Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet
-
摘要: 次玛班硕矿床是近年来在冈底斯西段新发现的斑岩型铜矿,距朱诺超大型斑岩铜矿床西南约10 km,周围分布着北姆朗、落布岗木、懂师布等矿床,为朱诺铜多金属矿集区的重要组成部分.为了进一步明确次玛班硕找矿潜力及勘查方向,本次对该矿床开展了系统的锆石U-Pb年代学和锆石微量元素分析、精细的岩芯蚀变-矿化编录以及详细的岩相学观察.研究发现次玛班硕铜矿主成矿期中新世岩体为一套复式杂岩体,分别由细粒二长花岗斑岩(F斑岩:16±0.30 Ma)、粗粒二长花岗斑岩(C斑岩:15.89±0.06 Ma)、含角闪石二长花岗斑岩(H斑岩:15.81±0.06 Ma)、闪长玢岩和二长花岗岩(15.51±0.07 Ma)组成,且不同期次岩浆沉淀Cu金属量差异较大.锆石Ce4+/Ce3+(平均值190)和10 000×(Eu/Eu*)/Y(平均值13)比值指示次玛班硕中新世各岩体,氧逸度和含水性均高于朱诺矿床.次玛班硕热液演化可划分为4个阶段和14种脉体,根据次玛班硕矿床蚀变-矿化对应关系,铜主要沉淀于钾硅酸盐化阶段,特别是与黑云母化密切相关,青磐岩化阶段亦沉淀部分的铜,绢英岩化阶段沉淀最少.与经典的斑岩铜矿蚀变-矿化分带模式不同,次玛班硕铜矿表现出深部钾硅酸盐化被青磐岩化强烈叠加和部分高温脉体穿插低温蚀变的反常特征,证明存在多期次岩浆-热液过程,为成矿提供了源源不断的热动力、成矿物质和成矿流体,形成了各种蚀变相互叠加的复杂热液系统.分布于次玛班硕矿区北部的F斑岩为主要致矿岩体.矿区北部蚀变-矿化作用强而南部较弱,且深部发育强烈的青磐岩化蚀变.综合分析认为,次玛班硕矿床还具有较大的找矿潜力,下一步勘查方向应以矿区深部和北部为主,重点关注F斑岩和C斑岩且发育钾硅酸盐化的部位.Abstract: The Cimabanshuo is a newly discovered porphyry copper deposit in the western part of the Gangdese belt in Tibet. It is located about 10 km southwest of the super-large Zhunuo porphyry copper deposit, which is surrounded by the Beimulang, Luobugangmu, and Dongshibu deposits. These deposits are an important part of the Zhunuo copper ore-concentrated district. To further clarify the prospecting potential and exploration direction of the Cimarbanshuo, a systematic zircon U-Pb geochronology analysis and zircon trace element analysis, elaborate alteration-mineralization cataloging of the drilling, and detailed petrographic observations were carried out for the deposit. The study shows that the Miocene intrusions of the main ore-forming period of the Cimabanshuo copper deposit were a composite pluton, consisting of fine-grained monzonite granite porphyry (F porphyry: 16±0.30 Ma), coarse-grained monzonite porphyry (C porphyry: 15.89±0.06 Ma), hornblende monzonite granite porphyry (H porphyry: 15.81±0.06 Ma), diorite porphyry, and monzonitic granite (15.51±0.07 Ma). Different magmas contribute variously to mineralization. The ratios of zircon Ce4+/Ce3+ (average 190) and 10 000×(Eu/Eu*)/Y (average 13) indicate that the oxygen fugacity and water content of the Miocene rocks in the Cimabanshuo are higher than those in the Zhunuo deposit. The hydrothermal evolution of the Cimabanshuo can be divided into 4 stages and 14 types of veins. According to the correspondence between alteration and mineralization at Cimabanshuo, it concludes that copper mainly precipitates in the K-silicate alteration stage, especially closely related to biotite alteration. Propylitic alteration also contributes to part of the copper and phyllic alteration stage contains the least amount of Cu. Compared with the classic alteration-mineralization zoning model of porphyry copper systems, the Cimabanshuo exhibits some abnormal characteristics, such as a strong superposition of deep K-silicate alteration by propylitic alteration and the low-temperature alteration was cutting by high-temperature veins, indicating that there are multiple stages of magma-hydrothermal processes, which provide a steady stream of thermodynamics, ore-forming materials, and ore-forming fluids for mineralization. The F porphyry is the main mineralizing intrusion, which is distributed in the northern part of the Cimabanshuo deposit.The alteration-mineralization in the north of the mining area is stronger than that in the south, and the deep development of strong propylitization alteration. In conclusion, it believes that the Cimabanshuo deposit also has great prospecting potential. The next step of the exploration should be the deeper levels and northeast direction of the mining area, focusing on the F porphyry, C porphyry, and the zones of K-silicate alteration.
