Influencing Factors and Accumulation Modes of Gas Hydrate in South Low Uplift and Its Surrounding Area of Qiongdongnan Basin
-
摘要: 为了厘清琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素及成藏模式,利用天然气水合物钻探获取的钻井、测井及2D/3D地震资料,分析了研究区天然气水合物赋存的地质、地球物理特征,探讨了水合物富集控制成藏的影响因素,建立了水合物成藏模式.结果表明:琼东南盆地南部低凸起及其周缘区位于中央坳陷带南坡的深部流体输导优势方向上.多个站位水合物钻探显示,水合物具有分层、多类型储集层的特征.测井上含水合物层段总体具有高电阻率、低声波时差特征.地震剖面分析显示气烟囱顶部气体横向充注现象明显,气体垂向运移受限.研究区水合物的气源兼具微生物成因和热解气成因.断层、气烟囱以及孔‒缝渗漏体系为深层热解气的运移提供了良好的输导条件.浅层块体搬运沉积的快速堆积使得其内部孔隙流体难以迅速排出,从而其孔隙流体压力相比上覆和下伏地层要高,使得下伏流体的垂向输导受阻,形成封盖作用.超压封盖层是研究区多类型储集层水合物主要的控制因素.根据封盖能力的差异性及其对水合物富集程度的影响提出了封闭系统和开放系统两种类型的水合物成藏模式.Abstract: In order to clarify the influencing factors and accumulation model of gas hydrate in the southern low uplift and its surrounding area of Qiongdongnan basin, using drilling, logging and 2D/3D seismic data obtained from gas hydrate drilling, the geological and geophysical characteristics of gas hydrate occurrence in the study area are analyzed, and the influencing factors of hydrate accumulation control are discussed, and the gas hydrate accumulation model is established. The results show that the southern low uplift of Qiongdongnan basin and its surrounding areas are located in the dominant direction of deep fluid transport on the southern slope of the central depression zone. Gas hydrate drilling at multiple stations shows that the gas hydrate has the characteristics of stratified and multi-type reservoirs. In logging, gas hydrate formation is characterized by high resistivity and low acoustic.The seismic profile analysis shows that the gas filling at the top of gas chimney is obvious, and the gas vertical migration is limited. The gas source of hydrate in the study area is both biogenic and thermogenic gas. Faults, gas chimney and and pore fracture leakage system provide good transportation conditions for the migration of thermogenic gas. The rapid accumulation of shallow mass transport deposits makes it difficult for the internal pore fluid to discharge rapidly, so the pore fluid pressure is higher than that of the overlying and underlying strata, which hinders the vertical dispersion of the underlying fluid and forms a sealing effect. Overpressure sealing layer is the main controlling factor of hydrate in multi-type reservoirs in the study area. According to the difference of sealing ability and its influence on gas hydrate accumulation, two types of hydrate accumulation and enrichment models of closed system and open system are summarized.
