0 39.7 79 761.8 -12.1 9 2.6 1.7 0.7 834.0 - 8.1 0.0 1.8 3.9 - 22.7 7.3 88.6 29.4 125.0 25.2 227.0 39.1 72 672.8 -12.2 10 13.8 0.1 0.0 1 056.0 - 3.5 0.3 3.2 6.5 1.8 27.7 9.1 102.1 37.7 158.5 35.9 307.0 62.3 47 830.5 -17.4 11 11.5 0.2 0.2 1 305.0 0.0 2.1 0.3 5.2 10.0 0.9 44.1 13.8 146.0 48.0 180.0 37.0 298.0 58.9 43 810.7 -22.3 12 4.9 1.1 0.5 656.0 - 5.6 0.1 1.2 2.7 0.1 18.7 5.5 64.5 23.8 96.4 19.9 178.0 34.7 78 727.1 -11.9 13 7.6 0.7 0.5 719.0 - 3.7 0.1 1.9 3.9 0.1 18.3 6.1 69.3 24.7 107.8 22.8 201.0 37.8 55 768.4 -15.1 14 10.1 0.8 0.4 551.0 - 3.3 0.0 1.2 2.5 0.1 13.6 4.7 56.7 20.6 84.7 18.6 159.0 30.8 69 797.1 -13.7 15 4.7 0.8 0.5 739.0 - 2.8 0.1 2.0 4.5 0.2 22.3 7.9 81.0 26.7 109.0 20.7 226.0 38.0 60 723.3 -16.9 16 6.0 0.9 0.4 1 930.0 0.0 5.2 0.4 7.5 14.9 0.6 71.8 20.4 232.0 72.1 280.0 52.5 426.0 87.4 47 745.7 -20.5 17 5.6 1.1 0.4 658.0 - 6.0 0.1 1.5 3.1 0.0 17.3 5.7 65.6 26.0 105.5 20.5 181.0 34.8 64 739.3 -12.5 18 9.2 0.8 0.2 653.0 - 3.4 0.1 1.7 2.5 0.1 18.1 5.6 61.6 23.2 97.5 20.0 181.0 32.3 61 787.5 -14.6 19 6.1 0.5 0.2 523.0 - 3.1 0.1 0.9 2.6 0.1 12.2 4.2 49.4 18.6 78.3 16.0 134.0 27.6 77 747.3 -13.1 20 9.9 0.5 0.2 516.0 - 2.6 0.0 0.9 2.1 0.0 12.1 4.0 50.0 18.9 78.7 15.4 156.0 27.1 83 795.1 -13.2 21 13.2 0.2 0.1 428.0 - 1.3 0.1 0.9 2.4 0.2 12.2 3.7 39.8 14.9 63.9 12.9 123.4 24.3 63 825.6 -16.6 22 8.9 1.6 0.6 763.0 - 6.4 0.1 1.8 4.3 0.0 20.2 7.1 82.0 26.9 117.1 25.0 220.0 38.1 65 784.2 -13.2 23 13.0 0.9 0.3 1 840.0 0.0 2.6 0.4 6.8 14.5 1.1 66.9 21.4 204.0 73.3 281.0 52.7 456.0 81.9 44 823.9 -22.6 24 7.0 1.1 0.4 803.0 - 4.4 0.1 2.0 4.4 0.2 25.0 7.1 87.1 28.8 121.8 24.3 221.0 39.1 64 760.4 -15.2 磨盘山 1 12.8 1.1 0.5 648.0 - 6.3 0.0 1.2 3.7 0.3 15.8 5.2 59.0 22.4 100.3 19.8 172.0 34.5 65 824.8 -12.6 2 6.6 2.7 1.5 959.0 3.0 21.9 1.0 6.4 5.2 0.3 22.5 8.3 94.3 33.1 143.0 31.6 275.0 51.5 33 822.3 -16.9 3 5.5 3.6 2.7 978.0 2.0 25.6 0.6 3.2 3.2 0.2 18.8 7.2 90.0 38.6 158.0 33.4 317.0 52.5 57 754.8 -17.2 4 11.2 1.2 0.9 739.0 0.1 9.7 0.1 1.5 3.6 0.3 18.9 6.8 70.3 26.6 110.6 23.1 204.0 37.8 66 737.6 -13.2 5 5.6 2.1 1.2 951.0 2.4 19.2 1.0 4.9 5.2 0.2 27.2 7.8 92.9 33.4 142.0 29.9 273.0 48.3 37 807.9 -15.9 6 12.0 1.2 0.4 574.0 - 6.2 0.0 1.5 2.9 0.2 11.6 4.3 56.0 22.0 87.0 17.1 172.0 25.6 56 739.3 -17.2 7 11.9 0.6 0.4 471.0 - 4.4 0.1 0.8 1.5 0.2 13.7 4.2 44.1 16.2 71.0 14.2 146.0 26.1 83 815.3 -17.1 8 12.5 1.2 0.7 729.0 - 7.8 0.0 1.3 3.4 0.3 19.8 6.5 67.5 26.4 102.3 22.9 197.0 38.8 74 814.4 -15.8 9 5.3 2.8 2.5 804.0 - 14.6 0.0 0.9 2.6 0.1 12.9 6.0 62.5 26.7 114.2 25.3 265.0 45.0 92 819.7 -16.0 10 9.8 0.6 0.5 497.0 - 7.0 0.0 0.7 2.1 0.2 11.1 4.5 50.6 17.9 74.2 15.0 149.0 27.8 93 794.0 -14.1 11 9.6 1.0 0.5 653.0 - 6.0 0.1 1.5 3.5 0.3 17.4 5.6 62.4 21.8 97.6 19.4 202.0 34.4 59 791.9 -17.6 12 6.1 3.2 1.5 801.0 - 13.9 0.0 1.5 3.4 0.1 17.2 6.2 75.8 