Geochemical Composition and Origin Tracing of Structural Fissure and Pore Brine in Western Qaidam Basin
-
摘要:
柴达木盆地西部构造裂隙孔隙卤水是我国重要的深层卤水资源之一,关于其成因争论较大. 对柴达木盆地西部碱石山、红三旱四号、鸭湖和俄博梁Ⅱ号四个地区构造裂隙孔隙卤水样品的常量、微量元素以及He、Ne、Ar同位素进行了研究. 结果表明,柴达木盆地西部构造裂隙孔隙卤水钠氯系数介于0.84~0.91,钾系数介于3.19~12.35,钾氯系数介于5.26~20.61,脱硫系数介于0.33~2.00;水化学类型在Piper图上显示为Cl-Na型;同位素中3He/4He介于0.01~0.16 Ra,40Ar/36Ar介于318~352,38Ar/36Ar介于0.182~0.193,20Ne/22Ne介于9.8~10.6,21Ne/22Ne介于0.025~0.032. 由此认为基岩山区岩石风化破碎,其盐分被地下水迁移至盆地内,经蒸发成盐、埋藏,与深部地下水发生水-岩作用,富集形成高矿化度构造裂隙孔隙卤水.
Abstract:The structural fissure and pore brine in western Qaidam Basin is the most important deep brine resources in China, and its causes have been debated over many years. In this paper, it discusses its geochemical causes by studying its major, trace element characteristics and He, Ne, Ar isotopes of the brine samples from the Jianshishan, Hongsanhan Ⅳ, Eboliang Ⅱ and Yahu areas in western Qaidam basin. It is shown that the sodium-chloride coefficients of structural fissure and pore brine in western Qaidam Basin range from 0.84 to 0.91, the potassium coefficients range from 3.19 to 12.35, the potassium-chlorine coefficients range from 5.26 to 20.61 and the desulfurization coefficients range from 0.33 to 2.00. The brine type is shown as the Cl-Na type on the Piper plot. The 3He/4He ratios range in 0.01-0.16 Ra, the 40Ar/36Ar ratios range from 318 to 352, the 38Ar/36Ar ratios range from 0.182 to 0.193, the 20Ne/22Ne ratios range from 9.8 to 10.6 and the 21Ne/22Ne ratios range from 0.025 to 0.032. Therefore, it is believed that the salt components formed by rock weathering were migrated to the basin by groundwater at first, and then evaporated into salt deposits, after being buried, the water-rock interaction occurred between these salt deposits and deep groundwater and then were enriched to form the structural fissure and pore brine with a high mineralization.
-
表 1 背斜构造区构造裂隙孔隙卤水含量(mg/L)分析结果
Table 1. Analysis results of brine content (mg/L) from structural fissure pores in anticline
采样位置 K+ Na+ Ca2+ Mg2+ C1‒ SO42‒ CO32‒ HCO3‒ Li+ B2O3 密度(g/cm3) 矿化度(g/L) 碱石1井 1 697.69 48 416.40 3 743.53 399.15 82 377.88 831.40 0.00 84.08 102.00 1 497.26 1.10 139.07 旱ZK01 1 093.49 54 630.29 7 125.17 869.52 98 435.25 652.50 0.00 19.60 49.59 829.91 1.11 164.26 鸭ZK01 357.57 36 820.83 5 339.40 774.82 68 035.67 681.59 0.00 50.02 34.96 402.73 1.07 112.47 鄂Ⅱ2井 293.32 22 436.10 2 024.58 601.31 38 538.12 1 538.03 0.00 63.65 31.65 694.20 1.05 66.19 表 2 背斜构造区构造裂隙孔隙卤水同位素分析结果
Table 2. Isotopic analysis results of brine from structural fissure pores in anticline
采样位置 He(10‒6) R/Ra 3He/4He 4He/20Ne Ne(10‒6) 20Ne/22Ne 21Ne/22Ne 40Ar/36Ar 38Ar/36Ar 碱石1井 507.3 0.03 4.21×10‒8 55 9.297 10.4 0.028 ‒ ‒ 旱ZK01 144.5 0.05 6.59×10‒8 11 13.623 9.8 0.032 332 0.182 鸭ZK01 41.0 0.16 2.27×10‒7 3 12.109 10.6 0.025 318 0.184 鄂Ⅱ2井 1 168.1 0.01 1.95×10‒8 904 1.292 9.8 ‒ 352 0.193 表 3 背斜构造区构造裂隙孔隙卤水特征系数