-
Key words:
- alteration-mineralization style /
- miocene composite pluton /
- porphyry copper deposit /
- Cimabanshuo /
- Tibet /
- petrology
-
图 1 冈底斯主要斑岩铜矿床分布
BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-永珠-嘉黎蛇绿混杂岩带;GLZCF.噶尔-隆格尔-扎日南木错断裂带;LMF.洛巴堆-米拉山断裂;IYZSZ.雅鲁藏布江缝合带;据郑有业等(2021a)
Fig. 1. Distribution of the main porphyry copper deposits in Gangdise belt
图 4 次玛班硕铜矿成岩-成矿演化序列
次玛班硕辉钼矿年龄据郑有业等(2021a);次玛班硕岩体数据除F斑岩和花岗闪长斑岩外,其余为本次研究,朱诺岩体数据据吴松(2016)
Fig. 4. Magma evolution sequence at Cimabanshuo
图 6 次玛班硕中新世复式杂岩体地质体特征
a.F斑岩手标本特征;b.F斑岩镜下特征;c.F斑岩发育梳状石英脉;d.F斑岩发育线性石英眼;e.C斑岩切穿F斑岩;f.C斑岩手标本特征;g.C斑岩镜下特征;h.H斑岩手标本特征;i.H斑岩镜下特征;j.H斑岩切穿C斑岩;k.二长花岗岩手标本特征;i.二长花岗岩长石蚀变为石英-绢云母;m.二长花岗岩中长石发生次生加大边;n.二长花岗岩发育脉状岩枝;o.二长花岗岩发育肠状脉体;p.闪长玢岩手标本特征;q.闪长玢岩镜下特征;r.闪长玢岩发育绢英岩化;Bt.黑云母;Kfs.钾长石;Qtz.石英;Pl.斜长石;Ser.绢云母;Hbl.角闪石
Fig. 6. Characteristics of the Miocene composite pluton at Cimabanshuo
图 7 次玛班硕脉体特征
a.F斑岩中1c Qtz+Kfs±py脉切断1b无矿石英脉;b.F斑岩中1a Mt±cpy被1c Q+kfs切断;c.F斑岩中1a Bt±cpy脉;d.F斑岩中1f Qtz+kfs+mol±cpy±py脉;e.F斑岩中1e Qtz+kfs+anh±py±cpy脉;f.二长花岗岩中1d Qtz+kfs+bt+py±cpy两侧发育钾化晕;g.二长花岗岩中1f Qtz+kfs+mol+cpy被3a Qtz+mol+py±cpy切穿;h.F斑岩中3b Qtz+mol脉;i.C斑岩中3c Cpy±py脉;j.二长花岗岩中2a Chl脉;k.F斑岩中4a Anh+py+cpy脉;l.F斑岩中4a Anh切穿2c Qtz+chl+py±cpy脉,两侧发育绢云母晕;m.二长花岗岩中2a Chl脉被2b Epi脉切穿;n.F斑岩中2d Qtz+anh+chl±cpy±py脉;o.英安斑岩中4b Cal脉切穿4a Anh脉;Anh.硬石膏;Bt.黑云母;Cal.方解石;Chl.绿泥石;Cpy.黄铜矿;Kfs.钾长石;Mol.辉钼矿;Py.黄铁矿;Qtz.石英;Ser.绢云母
Fig. 7. The vein characteristics of the Cimabanshuo deposit
图 10 次玛班硕矿区黑云母化蚀变
a.F斑岩中发育浸染状黑云母;b.黑云母细脉;c.团块状黑云母化;d.团块状黑云母中发育黄铜矿-黄铁矿脉;e.角闪石黑云母化;f.岩浆黑云母转变为次生黑云母;g.岩浆黑云母转化为热液黑云母阶段发育黄铜矿、斑铜矿和金红石;h.浸染状热液黑云母;i.浸染状热液黑云母阶段发育黄铜矿、斑铜矿和磁铁矿;Rt.金红石;Bt.黑云母;Kfs.钾长石;Cpy.黄铜矿;Bn.斑铜矿;Py黄铁矿;Mt.磁铁矿
Fig. 10. Photographs and photomicrographs of samples of biotite alteration at Cimabanshuo
图 17 次玛班硕矿床中新世岩体锆石微量元素图解
次玛班硕各岩体锆石数据为本次研究,朱诺二长花岗斑岩体锆石数据Sun et al.(2021);a.Ce4+/Ce3+-Eu/Eu*;b.10 000×(Eu/Eu*)/Y-(Ce/Nd)/Y
Fig. 17. Pattern of zircon trace elements from Miocene pluton at Cimabanshuo
表 1 次玛班硕矿床岩性单元特征总结
Table 1. Summary of the lithological unit characteristics at Cimabanshuo
类型 斑晶 基质含量/组分 蚀变 矿化(%) 大小(mm) 含量(%) 花岗闪长斑岩 2~4 斜长石-钾长石-角闪石-黑云母(30%) 70%,石英-斜长石;副矿物磁铁矿-榍石 中-弱青磐岩化和绢英岩化 0.1~0.3 石英斑岩 2~3 石英-斜长石(15%) 85%,石英-斜长石-钾长石;矿物磁铁矿-锆石 中-弱绢英岩化 0.005~0.100 F斑岩 1~3 斜长石(20%),钾长石(10%),黑云母(5%),石英(3%),角闪石(1%) 61%,石英-钾长石-斜长石;副矿物磁铁矿-榍石-锆石-金红石-磷灰石 强-中的钾长石化和黑云母化,中-弱绢英岩化,弱青磐岩化 0.1~0.4 C斑岩 2~5 斜长石(10%),钾长石(15%),黑云母(10%),石英(8%),角闪石(3%) 54%,石英-钾长石-斜长石;副矿物磁铁矿-榍石-锆石-金红石 中-弱钾长石化和黑云母化,弱绢英岩化,弱青磐岩化 0.01~0.20 H斑岩 2~3 斜长石(20%),黑云母(10%),角闪石(15%),石英(8%) 47%,斜长石-石英;副矿物磁铁矿-榍石-锆石 强-中青磐岩化 0.01~0.10 二长花岗岩 3~6 钾长石(30%),斜长石(35%),黑云母(5%),石英(30%) 强钾长石化和黑云母化、中青磐岩化、弱绢英岩化 < 0.01 闪长玢岩 1~5 斜长石-石英-角闪石-黑云母(15%) 85%,斜长石-黑云母;副矿物磁铁矿-锆石 中-弱绢英岩化和青磐岩化 0.01~0.20 英安斑岩 0.5~2.0 斜长石-石英(15%) 75%,钾长石-斜长石-石英;副矿物磁铁矿-锆石 中-弱绢英岩化 0.01~0.10 表 2 次玛班硕矿区LA-ICP-MS锆石U-Pb同位素分析结果
Table 2. LA-ICP-MS U-Pb data of zircon from the Cimabanshuo
分析点号 Pb (10-6) Th(10-6) U (10-6) Th/U 同位素比值 年龄(Ma) 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ 206Pb/238U±1σ ZK0101-416 1 2.6 709 748.8 0.95 0.046 2±0.006 8 0.015 6±0.001 9 0.002 6±0.000 08 16.55±0.49 2 2.5 694.7 713.7 0.97 0.048 9±0.005 5 0.016 7±0.002 0 0.002 5±0.000 05 16.03±0.34 3 2.4 483 738.3 0.65 0.050 4±0.005 9 0.016 8±0.002 0 0.002 4±0.000 05 15.68±0.29 4 2.3 546.6 642.5 0.85 0.041 2±0.006 1 0.014 5±0.002 1 0.002 5±0.000 06 16.21±0.39 5 3.1 915.9 915.5 1.00 0.048 1±0.004 3 0.015 0±0.001 3 0.002 3±0.000 05 14.99±0.30 6 2.7 616 813.5 0.76 0.051 4±0.004 1 0.017 4±0.001 4 0.002 5±0.000 05 15.98±0.35 7 3.6 586.6 1 087.4 0.54 0.051 4±0.004 9 0.018 0±0.001 6 0.002 6±0.000 04 16.54±0.29 8 2.3 555.6 624.5 0.89 0.044 0±0.005 1 0.015 3±0.001 7 0.002 5±0.000 06 16.13±0.37 9 2.1 542.6 595 0.91 0.047 5±0.007 8 0.016 6±0.002 9 0.002 5±0.000 06 15.97±0.40 10 1.9 511.5 555.5 0.92 0.048 8±0.006 2 0.015 6±0.002 0 