27.3 118.4 25.9 235.0 42.9 73 747.3 -13.9 13 12.8 1.4 0.6 684.0 - 5.8 0.1 1.5 3.3 0.2 15.0 5.7 64.2 23.7 101.8 21.1 209.0 37.0 61 822.3 -17.4 14 9.0 1.3 0.7 734.0 - 6.8 0.2 1.6 4.1 0.4 22.1 6.4 69.9 27.1 113.3 22.3 224.0 38.0 60 785.3 -17.7 15 5.6 1.8 1.1 765.0 - 10.7 0.0 1.1 3.3 0.1 16.2 6.0 68.2 27.8 114.0 23.4 211.0 38.4 85 739.3 -14.0 16 13.1 1.5 0.9 832.0 - 11.6 0.1 1.3 3.2 0.2 19.0 6.4 78.1 27.7 123.6 26.6 231.0 45.3 84 824.8 -14.1 17 9.4 1.1 0.3 448.0 - 4.0 - 0.4 1.8 0.2 9.1 3.6 39.1 14.2 61.6 13.9 131.0 23.2 118 789.7 -14.2 18 5.6 1.6 0.8 605.0 - 8.9 0.0 0.8 2.0 0.2 15.1 4.6 58.1 22.7 98.7 19.6 201.0 34.4 104 739.3 -12.9 19 3.4 2.8 1.9 917.0 2.0 22.1 0.8 5.5 4.8 0.0 23.5 7.5 84.6 33.1 137.1 31.0 268.0 51.6 33 695.0 -16.5 20 5.2 0.9 0.5 632.0 - 6.8 0.0 0.6 2.2 0.2 15.8 5.4 66.9 22.4 87.7 18.4 177.0 32.8 140 732.5 -13.8 21 4.8 3.1 1.9 1 009.0 - 15.5 - 1.1 3.6 0.1 22.8 7.4 98.0 35.6 154.0 30.9 296.0 51.2 116 725.2 -12.6 22 11.9 1.9 0.9 1 013.0 - 12.8 0.1 2.3 4.3 0.4 26.8 9.0 101.1 36.9 147.0 31.2 292.0 52.9 67 814.4 -16.1 23 3.6 3.0 1.7 941.0 - 15.6 0.0 1.2 3.2 0.1 21.6 7.5 87.3 32.5 140.0 30.3 263.0 50.9 99 699.9 -12.7 24 4.8 4.3 1.9 1371.0 - 15.8 0.1 1.8 5.1 0.2 31.0 10.9 124.0 47.9 212.0 44.6 419.0 79.9 93 725.2 -14.1 25 9.2 0.7 0.6 633.0 - 8.2 0.0 1.0 2.8 0.3 14.7 5.7 64.8 20.3 95.2 21.0 171.0 32.6 91 787.5 -14.7 注:窟窿山样号20BDS02; 磨盘山样号20BDS05. LREE-I指标小于50的数据, 表明存在蜕变和包裹体的影响.温度氧逸度数据未在后续讨论中使用. 表 5 窟窿山和磨盘山岩体黑云母主量元素组成(%)
Table 5. Major elements (%) of biotite from the Kulongshan and Mopanshan area
窟窿山 磨盘山 样品号 20BDS02 20BDS05 SiO2 35.36 35.22 35.64 36.10 35.54 35.44 35.32 35.49 35.37 35.88 TiO2 3.11 3.13 3.19 3.13 2.53 2.53 2.44 2.36 2.52 2.30 Al2O3 18.45 17.54 17.33 18.60 18.41 18.40 17.91 18.27 18.34 18.23 FeOT 27.23 26.45 27.53 26.40 27.00 27.32 26.23 26.78 26.69 27.04 MnO 0.76 0.75 0.79 0.55 0.34 0.29 0.31 0.32 0.37 0.33 MgO 2.60 2.60 2.61 2.65 1.54 1.57 1.55 1.47 1.60 1.43 Na2O 0.20 0.18 0.22 0.20 0.07 0.15 0.12 0.17 0.16 0.17 K2O 8.67 8.57 8.61 8.49 8.64 8.74 8.60 8.85 8.94 8.66 F 1.07 1.15 1.07 1.17 1.42 1.24 1.59 1.47 1.81 1.79 Cl 0.07 0.06 0.03 0.05 0.33 0.30 0.32 0.32 0.34 0.38 O=F, Cl 0.47 0.50 0.46 0.50 0.67 0.59 0.74 0.69 0.84 0.84 H2Ocalc 3.32 3.21 3.30 3.29 2.99 3.09 2.84 2.94 2.77 2.78 Totalcalc 100.37 98.36 99.86 100.15 98.13 98.48 96.48 97.76 98.06 98.15 离子数基于22个氧原子 Si 5.52 5.60 5.60 5.60 5.69 5.65 5.75 5.71 5.70 5.77 Al(Ⅳ) 2.48 2.40 2.40 2.40 2.31 2.35 2.25 2.29 2.30 2.23 Al(Ⅵ) 0.91 0.89 0.81 1.00 1.16 1.11 1.19 1.18 1.19 1.22 Ti 0.36 0.37 0.38 0.37 0.30 0.30 0.30 0.29 0.31 0.28 Mn 0.10 0.10 0.10 0.07 0.05 0.04 0.04 0.04 0.05 0.05 Mg 0.61 0.62 0.61 0.61 0.37 0.37 0.38 0.35 0.38 0.34 Fe2+ 3.02 2.98 3.08 2.87 3.04 3.08 3.00 3.04 3.04 3.06 Na 0.06 0.06 0.07 0.06 0.02 0.05 0.04 0.05 0.05 0.05 K 1.73 1.74 1.73 1.68 1.76 1.78 1.79 1.82 1.84 1.78 T(℃) 658.93 663.28 664.02 659.37 627.51 626.76 624.17 616.34 628.18 610.98 lgƒO2 -10.50 -10.50 -12.74 -11.42 -19.08 -19.11 -19.19 -19.46 -19.06 -19.64 Ⅳ(F) 1.27 1.24 1.28 1.24 1.08 1.15 1.02 1.06 0.95 0.96 Ⅳ(Cl) -2.96 -2.87 -2.52 -2.85 -3.59 -3.54 -3.60 -3.58 -3.63 -3.66 -
