Reconstruction of Atmospheric Nitrogen Deposition and Nitrogen Source in Wuhan by the Nitrogen Contents and Isotopic Composition of Camphor Leaves
-
摘要:
为了解武汉市不同城市功能区大气氮沉降的具体特征,对城市交通区、工业区、文教区和市郊交通区、文教区5个功能区的樟树叶片及根际土壤的氮含量和氮同位素组成进行测定,发现城市公路、工厂附近和大学校园的樟树叶片的氮含量明显高于市郊大学校园和公路.城市公路、工厂附近的樟树叶片的氮同位素分别受控于汽车尾气排放的氮氧化物(NOx)、工厂排放的氨氮化合物(NHy)的δ15N值.市郊大学校园的樟树叶片δ15N值与土壤较为一致,市区大学校园的δ15N值明显偏负,可能受到附近城中村农业氨排放的影响.樟树叶片的氮含量和同位素组成是揭示武汉市大气氮沉降特征的有效途径之一.
Abstract:In order to understand the specific characteristics of atmospheric nitrogen deposition in different functional areas of Wuhan, the nitrogen contents and nitrogen isotope composition of camphor leaves and rhizosphere soil in five functional areas including urban traffic area, industrial area, educational area, suburban traffic area and educational area were analyzed. The nitrogen contents of camphor leaves near the urban road, factory and university campus were significantly higher than those of suburban university campus and road. Nitrogen isotopes of camphor leaves near urban road and factory are controlled by the nitrogen isotope composition of the nitrogen oxides (NOx) emitted by automobile exhaust and the ammonia nitrogen compounds (NHy) emitted by factory respectively. The δ15N values of the camphor leaves on suburban university campus are consistent with the values of the soil. The δ15N values of the urban university campus are negative, which may be affected by agricultural ammonia emission from nearby urban villages. The nitrogen contents and isotopic composition of camphor leaves are one of the effective ways to reveal the characteristics of atmospheric nitrogen deposition in Wuhan.
-
Key words:
- nitrogen deposition /
- nitrogen source /
- camphor leaves /
- nitrogen content /
- nitrogen isotope /
- Wuhan /
- geochemistry
-
表 1 武汉市不同地区樟树叶片和根际土壤的δ15N值(氮同位素组成均为相对空气的值)
Table 1. Nitrogen isotopic composition of camphor leaves and rhizosphere soil in different areas of Wuhan (δ15N vs air, ‰)
采样地点 样品1 样品2 样品3 样品4 平均值 南望山校园 ‒6.4 ‒8.1 ‒7.7 ‒6.4 ‒7.1±0.9 城市公路 1.5 0.5 ‒0.5 1.7 0.8±1.0 工厂附近 ‒3.6 ‒3.0 ‒1.9 1.2 ‒1.8±2.1 未来城校园 ‒2.2 0.9 ‒0.4 1.0 ‒0.2±1.5 市郊公路 ‒1.7 ‒2.3 0.4 1.2 ‒0.6±1.6 南望山校园土壤 ‒0.4 ‒2.6 ‒1.5±1.6 城市公路土壤 6.7 9.6 8.2±2.1 工厂附近土壤 7.5 5.4 6.5±1.5 未来城校园土壤 1.3 ‒0.6 0.3±1.3 市郊公路土壤 7.6 9.2 8.4±1.2 -
[1] Ammann, M., Siegwolf, R., Pichlmayer, F., et al., 1999. Estimating the Uptake of Traffic-Derived NO2 from 15N Abundance in Norway Spruce Needles. Oecologia, 118(2): 124-131. https://doi.org/10.1007/s004420050710 [2] Chen, Z. L., Huang, T., Fan, R., et al., 2020. Atmospheric Nitrogen Deposition in Yangtze River Delta: Insights Gained from the Nitrogen Content and Isotopic Composition of the Moss Haplocladium Microphyllum. Atmospheric and Oceanic Science Letters, 13(3): 202-209. https://doi.org/10.1080/16742834.2019.1688629 [3] Cheng, Z. P., Wang, Z. L., Shi, H. W., 2014. Changes of Total Nitrogen and Sulfur Contents in Leaves of Plants in Wuhan Urban Area. The 2014 Annual Meeting of Chinese Botanical Garden, Shanghai (in Chinese). [4] Guerrieri, M. R., Siegwolf, R. T. W., Saurer, M., et al., 2009. Impact of Different Nitrogen Emission Sources on Tree Physiology as Assessed by a Triple Stable Isotope Approach. Atmospheric Environment, 43(2): 410-418. https://doi.org/10.1016/j.atmosenv.2008.08.042 [5] Laffray, X., Rose, C., Garrec, J. P., 2010. Biomonitoring of