-
Key words:
- Qiongdongnan basin /
- gas hydrate /
- shallow overpressure /
- influencing factor /
- accumulation model /
- petroleum geology
-
图 2 琼东南盆地地质综合柱状图(修改自杨金海等,2019)
Fig. 2. Schematic stratigraphic column of the study area in the Qiongdongnan basin (modified from Yang et al., 2019)
图 5 琼东南盆地过W01井和W03井地震剖面显示的似海底反射层(BSR)反射特征
剖面位置见图 1AA’、BB’;其中a、b为过W01井空白剖面,a’、b’为解释剖面
Fig. 5. Reflection characteristics of bottom simulating reflector (BSR) in the through-well W01 and W03 seismic profile in the Qiongdongnan basin
图 7 琼东南盆地水合物气源成因分析结果(据Liang et al., 2019修改)
Fig. 7. Analysis of gas source origin of gas hydrate in the Qiongdongnan basin (modified from Liang et al., 2019)
-
[1] Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022 [2] Chen, D.F., Su, Z., Feng, D., et al., 2005. Formation and Its Controlling Factors of Gas Hydrate Reservoir in Marine Gas Vent System. Journal of Tropical Oceanography, 24(3): 38-46 (in Chinese with English abstract). [3] Chen, F., Su, X., Lu, H.F., et al., 2013. Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea. Earth Science, 38(5): 907-915 (in Chinese with English abstract). [4] Chuai, S.Y., Wang, H.N., Zhang, N., 2019.3⁃D Phase Equilibrium Surface Equation of Methane Hydrate Considering the Effect of Temperature, Pressure and Salt Concentration. Chemical Engineering of Oil and Gas, 48(5): 49-55 (in Chinese with English abstract). [5] Chun, J. H., Ryu, B. J., Son, B. K., et al., 2011. Sediment Mounds and Other Sedimentary Features Related to Hydrate Occurrences in a Columnar Seismic Blanking Zone of the Ulleung Basin, East Sea, Korea. Marine and Petroleum Geology, 28(10): 1787-1800. https://doi.org/10.1016/j.marpetgeo.2011.06.006 [6] Du, H., Shi, W.Z., Liang, J.Q., et al., 2021. Genesis of Mass Transport Deposits and Their Effect on Gas Hydrate Accumulation in the Qiongdongnan Basin. Oil Geophysical Prospecting, 56(4): 869-881, 676 (in Chinese with English abstract). [7] He, J.X., Yan, W., Zhu, Y.H., et al., 2013. Bio⁃Genetic and Sub⁃Biogenetic Gas Resource Potential and Genetic Types of Natural Gas Hydrates in the Northern Marginal Basins of South China Sea. Natural Gas Industry, 33(6): 121-134 (in Chinese with English abstract). [8] He, J.X., Yao, Y.J., Liu, H.L., et al., 2008. Genetic Types of Natural Gas and Characteristic of the Gas Source Composition in Marginal Basins of the Northern South China Sea. Geology in China, 35(5): 1007-1016(in Chinese with English abstract). [9] Hou, Z.Y., Guo, C.S., Wang, J.Q., 2013. Surface Sediments Acoustic Velocity and Porosity Correlation in Nansha Sea Area Abyssal Region. Marine Sciences, 37(7): 77-82 (in Chinese with English abstract). [10] Li, C., Ma, M., Lv, C.F., et al., 2017. Sedimentary Differences between Different Segments of the Continental Slope⁃Parallel Central Canyon in the Qiongdongnan Basin on the Northern Margin of the South China Sea. Mar. Petrol. Geol. , 88: 127-140. https://doi.org/10.1016/j.marpetgeo.2017.08.009 [11] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567 [12] Li, X.Q., Luke, F.W., Wu, S.G., et al., 2013. Morphology, Sedimentary Features and Evolution of a Large Paleo Submarine Canyon in Qiongdongnan Basin, Northern South China Sea. Asian Earth Science, 62: 685-696. https://doi.org/10.1016/j.jseaes.2012.11.019 [13] Liang, J. Q., Zhang, W., Lu, J., et al., 2019. Geological Occurrence and Accumulation Mechanism of Natural Gas Hydrates in the Eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5⁃W9⁃2018. Marine Geology, 418: 106042. https://doi.org/10.1016/j.margeo.2019.106042 [14] Liu, J., Yang, R., Wu, D.D., et al., 2019. Factors Affecting the Thickness of Gas Hydrate Stability Zones in the Huaguang Sag, Qiongdongnan Basin. Acta Oceanologica Sinica, 41(8): 13-25 (in Chinese with English abstract). [15] Long, H., Flemings, P. B., Germaine, J. T., et