0.002 4±0.000 06 15.24±0.37 11 5.4 1883.9 1 461.7 1.29 0.043 2±0.002 9 0.014 7±0.001 0 0.002 5±0.000 05 15.98±0.31 12 2.1 547.1 648.5 0.84 0.049 7±0.006 0 0.016 6±0.002 0 0.002 4±0.000 05 15.57±0.32 13 3.1 704 972.8 0.72 0.048 1±0.004 5 0.016 6±0.001 6 0.002 5±0.000 04 16.09±0.25 14 2.1 568.5 624.3 0.91 0.050 2±0.005 2 0.016 1±0.001 7 0.002 3±0.000 05 15.07±0.33 15 2.9 737.5 897.1 0.82 0.050 0±0.004 6 0.016 5±0.001 5 0.002 4±0.000 06 15.62±0.36 16 2.3 688.4 647.1 1.06 0.046 4±0.004 9 0.016 2±0.001 8 0.002 5±0.000 06 16.30±0.37 17 2.1 518.7 600.1 0.86 0.044 4±0.009 8 0.014 3±0.003 2 0.002 4±0.000 06 15.75±0.39 18 4.0 903.3 1 231.2 0.73 0.046 2±0.003 5 0.015 7±0.001 2 0.002 5±0.000 05 16.06±0.33 19 2.1 474.4 605.2 0.78 0.050 2±0.004 4 0.017 8±0.001 7 0.002 6±0.000 06 16.57±0.40 20 2.4 625 697.2 0.90 0.049 9±0.004 9 0.016 5±0.001 6 0.002 4±0.000 06 15.53±0.38 21 2.5 691.4 760.8 0.91 0.048 8±0.004 1 0.015 7±0.001 2 0.002 4±0.000 04 15.25±0.29 22 2.8 723.7 810.7 0.89 0.052 8±0.006 2 0.016 9±0.001 6 0.002 4±0.000 06 15.66±0.40 23 2.0 481.1 625.5 0.77 0.052 3±0.005 7 0.016 7±0.001 8 0.002 4±0.000 05 15.28±0.32 24 2.3 672.7 691.8 0.97 0.042 5±0.004 4 0.013 9±0.001 4 0.002 4±0.000 06 15.49±0.41 25 2.1 573 631.1 0.91 0.050 2±0.005 5 0.016 6±0.001 8 0.002 4±0.000 05 15.59±0.31 26 2.6 565.5 798.5 0.71 0.049 6±0.004 8 0.016 3±0.001 4 0.002 5±0.000 06 15.83±0.37 27 2.8 541.2 873.5 0.62 0.047 9±0.004 0 0.016 7±0.001 5 0.002 5±0.000 05 16.20±0.33 28 2.3 629.6 675.1 0.93 0.050 7±0.005 7 0.016 1±0.001 8 0.002 4±0.000 06 15.38±0.38 29 2.3 430 685.8 0.63 0.048 5±0.005 3 0.016 8±0.001 8 0.002 5±0.000 06 16.38±0.36 30 4.5 1 161.8 1 373.7 0.85 0.042 9±0.003 6 0.014 5±0.001 2 0.002 5±0.000 04 15.99±0.27 ZK0101-194.81 1 4.6 1 364.8 1 290.2 1.06 0.049 3±0.005 0 0.017 7±0.001 8 0.002 6±0.000 06 17.04±0.39 2 3.3 709.2 1 004.4 0.71 0.050 3±0.004 8 0.016 3±0.001 4 0.002 4±0.000 05 15.51±0.29 3 2.4 494.5 708.4 0.70 0.050 1±0.004 0 0.0178±0.001 4 0.002 6±0.000 06 16.67±0.40 4 2.4 520.1 759.8 0.68 0.044 5±0.003 9 0.015 2±0.001 4 0.002 5±0.000 05 16.13±0.35 5 2.9 560.7 866.4 0.65 0.051 1±0.004 2 0.017 2±0.001 3 0.002 5±0.000 05 16.00±0.31 6 3.4 686.2 1 046.4 0.66 0.048 3±0.003 9 0.016 2±0.001 3 0.002 5±0.000 05 15.87±0.32 7 2.5 577 798.6 0.72 0.051 9±0.005 0 0.016 6±0.001 6 0.002 4±0.000 05 15.29±0.35 8 3.0 634.2 977.2 0.65 0.050 8±0.004 5 0.016 9±0.001 4 0.002 5±0.000 05 15.81±0.30 9 2.0 372.4 653.2 0.57 0.048 9±0.005 1 0.015 5±0.001 5 0.002 4±0.000 05 15.66±0.33 10 3.4 717.1 1 115.6 0.64 0.051 0±0.003 3 0.016 9±0.001 1 0.002 4±0.000 04 15.59±0.25 11 2.8 479.2 901.6 0.53 0.051 8±0.004 4 0.017 3±0.001 5 0.002 5±0.000 04 15.95±0.28 12 3.0 703.9 945.1 0.74 0.052 0±0.004 2 0.017 0±0.001 3 0.002 4±0.000 05 15.63±0.31 13 3.8 975.8 1 138.1 0.86 0.043 2±0.003 6 0.014 9±0.001 3 0.002 5±0.000 05 16.22±0.29 14 2.6 598.6 845.8 0.71 0.042 6±0.004 2 0.014 3±0.001 4 0.002 5±0.000 05 15.93±0.31 16 2.4 502.8 792.6 0.63 0.047 5±0.004 5 0.015 9±0.001 5 0.002 4±0.000 05 15.68±0.31 18 2.4 386.7 723.1 0.53 0.049 5±0.003 4 0.017 6±0.001 2 0.002 6±0.000 05 16.73±0.34 19 3.1 624.5 1 002.7 0.62 0.049 1±0.005 9 0.016 2±0.001 9 0.002 4±0.000 06 15.69±0.39 20 3.0 740.1 916.4 0.81 0.046 4±0.004 5 0.015 4±0.001 5 0.002 4±0.000 05 15.69±0.34 21 2.5 687.7 794.5 0.87 0.054 0±0.005 6 0.016 3±0.001 4 0.002 3±0.000 06 15.07±0.37 22 2.8 597.4 916.2 0.65 0.050 3±0.004 4 0.016 1±0.001 4 0.002 3±0.000 04 15.07±0.27 23 3.2 836.2 965.2 0.87 0.042 3±0.002 9 0.014 2±0.000 9 0.002 5±0.000 04 16.09±0.26 24 4.2 1084 1 116.6 0.97 0.045 0±0.003 7 0.015 6±0.001 2 0.002 6±0.000 05 16.65±0.34 25 2.9 651.1 855.3 0.76 0.049 8±0.004 2 0.017 3±0.001 5 0.002 5±0.000 04 16.19±0.29 26 5.9 943.9 1 712.1 0.55 0.047 3±0.003 1 0.018 1±0.001 2 0.002 8±0.000 04 17.85±0.28 27 2.3 