Traffic-Related Nitrogen Oxides in the Maurienne Valley (Savoie, France), Using Purple Moor Grass Growth Parameters and Leaf 15N/14N Ratio. Environmental Pollution, 158(5): 1652-1660. https://doi.org/10.1016/j.envpol.2009.12.005 [6] Liao, J., 2004. Study on the Region Distribution Regulation of the Acid Rain in Wuhan City (Dissertation). Wuhan University of Technology, Wuhan (in Chinese with English abstract). [7] Liu, X. Y., Xiao, H. Y., Liu, C. Q., 2007a. A Discussion on the Deposition of Atmosphereic Nitrogen Indicated by the Nitrogen Isotopic Compositions (δ15N) of the Plant Leafage. Bulletin of Mineralogy, Petrology and Geochemistry, 26(4): 405-409 (in Chinese with English abstract). [8] Liu, X. Y., Xiao, H. Y., Liu, C. Q., et al., 2007b. δ13C and δ15N of Moss (Haplocladium Microphyllum (Hedw. ) Broth) for Indicating Habitats Difference and Canopy Retention on Atmospheric Nitrogen Deposition. Geochimica, 36(3): 286-294 (in Chinese with English abstract). [9] Liu, X. Y., Xiao, H. Y., Liu, C. Q., et al., 2008. Nitrogen Concentration and Nitrogen Isotope in Epilithic Mosses for Indicating the Spatial Variation and Sources of Atmospheric Nitrogen Deposition at Guiyang Area. Environmental Science, 29(7): 1785-1790 (in Chinese with English abstract). [10] Luo, L., 2012. Response of Nitrogen Contents and Nitrogen Isotopes in Mosses and Vascular Plants to the Atmosphere Nitrogen Deposition (Dissertation). Nanchang University, Nanchang (in Chinese with English abstract). [11] Norby, R. J., 1998. Nitrogen Deposition: A Component of Global Change Analyses. New Phytologist, 139(1): 189-200. https://doi.org/10.1046/j.1469-8137.1998.00183.x [12] Power, S. A., Collins, C. M., 2010. Use of Calluna Vulgaris to Detect Signals of Nitrogen Deposition across an Urban-Rural Gradient. Atmospheric Environment, 44(14): 1772-1780. https://doi.org/10.1016/j.atmosenv.2010.01.034 [13] Ren, M. M., Huang, F., Hu, X. N., et al., 2020. Characteristics and Sources of Dissolved Inorganic Carbon and Nitrate in Lijiang River Basin. Earth Science, 45(5): 1830-1843 (in Chinese with English abstract). [14] Richter, A., Burrows, J. P., Nüß, H., et al., 2005. Increase in Tropospheric Nitrogen Dioxide over China Observed from Space. Nature, 437(7055): 129-132. https://doi.org/10.1038/nature04092 [15] Saurer, M., Cherubini, P., Ammann, M., et al., 2004. First Detection of Nitrogen from NOx in Tree Rings: A 15N/14N Study near a Motorway. Atmospheric Environment, 38(18): 2779-2787. https://doi.org/10.1016/j.atmosenv.2004.02.037 [16] Stewart, G. R., Aidar, M. P., Joly, C. A., et al., 2002. Impact of Point Source Pollution on Nitrogen Isotope Signatures (δ15N) of Vegetation in SE Brazil. Oecologia, 131(3): 468-472. https://doi.org/10.1007/s00442-002-0906-8 [17] Wang, Y. L., Xiao, H. Y., Xiao, H. W., 2012. Platanus Orientalis Foliar N% and δ15N Responses to Nitrogen of Atmospheric Wet Deposition in Urban Area. Environmental Science, 33(4): 1080-1085 (in Chinese with English abstract). [18] Wang, Y. X., 2020. Innovative Development of Medical Geology: A one Health Perspective. Earth Science, 45(4): 1093-1102 (in Chinese with English abstract). [19] Wu, L. H., Xiao, H. Y., Hu, D. F., et al., 2010. Using Camphor Tree Leaf to Trace N Deposition near a Motorway. Journal of Anhui Agricultural Sciences, 38(24): 13315-13317 (in Chinese with English