[1] Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525-541. https://doi.org/10.1093/petrology/35.2.525 [2] Bell, E. A., Boehnke, P., Barboni, M., et al., 2019. Tracking Chemical Alteration in Magmatic Zircon Using Rare Earth Element Abundances. Chemical Geology, 510(1): 56-71. https://doi.org/10.1016/j.chemgeo.2019.02.027 [3] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [4] Cao, H. W., 2015. Study on the Relationship between Mesozoic-Cenozoic Magmatic Rock Evolution and Mineralization in the Teng-Liang Tin Ore Belt in Western Yunnan (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [5] Chelle-Michou, C., Chiaradia, M., 2017. Amphibole and Apatite Insights into the Evolution and Mass Balance of Cl and S in Magmas Associated with Porphyry Copper Deposits. Contributions to Mineralogy and Petrology, 172(11-12): 1-26. https://doi.org/10.1007/s00410-017-1417-2 [6] Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2010. The Geochemical Characteristics of Biotites and Their Constraints on Uranium Mineralization in Guidong Pluton. Bulletin of Mineralogy, Petrology and Geochemistry, 29(4): 355-363 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2010.04.005 [7] Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 [8] Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. United States Government Printing Office, Washington D. C. . [9] Guan, Y. C., Yang, Z. F., Zhu, X. Y., et al., 2017. Petrogenesis and Geological Significance of the Beidashan Complex Rockmass, Inner Mongolia. Mineral Exploration, 8(6): 1054-1068 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2017.06.014 [10] Henry, D. J., Guidotti, C. V., Thomson, J. A., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2-3): 316-328. https://doi.org/10.2138/am.2005.1498 [11] Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2006. New Type of Tin Mineralization Related to Granite in South China: Evidence from Mineral Chemistry, Element and Isotope Geochemistry. Acta Petrologica Sinica, 22(10): 2509-2516 (in Chinese with English abstract). [12] Li, C. Y., Zhang, R. Q., Ding, X., et al., 2016. Dating Cassiterite Using Laser Ablation ICP-MS. Ore Geology Reviews, 72: 313-322. https://doi.org/10.1016/j.oregeorev.2015.07.016 [13] Li, W. K., Cheng, Y. Q., Yang, Z. M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542-2555. https://doi.org/10.1029/2019GC008273 [14] Li, Y., Xu, L. Q., Li, T. D., et al., 2020. Geochronology, Zircon Trace Element and Lu-Hf Isotope