Table 3. Characteristic coefficients of brine from structural fissure pores in anticline
采样位置 Σ盐 K×103/Σ盐 K×103/Cl Mg×102/Cl Cl×102/Σ盐 γNa/γCl SO4×102/2Cl 碱石1井 137 466.05 12.35 20.61 0.48 59.93 0.91 0.50 旱ZK01 162 806.22 6.72 11.11 0.88 60.46 0.86 0.33 鸭ZK01 112 009.89 3.19 5.26 1.14 60.74 0.84 0.50 鄂Ⅱ2井 65 431.46 4.48 7.61 1.56 58.90 0.90 2.00 -
[1] Ballentine, C. J., Burgess, R., Marty, B., 2002. Tracing Fluid Origin, Transport and Interaction in the Crust. Reviews in Mineralogy and Geochemistry, 47(1): 539-614. https://doi.org/10.2138/rmg.2002.47.13 [2] Cai, C.F., Franks, S.G., Aagaard, P., 2001. Origin and Migration of Brines form Paleozoic Strata in Central Tarim, China: Constraints from 87Sr/86Sr, δD, δ18O and Water Chemistry. Applied Geochemistry, 16(9-10): 1269-1284. https://doi.org/10.1016/s0883-2927(01)00006-3 [3] Fan, Q.S., Ma, H.Z., Tan, H.B., et al., 2007. Characteristics and Origin of Brines in Western Qaidam Basin. Geochimica, 36(6): 601-611 (in Chinese with English abstract). [4] Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Fluid Inclusion Noble Gas and Halogen Evidence on the Origin of Cu-Porphyry Mineralising Fluids. Geochimica et Cosmochimica Acta, 65(16): 2651-2668. https://doi.org/10.1016/s0016-7037(01)00618-4 [5] Li, H.P., Zheng, M.P., 2014. Ore-Forming Geological Characteristics of Deep Brine Potassic Deposit in Western Qaidam Basin. Mineral Deposits, 33(S1): 935-936 (in Chinese). [6] Li, H.P., Zheng, M.P., Hou, X.H., et al., 2015. Control Factors and Water Chemical Characteristics of Potassium-Rich Deep Brine in Nanyishan Structure of Western Qaidam Basin. Acta Geoscientica Sinica, 36(1): 41-50 (in Chinese with English abstract). [7] Li, Q., Zhou, J.L., Gao, Y.X., et al., 2015. Groundwater Hydro-Geochemistry in Plain of Manasi River Basin, Xinjiang. Geoscience, 29(2): 238-244 (in Chinese with English abstract). [8] Li, T.W., Tan, H.B., Fan, Q.S., 2006. Hydrochemical Characteristics and Origin Analysis of the Underground Brines in West Qaidam Basin. Journal of Salt Lake Research, 14(4): 26-32 (in Chinese with English abstract). [9] Li, Y.H., 2020. Guest Editor's Preface to the "New Technologies of Isotope Analysis and Its Applications in Geology". Acta Geoscientica Sinica, 41(5): 583-589 (in Chinese with English abstract). [10] Liu, C.P., Zhang, H.X., He, J., et al., 2020. Study on Hydrochemical and Isotope Geochemical Characteristics of Shallow Groundwater. Resources Environment & Engineering, 34(2): 251-255 (in Chinese with English abstract). [11] Lu, J., Pan, T., Li, Y.S., et al., 2021. A Preliminary Investigation of Hydrochemical Characteristics and Genesis of Deep