abstract). [20] Xiao, H. Y., Liu, X. Y., Liu, C. Q., 2011. Tissue N Contents and Isotopic Ratios in Epilithic Mosses Indicating N Deposition and Transport in the Atmosphere. Bulletin of Mineralogy, Petrology and Geochemistry, 30(1): 18-25 (in Chinese with English abstract). [21] Xiao, H. Y., Wu, L. H., Zhu, R. G., et al., 2011. Nitrogen Isotope Variations in Camphor (Cinnamomum Camphora) Leaves of Different Ages in Upper and Lower Canopies as an Indicator of Atmospheric Nitrogen Sources. Environmental Pollution, 159(2): 363-367. https://doi.org/10.1016/j.envpol.2010.11.011 [22] Xu, H. L., Yang, P. L., Xing, W. M., et al., 2020. Net Anthropogenic Nitrogen Accumulation in Hubei Province from 2008 to 2017. China Environmental Science, 40(9): 4017-4028 (in Chinese with English abstract). [23] Xu, Y., Xiao, H. Y., Zheng, N. J., et al., 2016. N% and S% in Leaves of Vascular Plants Cinnamomum Camphora and Pinus Massoniana Lamb. for Indicating the Spatial Variation of Atmospheric Nitrogen and Sulfur Deposition. Environmental Science, 37(6): 2376-2382 (in Chinese with English abstract). [24] Zechmeister, H. G., Richter, A., Smidt, S., et al., 2008. Total Nitrogen Content and δ15N Signatures in Moss Tissue: Indicative Value for Nitrogen Deposition Patterns and Source Allocation on a Nationwide Scale. Environmental Science & Technology, 42(23): 8661-8667. https://doi.org/10.1021/es801865d [25] Zhao, Y. H., Zhang, L., Chen, Y. F., et al., 2017. Atmospheric Nitrogen Deposition to China: A Model Analysis on Nitrogen Budget and Critical Load Exceedance. Atmospheric Environment, 153: 32-40. https://doi.org/10.1016/j.atmosenv.2017.01.018 [26] Zhu, Z. L., Xing, G. X., 2002. The Nitrogen Cycle: A Natural Process that Sustains Life on Earth. Tsinghua University Press, Beijing; Jinan University Press, Guangzhou (in Chinese). [27] 程中平, 王章利, 史红文, 2014. 武汉市城区绿化植物氮硫含量变化分析. 上海: 2014年中国植物园学术年会. [28] 廖洁, 2004. 武汉市酸雨地区分布规律的研究(硕士学位论文). 武汉: 武汉理工大学. [29] 刘学炎, 肖化云, 刘丛强, 2007a. 植物叶片氮同位素(δ15N)指示大气氮沉降的探讨. 矿物岩石地球化学通报, 26(4): 405-409. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200704016.htm [30] 刘学炎, 肖化云, 刘丛强, 等, 2007b. 碳氮稳定同位素指示苔藓生境特征以及树冠对大气氮沉降的吸收. 地球化学, 36(3): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200703008.htm [31] 刘学炎, 肖化云, 刘丛强, 等, 2008. 石生苔藓氮含量和氮同位素指示贵阳地区大气氮沉降的空间变化和来源. 环境科学, 29(7): 1785-1790. doi: 10.3321/j.issn:0250-3301.2008.07.005 [32] 罗笠, 2012. 苔藓和维管束植物叶氮含量和氮同位素组成对大气氮沉降的响应(硕士学位论文). 南昌: 南昌大学. [33] 任梦梦, 黄芬, 胡晓农, 等, 2020. 漓江流域碳氮同位素组成特征及其来源初探. 地球科学, 45(5): 1831-1843. doi: 10.3799/dqkx.2019.206 [34] 王燕丽, 肖化云, 肖红伟, 2012. 法国梧桐叶片氮含量及氮同位素对城市大气湿沉降氮的响应研究. 环境科学, 33(4): 1080-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201204008.htm [35] 王焰新, 2020. "同一健康"视角下医学地质学的创新发展. 地球科学, 45(4): 1093-1102. doi: 10.3799/dqkx.2020.060 [36] 吴亮红, 肖化云, 胡大芬, 等, 2010. 樟树叶片示踪高速路附近大气氮沉降. 安徽农业科学, 38(24): 13315-13317. doi: 10.3969/j.issn.0517-6611.2010.24.144 [37] 肖化云, 刘学炎, 刘丛强, 2011. 石生苔藓组织氮含量和氮同位素指示贵阳地区大气氮沉降与迁移的研究. 矿物岩石地球化学通报, 30(1): 18-25. doi: 10.3969/j.issn.1007-2802.2011.01.003 [38] 徐浩林, 杨培岭, 邢伟民, 等, 2020. 湖北省2008~2017年人类活动净氮输入状况. 中国环境科学, 40(9): 4017-4028. doi: 10.3969/j.issn.1000-6923.2020.09.034 [39] 徐宇, 肖化云, 郑能建, 等, 2016. 维管束植物樟树和马尾松叶组织氮、硫含量指示贵阳地区大气氮、硫沉降的空间变化. 环境科学, 37(6): 2376-2382. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201606049.htm [40] 朱兆良, 邢光熹, 2002. 氮循环: 维系地球生命生生不息的一个自然过程. 北京: 清华大学出版社; 广州: 暨南大学出版社.