472.4 706.6 0.67 0.046 1±0.004 4 0.015 8±0.001 5 0.002 6±0.000 06 16.44±0.37 28 3 692.6 886.4 0.78 0.046 4±0.006 5 0.015 5±0.001 9 0.002 5±0.000 06 16.30±0.39 29 3 752.2 892.6 0.84 0.050 4±0.004 5 0.017 0±0.001 4 0.002 5±0.000 05 16.08±0.31 31 2.3 369.8 736.8 0.50 0.047 2±0.004 5 0.016 0±0.001 5 0.002 5±0.000 04 15.91±0.29 ZK0003-185.3 1 1.6 348 493.6 0.70 0.044 7±0.006 7 0.014 9±0.002 0 0.002 5±0.000 07 16.38±0.44 2 2.1 423.6 647.7 0.65 0.050 5±0.005 1 0.016 2±0.001 5 0.002 4±0.000 06 15.73±0.38 3 54.8 103.3 620.0 0.17 0.0586±0.001 6 0.633 1±0.017 1 0.0784±0.000 72 486.4±4.28 4 8.1 415.4 748.4 0.56 0.045 7±0.004 3 0.015 3±0.001 4 0.002 5±0.000 06 15.79±0.38 5 3.1 1018 900.7 1.13 0.052 1±0.005 0 0.017 2±0.001 6 0.002 4±0.000 05 15.59±0.30 6 2.4 657.1 656.2 1.00 0.042 2±0.005 7 0.014 8±0.002 0 0.002 5±0.000 05 16.07±0.34 7 1.9 433.1 595.1 0.73 0.049 8±0.005 2 0.016 7±0.0017 0.002 4±0.000 06 15.64±0.41 8 1.9 453.8 535.6 0.85 0.045 9±0.005 9 0.016 0±0.002 2 0.002 5±0.000 06 15.94±0.40 9 1.8 369.7 523.4 0.71 0.057 0±0.006 9 0.020 2±0.002 4 0.002 6±0.000 07 16.69±0.45 10 1.6 378.3 498.4 0.76 0.045 1±0.009 2 0.015 5±0.003 2 0.002 5±0.000 08 15.90±0.50 12 2.6 735.6 818.0 0.90 0.047 4±0.004 5 0.015 1±0.001 4 0.002 3±0.000 05 15.09±0.31 13 5.1 1626.8 858.6 1.89 0.049 3±0.005 0 0.024 2±0.002 4 0.0036±0.000 06 23.19±0.36 14 2.9 828.4 782.2 1.06 0.049 3±0.004 7 0.015 7±0.001 3 0.002 4±0.000 05 15.38±0.30 16 3.2 937.9 873.9 1.07 0.044 7±0.004 8 0.015 2±0.001 7 0.002 5±0.000 06 16.23±0.37 17 2.6 684.7 796.3 0.86 0.051 3±0.004 4 0.017 2±0.001 4 0.002 5±0.000 05 16.13±0.34 18 2.3 583.3 622.1 0.94 0.051 0±0.005 2 0.017 8±0.001 7 0.002 6±0.000 06 16.77±0.40 19 2.8 943.3 807.4 1.17 0.045 0±0.004 1 0.015 0±0.001 5 0.002 4±0.000 04 15.34±0.29 20 1.6 388.5 506.2 0.77 0.050 2±0.006 4 0.016 3±0.002 0 0.002 4±0.000 06 15.44±0.39 21 2.6 649.9 726.3 0.89 0.050 4±0.004 4 0.017 0±0.001 4 0.002 5±0.000 05 16.14±0.33 22 3.1 854.2 899.2 0.95 0.050 9±0.004 8 0.016 2±0.001 3 0.002 4±0.000 05 15.47±0.34 23 2.0 537.7 624.5 0.86 0.050 3±0.007 0 0.016 2±0.002 1 0.002 4±0.000 06 15.50±0.36 24 2.1 598.4 657.2 0.91 0.049 3±0.005 7 0.015 4±0.001 8 0.002 3±0.000 06 14.84±0.41 25 2.6 707 802.4 0.88 0.050 6±0.004 4 0.016 5±0.001 4 0.002 4±0.000 05 15.42±0.30 27 2.8 485.3 938.9 0.52 0.050 0±0.004 1 0.016 0±0.001 3 0.002 4±0.000 04 15.14±0.26 28 11.5 2 772.4 3 190.8 0.87 0.047 9±0.002 1 0.017 4±0.000 8 0.002 6±0.000 03 17.01±0.21 29 2.3 760.7 770.3 0.99 0.049 2±0.005 4 0.015 1±0.001 6 0.002 3±0.000 05 14.61±0.34 30 2.0 524.3 619.6 0.85 0.046 6±0.005 1 0.014 2±0.001 4 0.002 3±0.000 05 14.65±0.34 表 3 锆石微量元素分析结果
Table 3. Trace element analyses of zircon
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Zk0003-185.3 1 0.113 27.7 0.057 0.77 1.56 0.50 7.3 2.6 31 12 60 14 155 36 2 1.489 26.0 0.277 1.57 1.19 0.40 5.2 1.7 19 8 37 9 97 24 3 0.000 3.3 0.030 0.70 3.44 0.27 32.6 15.8 249 108 534 121 1120 217 4 0.004 27.5 0.037 0.61 1.94 1.11 5.4 1.6 18 7 37 9 97 23 5 6.466 58.7 1.273 6.18 3.42 1.21 12.7 3.4 37 13 60 13 133 29 6 25.721 97.8 5.565 22.37 6.43 0.96 14.6 4.5 46 18 76 16 161 34 7 0.001 28.2 0.035 0.88 1.82 0.69 6.7 2.6 29 12 58 14 151 35 8 14.129 60.1 3.088 12.07 3.88 0.75 9.6 3.0 34 13 61 14 141 31 9 4.723 34.0 0.920 4.26 1.94 0.38 6.3 1.9 22 9 41 10 99 23 10 0.200 25.2 0.072 0.63 0.93 0.51 6.4 1.7 21 8 38 10 96 23 12 0.007 43.2 0.082 0.92 2.45 0.70 10.7 3.2 39 15 71 16 170 38 13 0.209 91.9 0.380 5.21 9.35 2.80 36.1 9.4 90 29 114 22 197 39 14 32.858 116.4 8.504 34.15 9.31 1.83 19.4 4.7 49 18 78 17 160 33 15 79.248 177.8 14.732 55.98 9.49 1.60 11.9 2.7 26 10 46 11 111 26 16 1.688 49.5 0.486 1.91 3.70 1.19 13.8 4.5 47 17 80 17 173 37 17 0.019 32.0 0.061 0.98 2.07 0.66 9.3 2.7 32 13 61 14 148 34 18 2.422 42.2 0.589 3.34 2.91 0.69 9.3 