Brine in the Central Qaidam Basin. Acta Geologica Sinica, 95(7): 2129-2137 (in Chinese with English abstract). [12] Lu, Y.Y., Han, X.Q., Wang, Y.J., et al., 2014. The Hydrothermal Plumes over the Southwest Indian Ridge from 49°E to 56°E: Evidence from Helium Isotope Anomalies of Deep Seawater. Acta Oceanologica Sinica, 36(6): 42-49 (in Chinese with English abstract). [13] Mao, J.W., Li, X.F., 2004. Mantle-Derived Fluids in Relation to Ore-Forming and Oil-Forming Processes. Mineral Deposits, 23(4): 520-532 (in Chinese with English abstract). [14] Mao, J.W., Li, Y.Q., 2001. Fluid Inclusions of the Dongping Gold Telluride Deposit in Hebei Province, China: Involvement of Mantle Fluid in Metallogenesis. Mineral Deposits, 20(1): 23-36 (in Chinese with English abstract). [15] McArthur, J. M., Turner, J., Lyons, W. B., et al., 1989. Salt Sources and Water-Rock Interaction on the Yilgarn Block, Australia: Isotopic and Major Element Tracers. Applied Geochemistry, 4(1): 79-92. https://doi.org/10.1016/0883-2927(89)90060-7 [16] Pang, Y.Q., Fan, H.H., Gao, F., et al., 2019. Helium and Argon Isotopic Compositions of Fluid Inclusions and Tracing to the Source of Ore-Forming Fluids for the Southern Zhuguang Uranium Ore Field in Northern Guangdong Province. Acta Petrologica Sinica, 35(9): 2765-2773 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.09 [17] Plank, T., 1996. The Brine of the Earth. Nature, 380(6571): 202-203. https://doi.org/10.1038/380202a0 [18] Staudacher, T., Allègre, C. J., 1988. Recycling of Oceanic Crust and Sediments: The Noble Gas Subduction Barrier. Earth and Planetary Science Letters, 89(2): 173-183. https://doi.org/10.1016/0012-821x(88)90170-7 [19] Stuart, F. M., Burnard, P. G., Taylor, R. P., et al., 1995. Resolving Mantle and Crustal Contributions to Ancient Hydrothermal Fluids: He-Ar Isotopes in Fluid Inclusions from Dae Hwa W-Mo Mineralisation, South Korea. Geochimica et Cosmochimica Acta, 59(22): 4663-4673. https://doi.org/10.1016/0016-7037(95)00300-2 [20] Sun, Y., Zhou, J.L., Liang, X., et al., 2021. Distribution and Genesis of Shallow High-Iodine Groundwater in Southern Margin of Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang. Earth Science, 46(8): 2999-3011 (in Chinese with English abstract). [21] Tan, H.B., Cao, C.D., Li, T.W., et al., 2007. Hydrochemistry Characteristics and Chemical Evolution of Oilfield Brines of the Paleogene and Neogene in Western Qaidam Basin. Journal of Palaeogeography, 9(3): 313-320 (in Chinese with English abstract). [22] Tang, L.J., Jin, Z.J., Dai, J.S., et al., 2002. Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts. Earth Science, 27(6): 676-682 (in Chinese with English abstract). [23] The 16th Geological Team of Yunnan Geological Bureau. How to Find Potassium. Geological Publishing House, Beijing, 106-123 (in Chinese). [24] Thompson, A. B., 1992. Water in the Earth's Upper Mantle. Nature, 358(6384): 295-302. https://doi.org/10.1038/358295a0 [25] Wang, D.C., Zhang, R.Q., Shi, Y.H., 1980. Basic of Hydrogeology. Geological Publishing House, Beijing, 42-46 (in Chinese). [26] Wang, L.C., Liu, C.L., Cao, K., et al., 2014. Progress in Applying Non-Traditional Isotopes to Tracing Origin of Brines in Sedimentary Basins. Mineral Deposits, 33(5): 909-920 (in Chinese with English abstract). [27] Wang, S.L., Zheng, M.P., Wang, Y.M., et al., 2019. Advances and Development History of Geochemistry on Salt Lakes in China. Science Technology and Engineering, 19(9): 1-9 (in Chinese with English abstract). [28] Wang, X.B., 1989. Rare Gas Isotope Geochemistry and Cosmochemistry. Geological Publishing House, Beijing (in Chinese). [29] Wang, X.B., Xu, S., Chen, J.F., et al., 1993. Gas Composition and Nitrogen Isoatlas Composition of Hot Springs in Tengchong Volcanic Area. Chinese Science Bulletin, 38(9): 814-817 (in Chinese). doi: 10.1360/csb1993-38-9-814 [30] Xu, S., Xu, Y.C., Shen, P., et al., 1996a. Isotopic Composition of Rare Gases in Some Natural Gases in the Basins of Central and Western China. Chinese Science Bulletin, 41(12): 1115-1118 (in Chinese). doi: 10.1360/csb1996-41-12-1115 [31] Xu, S., Xu, Y.C., Shen, P., et al., 1996b. Isotopic Composition of Neon in Natural Gas in Eastern China Basin and Its Geological Significance. Chinese Science Bulletin, 41(21): 1970-1972 (in Chinese). doi: 10.1360/csb1996-41-21-1970 [32] Zhang, H.F., Tang, Y.J., Zhao, X.M., et al., 2007. Significance and Prospective of Non-Traditional Isotopic Systems in Mantle Geochemistry. Earth Science Frontiers, 14(2): 37-57 (in Chinese with English abstract). [33] Zhang, P.X., 1987. Salt Lake in the Qaidam Basin. Science Press, Beijing, 172-179 (in Chinese). [34] Zhou, X., Cao, Q., Yin, F., et al., 2015. Characteristics of the Brines and Hot Springs in the Triassic Carbonates in the High and Steep Fold Zone of the Eastern Sichuan Basin. Acta Geologica Sinica, 89(11): 1908-1920 (in Chinese with English abstract). [35] Zhu, X., Wang, G.L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract). [36] Zhu, X.K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688 (in Chinese with English abstract). [37] 樊启顺, 马海州, 谭红兵, 等, 2007. 柴达木盆地西部卤水特征及成因探讨. 地球化学, 36(6): 601-611. doi: 10.3321/j.issn:0379-1726.2007.06.008 [38] 李洪普, 郑绵平, 2014. 柴达木盆地西部深层卤水钾盐矿成矿地质特征. 矿床地质, 33(S1): 935-936. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1470.htm [39] 李洪普, 郑绵平, 侯献华, 等, 2015. 柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征. 地球学报, 36(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201501006.htm [40] 李巧, 周金龙, 高业新, 等, 2015. 