Characteristics of the Biotite Granite and Their Geological Significance from Daolundaba Cu Polymetallic Deposit, Southern Great Hinggan Ling, China. Earth Science, 45(7): 2585-2597 (in Chinese with English abstract). [15] Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract). [16] Linnen, R. L., Williams-Jones, A. E., 1995. Genesis of a Magmatic Metamorphic Hydrothermal System: The Sn-W Polymetallic Deposits at Pilok, Thailand. Economic Geology, 90(5): 1148-1166. https://doi.org/10.2113/gsecongeo.90.5.1148 [17] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [18] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [19] Ludwig, K. R., 2012. Isoplot: A Geochronological Toolkit for Microsoft Excel: Special Publication 5. Berkeley Geochronology Center, Berkeley. [20] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 [21] Mei, W., Lü, X. B., Wang, X. D., et al., 2020. Alteration, Mineralization and Genesis of Huanggang Skarn Iron-Tin Polymetallic Deposit, Southern Great Xing'an Range. Earth Science, 45(12): 4428-4445 (in Chinese with English abstract). [22] Munoz, J. L., 1984. F-OH and Cl-OH Exchange in Micas with Applications to Hydrothermal Ore Deposits. Reviews in Mineralogy, 13(1): 469-493. [23] Nachit, H., Ibhi, A., Abia, E. H., et al., 2005. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geoscience, 337(16): 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002 [24] Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618 [25] Pettke, T., Audétat, A., Schaltegger, U., et al., 2005. Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia): Part Ⅱ: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220(3-4): 191-213. https://doi.org/10.1016/j.chemgeo.2005.02.017 [26] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [27] Shao, J. D., Wang, S. G., Zhao, W. T., et al., 2007. Geological Characteristics and Prospecting Potential in Daxinganling Region. Geology and Resources, 16(4): 252-256, 262 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2007.04.002 [28] Štemprok, M., 1990. Solubility of Tin, Tungsten and Molybdenum Oxides in Felsic Magmas. Mineralium Deposita, 25(3): 205-212. https://doi.org/10.1007/BF00190382 [29] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [30] Tang, P., Tang, J. X., Zheng, W. B., et al., 2017. Progress in Study of Mineral Chemistry of Magmatic and Hydrothermal Biotites. Mineral Deposits, 36(4): 935-950 (in Chinese with English abstract). [31] Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032 [32] Wang, J. B., Wang, Y. W., Wang, L. J., 2005. Tin-Polymetallic Metallogenic Series in the Southern Part of Da Hinggan Mountains, China. Geology and Prospecting, 41(6): 15-20 (in Chinese with English abstract). [33] Wones, D. R., 1965. Stability of Biotite: Experiment, Theory, and