3.0 34 12 57 13 129 27 19 0.696 39.9 0.151 1.83 2.73 0.81 10.3 3.2 32 12 56 13 125 28 20 0.105 28.0 0.049 0.54 1.85 0.48 6.7 2.1 23 9 43 10 108 25 21 0.048 30.2 0.197 1.13 2.14 0.81 9.1 2.3 27 9 45 10 103 23 22 0.043 32.8 0.059 0.74 1.37 0.63 6.2 1.9 22 9 44 11 116 27 23 8.569 47.1 1.904 8.53 2.83 0.80 7.5 2.2 25 10 47 11 112 26 24 0.266 35.5 0.076 1.37 2.14 0.59 8.7 2.5 29 11 55 12 131 29 25 0.035 47.7 0.072 1.32 2.80 0.89 13.4 4.0 48 18 85 20 199 43 27 0.016 27.8 0.038 0.68 1.42 0.52 6.2 1.8 22 9 49 12 144 36 28 0.507 71.3 0.331 3.95 6.87 1.94 22.8 5.8 62 23 108 26 282 65 29 0.133 36.8 0.068 1.15 2.06 0.67 9.3 2.7 31 12 56 13 133 28 30 0.047 31.1 0.032 1.04 1.64 0.52 7.4 2.2 26 10 47 11 112 25 ZK0101-416 1 0.370 34.7 0.121 1.09 2.25 0.75 8.3 2.4 28 11 50 11 115 27 2 1.432 42.0 0.441 2.56 2.91 0.83 11.6 3.4 40 15 66 15 145 31 3 0.000 26.8 0.036 0.73 1.30 0.51 6.2 2.1 25 10 51 13 138 34 4 47.410 121.5 9.853 40.36 7.18 1.12 10.8 2.5 25 10 46 11 110 26 5 0.030 42.2 0.068 1.32 2.29 0.95 11.8 3.8 39 16 73 17 172 39 6 1.668 33.0 0.404 2.25 1.58 0.56 7.3 1.9 22 9 43 10 105 25 7 0.077 27.0 0.086 1.40 2.18 0.67 10.6 3.3 37 15 78 19 210 53 8 13.846 50.2 2.090 8.71 2.48 0.67 8.3 2.1 24 9 42 10 106 25 9 32.798 99.3 7.395 31.60 6.39 1.20 12.1 3.1 33 12 57 13 130 27 10 1.265 43.1 0.331 2.36 2.77 0.90 13.6 4.2 46 17 80 18 175 37 11 0.361 80.9 0.512 7.80 12.39 3.86 45.8 12.5 126 44 205 44 423 90 12 0.004 30.0 0.024 0.80 1.57 0.49 7.4 2.2 25 10 48 11 115 28 13 0.003 27.9 0.043 1.03 1.52 0.55 6.9 2.0 22 9 42 10 105 26 14 0.164 38.7 0.140 1.63 2.86 0.84 10.7 3.2 35 14 64 14 136 30 15 0.061 38.3 0.053 1.11 1.98 0.77 10.0 3.0 37 15 73 17 177 41 16 0.017 41.5 0.090 1.61 3.05 0.86 12.8 3.7 42 15 65 14 140 30 17 12.814 57.3 2.644 11.32 3.51 0.91 10.8 2.8 31 12 57 13 129 29 18 0.000 41.0 0.158 2.35 4.02 1.39 16.3 4.6 51 20 99 24 251 61 19 0.048 27.6 0.041 0.66 1.35 0.41 6.4 1.8 20 8 41 9 99 23 20 0.000 35.9 0.059 0.87 2.11 0.65 9.3 2.9 32 12 56 13 129 29 21 4.266 45.0 1.218 5.52 2.85 0.83 10.8 3.0 34 12 58 13 134 29 22 14.462 75.5 3.617 16.56 5.55 1.16 13.7 3.9 46 17 80 18 184 40 23 0.087 33.9 0.054 0.96 2.30 0.79 10.5 3.4 37 15 75 17 186 42 24 0.178 39.4 0.081 1.39 2.46 0.71 11.0 3.4 36 14 63 14 140 30 25 0.880 35.1 0.274 2.14 1.82 0.61 7.9 2.6 29 11 52 12 121 27 26 0.734 39.2 0.254 2.24 2.65 0.85 10.8 3.4 38 14 70 16 171 40 27 0.012 27.8 0.042 0.58 1.38 0.51 6.2 2.1 24 10 46 11 126 30 28 0.000 41.2 0.075 1.33 2.98 1.00 13.1 3.8 45 17 79 18 177 38 29 0.054 28.2 0.059 1.19 2.01 0.78 9.3 2.8 33 13 63 15 161 39 30 0.014 44.4 0.076 1.05 2.32 0.83 10.1 3.2 34 14 67 16 171 40 ZK0101-194.8 1 0.040 65.3 0.228 3.70 6.19 2.03 24.9 7.3 79 29 135 31 304 68 2 0.023 30.6 0.065 0.70 1.40 0.65 5.7 2.0 25 9 46 11 120 29 3 4.584 46.3 1.097 5.07 2.83 0.92 12.8 3.7 42 17 80 18 189 43 4 0.000 30.4 0.040 0.69 1.35 0.38 6.1 1.9 21 8 40 10 106 25 5 0.025 28.1 0.015 0.57 1.37 0.52 6.2 1.9 22 9 42 10 112 26 6 0.050 38.9 0.076 1.11 1.93 0.81 9.1 3.0 36 14 75 19 201 48 7 1.647 33.3 0.321 1.84 1.62 0.56 7.9 2.0 24 9 47 11 117 27 8 0.004 36.1 0.047 0.71 1.56 0.65 7.8 2.6 32 12 64 16 169 40 9 0.117 25.3 0.037 0.71 1.62 0.56 6.6 2.0 25 10 54 13 144 34 10 0.056 36.8 0.062 0.94 1.82 0.67 8.6 2.7 34 14 74 18 202 50 11 0.015 24.5 0.024 0.69 1.01 0.42 4.7 1.5 17 7 35 9 102 25 12 0.314 39.7 0.135 1.53 2.72 0.92 10.9 3.3 34 12 57 13 130 30 13 0.009 41.5 0.081 1.06 2.47 0.84 10.5 3.0 35 12 62 14 147 34 14 0.005 34.2 0.039 0.87 1.61 0.52 6.3 1.9 23 9 42 10 106 25 16 0.048 29.5 0.044 0.74 1.77 0.69 8.0 2.2 26 10 48 11 122 28 18 0.009 26.4 0.045 0.85 1.21 0.66 6.6 2.0 25 10 48 12 130 32 19 0.104 27.8 0.117 1.10 1.46 0.70 6.0 1.9 20 8 37 9 99 24 20 0.005 46.1 0.087 1.38 2.19 0.91 11.5 3.8 41 15 74 17 174 40 21 0.028 36.3 0.100 1.10 2.28 0.77 7.4 2.1 