新疆玛纳斯河流域平原区地下水水文地球化学特征研究. 现代地质, 29(2): 238-244. doi: 10.3969/j.issn.1000-8527.2015.02.002 [41] 李廷伟, 谭红兵, 樊启顺, 2006. 柴达木盆地西部地下卤水水化学特征及成因分析. 盐湖研究, 14(4): 26-32. doi: 10.3969/j.issn.1008-858X.2006.04.005 [42] 李延河, 2020. "同位素分析新技术与地质应用研究新进展"专辑特邀主编寄语. 地球学报, 41(5): 583-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202005001.htm [43] 刘重芃, 张宏鑫, 何军, 等, 2020. 浅层地下水水化学和同位素地球化学特征研究——以江汉平原西部为例. 资源环境与工程, 34(2): 251-255. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202002016.htm [44] 卢鋆, 潘彤, 李永寿, 等, 2021. 柴达木盆地中部‒里坪‒西台吉乃尔地区深层卤水水化学特征及成因初探. 地质学报, 95(7): 2129-2137. doi: 10.3969/j.issn.0001-5717.2021.07.011 [45] 卢映钰, 韩喜球, 王叶剑, 等, 2014. 西南印度洋49°~56°E洋脊段的热液羽状流: 来自深水中的氦同位素异常证据. 海洋学报(中文版), 36(6): 42-49. doi: 10.3969/j.issn.0253-4193.2014.06.006 [46] 毛景文, 李晓峰, 2004. 深部流体及其与成矿成藏关系研究现状. 矿床地质, 23(4): 520-532. doi: 10.3969/j.issn.0258-7106.2004.04.012 [47] 毛景文, 李荫清, 2001. 河北省东坪碲化物金矿床流体包裹体研究: 地幔流体与成矿关系. 矿床地质, 20(1): 23-36. doi: 10.3969/j.issn.0258-7106.2001.01.004 [48] 庞雅庆, 范洪海, 高飞, 等, 2019. 粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪. 岩石学报, 35(9): 2765-2773. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909009.htm [49] 孙英, 周金龙, 梁杏, 等, 2021. 塔里木盆地南缘浅层高碘地下水的分布及成因: 以新疆民丰县平原区为例. 地球科学, 46(8): 2999-3011. doi: 10.3799/dqkx.2020.260 [50] 谭红兵, 曹成东, 李廷伟, 等, 2007. 柴达木盆地西部古近系和新近系油田卤水资源水化学特征及化学演化. 古地理学报, 9(3): 313-320. doi: 10.3969/j.issn.1671-1505.2007.03.009 [51] 汤良杰, 金之钧, 戴俊生, 等, 2002. 柴达木盆地及相邻造山带区域断裂系统. 地球科学, 27(6): 676-682. doi: 10.3321/j.issn:1000-2383.2002.06.004 [52] 王大纯, 张人权, 史毅虹, 1980. 水文地质学基础. 北京: 地质出版社, 42-46. [53] 王立成, 刘成林, 曹珂, 等, 2014. 沉积盆地卤水来源的非传统同位素示踪研究进展. 矿床地质, 33(5): 909-920. doi: 10.3969/j.issn.0258-7106.2014.05.002 [54] 王淑丽, 郑绵平, 王永明, 等, 2019. 中国盐湖地球化学发展历程与研究进展. 科学技术与工程, 19(9): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201909001.htm [55] 王先彬, 1989. 稀有气体同位素地球化学和宇宙化学. 北京: 科学出版社. [56] 王先彬, 徐胜, 陈践发, 等, 1993. 腾冲火山区温泉气体组分和氦同位素组成特征. 科学通报, 38(9): 814-817. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199309014.htm [57] 徐胜, 徐永昌, 沈平, 等, 1996a. 中国中西部盆地若干天然气藏中稀有气候同位素组成. 科学通报, 41(12): 1115-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199612015.htm [58] 徐胜, 徐永昌, 沈平, 等, 1996b. 中国东部盆地天然气中氖同位素组成及其地质意义. 科学通报, 41(21): 1970-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199621012.htm [59] 云南省地质局第十六地质队, 1978. 怎样找钾. 北京: 地质出版社, 106-123. [60] 张宏福, 汤艳杰, 赵新苗, 等, 2007. 非传统同位素体系在地幔地球化学研究中的重要性及其前景. 地学前缘, 14(2): 37-57. doi: 10.3321/j.issn:1005-2321.2007.02.004 [61] 张彭熹, 1987. 柴达木盆地盐湖. 北京: 科学出版社, 172-179. [62] 周训, 曹琴, 尹菲, 等, 2015. 四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因. 地质学报, 89(11): 1908-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511003.htm [63] 朱喜, 王贵玲, 马峰, 等, 2021. 太行山‒雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207 [64] 朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306002.htm