Application. American Mineralogist, 50(9): 1228-1272. [34] Yang, F., Sun, J. G., Wang, Y., et al., 2019. Geology, Geochronology and Geochemistry of Weilasituo Sn-Polymetallic Deposit in Inner Mongolia, China. Minerals, 9(2): 104-132. https://doi.org/10.3390/min9020104 [35] Yavuz, F., 2007. WinAmphcal: A Windows Program for the IMA-04 Amphibole Classification. Geochemistry, Geophysics, Geosystems, 8(1): Q01004. https://doi.org/10.1029/2006GC001391 [36] Yuan, S. D., Peng, J. T., Hao, S., et al., 2011. In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002 [37] Zeng, Q. D., Liu, J. M., Li, B. Y., et al., 2015. Types, Characteristics and Prospecting Potential of Tin Polymetallic Mineralization in the Central-Southern Part of Daxing'anling. Acta Mineralogica Sinica, 35(S1): 96-97(in Chinese with English abstract). [38] Zhai, D. G., Liu, J. J., Li, J. M., et al., 2016. Geochronological Study of Weilasituo Porphyry Type Sn Deposit in Inner Mongolia and Its Geological Significance. Mineral Deposits, 35(5): 1011-1022 (in Chinese with English abstract). [39] Zhu, X. Y., Zhang, Z. H., Fu, X., et al., 2016. Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia. Geology in China, 43(1): 188-208 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2016.01.014 [40] 曹华文, 2015. 滇西腾‒梁锡矿带中‒新生代岩浆岩演化与成矿关系研究(博士学位论文). 北京: 中国地质大学. [41] 陈佑纬, 毕献武, 胡瑞忠, 等, 2010. 贵东岩体黑云母成分特征及其对铀成矿的制约. 矿物岩石地球化学通报, 29(4): 355-363. doi: 10.3969/j.issn.1007-2802.2010.04.005 [42] 管育春, 杨宗锋, 祝新友, 等, 2017. 内蒙古北大山杂岩体成因及其地质意义. 矿产勘查, 8(6): 1054-1068. doi: 10.3969/j.issn.1674-7801.2017.06.014 [43] 蒋少涌, 赵葵东, 姜耀辉, 等, 2006. 华南与花岗岩有关的一种新类型的锡成矿作用: 矿物化学、元素和同位素地球化学证据. 岩石学报, 22(10): 2509-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610010.htm [44] 李岩, 许立权, 李廷栋, 等, 2020. 大兴安岭南段道伦达坝黑云母花岗岩成岩时代、锆石微量元素、Lu-Hf同位素特征及地质意义. 地球科学, 45(7): 2585-2597. doi: 10.3799/dqkx.2020.099 [45] 凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm [46] 梅微, 吕新彪, 王祥东, 等, 2020. 大兴安岭南段黄岗矽卡岩型铁锡多金属矿床蚀变矿化特征及其成因. 地球科学, 45(12): 4428-4445. doi: 10.3799/dqkx.2020.298 [47] 邵积东, 王守光, 赵文涛, 等, 2007. 大兴安岭地区成矿地质特征及找矿前景分析. 地质与资源, 16(4): 252-256, 262. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200704003.htm [48] 唐攀, 唐菊兴, 郑文宝, 等, 2017. 岩浆黑云母和热液黑云母矿物化学研究进展. 矿床地质, 36(4): 935-950. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704010.htm [49] 王京彬, 王玉往, 王莉娟, 2005. 大兴安岭南段锡多金属成矿系列. 地质与勘探, 41(6): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200506002.htm [50] 曾庆栋, 刘建明, 李泊洋, 等, 2015. 大兴安岭中南段锡多金属矿化类型、特征及找矿潜力. 矿物学报, 35(S1): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1072.htm [51] 翟德高, 刘家军, 李俊明, 等, 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605009.htm [52] 祝新友, 张志辉, 付旭, 等, 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征. 中国地质, 43(1): 188-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601014.htm