24 9 41 9 101 24 22 0.006 31.7 0.050 0.85 1.51 0.55 7.2 1.9 22 9 41 10 109 26 23 0.369 39.2 0.102 1.45 2.18 0.67 9.3 2.6 28 10 47 11 115 27 24 3.475 57.9 0.728 4.22 4.17 1.52 16.9 4.8 54 21 97 22 226 52 25 0.089 33.4 0.076 0.94 1.63 0.69 8.1 2.4 25 10 47 11 120 28 26 2.243 37.5 0.423 2.03 2.16 0.55 8.8 2.8 35 14 70 18 189 46 27 0.032 26.2 0.019 0.39 1.29 0.35 4.0 1.4 16 6 32 8 85 20 28 0.181 39.2 0.094 1.51 2.65 0.89 11.2 2.9 33 12 59 14 144 35 29 0.007 32.8 0.054 0.84 1.86 0.69 6.8 2.1 23 8 39 9 99 23 31 0.000 21.8 0.022 0.31 0.70 0.31 3.6 1.2 13 5 28 7 80 20 -
[1] Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5 [2] Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006 [3] Chen, X., Schertl, H. P., Hart, E., et al., 2022. Mobilization and Fractionation of Ti-Nb-Ta during Exhumation of Deeply Subducted Continental Crust. Geochimica et Cosmochimica Acta, 319: 271-295. https://doi.org/10.1016/j.gca.2021.11.024 [4] Chung, S. L., Liu, D, Ji, J., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1 [5] Copeland, P., Harrison, T. M., Kidd, W. S. F., et al., 1987. Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt, Xizang (Southern Tibet), and Its Bearing on Accommodation Mechanisms of the India-Asia Collision. Earth and Planetary Science Letters, 86(2-4): 240-252. https://doi.org/10.1016/0012-821x(87)90224-x [6] Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. https://doi.org/10.1029/2004tc001729 [7] Gao, S. B., Chen, X., Cheng, S. S., et al., 2020. Syn-Collisional Magmatism at the Longgen Pb-Zn Deposit, Western Nyainqentanglha Belt, Tibet: Petrogenesis and Implications for Regional Polymetallic Metallogeny. Ore Geology Reviews, 126: 103730. https://doi.org/10.1016/j.oregeorev.2020.103730 [8] Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929 [9] Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract). [10] Hou, Z. Q., Qu, X. M., Wang, S. X., et al., 2003. Re-Os Age for Molybdenite from the Gangdese Porphyry Copper Belt on Tibetan Plateau: Implication for Geodynamic Setting and Duration of the Cu Mineralization. Science in China (Series D), 33(7): 609-618(in Chinese). [11] Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1 [12] Huang, H. X., Liu, H., Li, G. M., et al., 2019. Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry-Epithermal Metallogenic System. Minerals, 9(8): 476. https://doi.org/10.3390/min9080476 [13] Jiang, X. J., Chen, X., Gao, S. B., et al., 2020. A New Discovery of Ag-Pb-Zn Mineralization via Modern Portable Analytical Technology and Stream Sediment Data Processing Methods in Dajiacuo Area, Western Tibet (China). Journal of Earth Science, 31(4): 668-682. https://doi.org/10.1007/s12583-020-1323-9 [14] Li, G. M., Liu, B., Qu, W. J., et al., 2005. The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re-Os Age of Porphyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490(in Chinese with English abstract). [15] Lin, B., Fang, X., Wang, Y. Y., et al., 2019. Petrologic Genesis of Ore-Bearing Porphyries in Tiegelongnan Giant Cu (Au, Ag) Deposit, Tibet and Its Implications for the Dynamic of Cretaceous Mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642-664(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.03 [16] Liu, B. D., 2010. Uncertain Risk Analysis and Uncertain Reliability Analysis. Journal of Uncertain Systems, 4(3): 163-170. [17] Lowell, J. D., Guilbert, J. M., 1970. Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 65(4): 373-408. https://doi.org/10.2113/gsecongeo.65.4.373 [18] Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Society of Economic Geologists. Special Publications Series, 19: 329-347. https://doi.org/10.5382/sp.19.13 [19] Moore, J. G., Lockwood, J. P., 1973. Origin of Comb Layering and Orbicular Structure, Sierra Nevada Batholith, California. Geological Society of America Bulletin, 84(1): 1. doi: 10.1130/0016-7606(1973)84<1:OOCLAO>2.0.CO;2 [20] Qin, K. Z., Xia, D. X., Duo, J., et al., 2014. Qulong Porphyry-Skarn Copper-Molybdenum Deposit in Tibet. Science Publishing House, Beijing(in Chinese). [21] Rees, C., Riedell, K. B., Proffett, J. M., et al., 2015. The Red Chris Porphyry Copper-Gold Deposit, Northern British Columbia, Canada: Igneous Phases, Alteration, and Controls of Mineralization. Economic Geology, 110(4): 857-888. https://doi.org/10.2113/econgeo.110.4.857 [22] Replumaz, A., Negredo, A. M., Villaseñor, A., et al., 2010. Indian Continental Subduction and Slab Break-off during Tertiary Collision. Terra Nova, 22(4): 290-296. https://doi.org/10.1111/j.1365-3121.2010.00945.x [23] Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos, 233: 27-45. https://doi.org/10.1016/j.lithos.2014.12.011 [24] Rui, Z. Y., Hou, Z. Q., Qu, X. M., et al., 2003. Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau. Mineral Deposits, 22(3): 217-225(in Chinese with English abstract). [25] Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861 [26] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [27] Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [28] Stewart, J. P., 1983. Petrology and Geochemistry of the Intrusives Spatially Associated with the Logtung W-Mo Project, South-Central Yukon Territory (Dissertation). University of Toronto, Toronto. [29] Sun, W. D., Liang, H. Y., Ling, M. X., et al., 2013. The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas. Geochimica et Cosmochimica Acta, 103: 263-275. https://doi.org/10.1016/j.gca.2012.10.054 [30] Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126-020-00970-0 [31] Tang, J. X., Li, F. J., Li, Z. J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3): 461-475(in Chinese with English abstract). [32] Wang, R., Richards, J. P., Hou, Z. Q., et al., 2014. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo±Au Mineralization. Economic Geology, 109(7): 1943-1965. https://doi.org/10.2113/econgeo.109.7.1943 [33] Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003 [34] Wu, S., 2016. The Super-Large Zhunuo Porphyry Cu Deposit in the Gangdese Belt, Southern Tibet: Magmatism and Mineralizationn (Dissertation). China University of Geosciences, Beijing, 45-46(in Chinese with English abstract). [35] Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. In: Chang, Z. S., Goldfarb, R., eds., Mineral Deposits of China Society of Economic Geologists Special Publication, Untied States, 133-187. [36] Yang, Z. M., Goldfarb, R., Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300. [37] Yang, Z. M., Hou, Z. Q., Song, Y. C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract). [38] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [39] Ying, L. J., Wang, D. H., Tang, J. X., et al., 2010. Re-Os Dating of Molybdenite from Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance. Acta Petrologica Sinica, 84(8): 1165-1174(in Chinese with English abstract). [40] Zhang, S., Zheng, Y. C., Huang, K. X., et al., 2012. Re-Os Dating of Molybdenite from Nuri Cu-W-Mo Deposit and Its Geological Significance. Mineral Deposits, 31(2): 337-346(in Chinese with English abstract). [41] Zhao, Y. Y., Liu, X. F., Liu, Y. C., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area, Tibet. Earth Science, 43(12): 4551-4565(in Chinese with English abstract). [42] Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021b. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract) [43] Zheng, Y. Y., Duo, J., Wang, R. J., et al., 2007a. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibe. Geology in China, 34(2): 324-334(in Chinese with English abstract). [44] Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract). [45] Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029 [46] Zheng, Y. Y., Sun, X., Zheng, H. T., et al., 2012. Magma Evolution of Small Intrusion and Mineralization in Gangdese, Tibet. Northwestern Geology, 45(4): 165-174(in Chinese with English abstract). [47] Zheng, Y. Y., Wang, B. S., Fan, Z. H., et al., 2002. Analysis of Tectonic Evolution in the Eastern Section of the Gangdese Terrain, Tibet and the Metallogenic Potentialities of Copper Gold Polymetal Deposits. Geological Science and Technology Information, 21(2): 55-60(in Chinese with English abstract). [48] Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021a. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(6): 1909-1940(in Chinese with English abstract). [49] Zheng, Y. Y., Zhang, G. Y., Gao, S. B., et al., 2008. Significance of the Discovery of the Sharang Porphyry Molybdenum Deposit in Tibet and Its Diagenesis and Mineralization Age Constraints. Proceedings of the Ninth National Mineral Deposit Conference. Geological Publishing House, Beijing, 674-676(in Chinese) [50] Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007b. Constraints on Diagenesis and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(21): 2542-2548(in Chinese). doi: 10.1360/csb2007-52-21-2542 [51] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15(in Chinese with English abstract). [52] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [53] 侯增谦, 曲晓明, 王淑贤, 等, 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm [54] 李光明, 刘波, 屈文俊, 等, 2005. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统: 来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490. doi: 10.3969/j.issn.1001-1552.2005.04.008 [55] 林彬, 方向, 王艺云, 等, 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903003.htm [56] 秦克章, 夏代祥, 多吉, 等, 2014. 西藏驱龙斑岩-矽卡岩铜钼矿床. 北京: 科学出版社. [57] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003. 冈底斯斑岩铜矿成矿时代及青藏高原隆升. 矿床地质, 22(3): 217-225. doi: 10.3969/j.issn.0258-7106.2003.03.001 [58] 唐菊兴, 黎风佶, 李志军, 等, 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008 [59] 吴松, 2016. 西藏冈底斯朱诺超大型斑岩铜矿床: 岩浆与成矿(博士学位论文). 北京: 中国地质大学, 45-46. [60] 杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质. 27(3): 279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002 [61] 应立娟, 王登红, 唐菊兴, 等, 2010. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义. 地质学报, 84(8): 1165-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm [62] 张松, 郑远川, 黄克贤, 等, 2012. 西藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义. 矿床地质, 31(2): 337-346. doi: 10.3969/j.issn.0258-7106.2012.02.013 [63] 赵亚云, 刘晓峰, 刘远超, 等, 2018. 西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征. 地球科学, 43(12): 4551-4565. doi: 10.3799/dqkx.2018.118 [64] 郑有业, 吴松, 次琼, 等, 2021a. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392 [65] 郑有业, 次琼, 高顺宝, 等, 2021b. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103033.htm [66] 郑有业, 多吉, 王瑞江, 等, 2007a. 西藏冈底斯巨型斑岩铜矿带勘查研究最新进展. 中国地质, 34(2): 324-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702015.htm [67] 郑有业, 张刚阳, 许荣科, 等, 2007b. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542-2548. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200721014.htm [68] 郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239. doi: 10.3321/j.issn:1005-2321.2006.04.021 [69] 郑有业, 孙祥, 郑海涛, 等, 2012. 西藏冈底斯小斑岩体演化与成矿. 西北地质, 18(3): 143-148 https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201204019.htm [70] 郑有业, 王保生, 樊子珲, 等, 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析. 地质科技情报, 21(2): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200202013.htm [71] 郑有业, 张刚阳, 高顺宝, 等, 2008. 西藏沙让斑岩型钼矿床的发现意义及成岩成矿时代约束. 第九届全国矿床会议论文集. 北京: 地质出版社, 674-676. [72] 朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001