al., 2011. Consolidation and Overpressure near the Seafloor in the Ursa Basin, Deepwater Gulf of Mexico. Earth and Planetary Science Letters, 305(1/2): 11-20. https://doi.org/10.1016/j.epsl.2011.02.007 [16] Lorenson, T.D., Collett, T.S., 2018. National Gas Hydrate Expedition 01 Offshore India; Gas Hydrate Systems as Revealed by Hydrocarbon Gas Geochemistry. Marine and Petroleum Geology, 92: 477-492. https://doi.org/10.1016/j.marpetgeo.2017.11.011 [17] Ma, M., Li, C., Lv, C. F., et al., 2017. Geochemistry and Provenance of a Multiple⁃Stage Fan in the Upper Miocene to the Pliocene in the Yinggehai and Qiongdongnan Basins, Offshore South China Sea. Marine and Petroleum Geology, 79: 64-80. https://doi.org/10.1016/j.marpetgeo.2016.11.001 [18] Milkov, A. V., 2004. Global Estimates of Hydrate⁃Bound Gas in Marine Sediments: How Much is Really out There?. Earth⁃Science Reviews, 66(3/4): 183-197. https://doi.org/10.1016/j.earscirev.2003.11.002 [19] Ning, F.L., Liang, J.Q., Wu, N.Y., et al., 2020. Reservoir Characteristics of Natural Gas Hydrates in China. Natural Gas Industry, 40(8): 1-24 (in Chinese with English abstract). [20] Sha, Z.B., Liang, J.Q., Su, P.B., et al., 2015. Natural Gas Hydrate Accumulation Elements and Drilling Results Analysis in the Eastern Part of the Pearl River Mouth Basin. Earth Science Frontiers, 22(6): 125-135 (in Chinese with English abstract). [21] Su, M., Xie, X. N., Xie, Y. H., et al., 2014. The Segmentations and the Significances of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Journal of Asian Earth Sciences, 79: 552-563. https://doi.org/10.1016/j.jseaes.2012.12.038 [22] Wan, Z., Xu, X., Wang, X., et al., 2017. Geothermal Analysis of Boreholes in the Shenhu Gas Hydrate Drilling Area, Northern South China Sea: Influence of Mud Diapirs on Hydrate Occurrence. Journal of Petroleum Science and Engineering, 158: 424-432. https://doi.org/10.1016/j.petrol.2017.08.053 [23] Wan, Z.F., Yang, X.L., Zhong, S.L., et al., 2018. The Formation and Evolution of Mud Volcano: The Significance of Scientific Research on the Earth System. Acta Geologica Sinica, 92(Suppl. 2): 105-108. https://doi.org/10.1111/1755⁃6724.14212 [24] Wang, X.J., Jin, J.P., Guo, Y.Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract). [25] Wang, X.J., Wu, S.G., Dong, D.D., et al., 2011. Control of Mass Transport Deposits over the Occurrence of Gas Hydrate in Qiongdongnan Basin. Marine Geology & Quaternary Geology, 31(1): 109-118 (in Chinese with English abstract). [26] Wang, Z.Z., Wang, X.J., Guo, Y.Q., et al., 2014. Deposition and Migration of Sediments in Submarine Canyons of Baiyun Sag and Their Effects on Gas Hydrate Accumulation. Marine Geology & Quaternary Geology, 34(3): 105-113 (in Chinese with English abstract). [27] Wei, J. G., Liang, J. Q., Lu, J. G., et al., 2019. Characteristics and Dynamics of Gas Hydrate Systems in the Northwestern South China Sea—Results of the Fifth Gas Hydrate Drilling Expedition. Marine and Petroleum Geology, 110: 287-298. https://doi.org/10.1016/j.marpetgeo.2019.07.028 [28] Wei, J. G., Wu, T. T., Zhu, L. Q., et al., 2021. Mixed Gas Sources Induced Co⁃Existence of SI and SII Gas Hydrates in the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 128: 105024. https://doi.org/10.1016/j.marpetgeo.2021.105024 [29] Xu, L.T., He, Y.L., Shi, W.Z., et al., 2021. Main Controlling Factors and Patterns of Gas Hydrate Accumulation in the Deep Water Area of Qiongdongnan Basin. Acta Petrolei Sinica, 42(5): 598-610 (in Chinese with English abstract). [30] Xu, W. Y., Ruppel, C., 1999. Predicting the Occurrence, Distribution, and Evolution of Methane Gas Hydrate in Porous Marine Sediments. Journal of Geophysical Research: Solid Earth, 104(B3): 5081-5095. https://doi.org/10.1029/1998JB900092 [31] Yang, J.H., Yang X.B., Zhou, J., et al., 2019. Characteristics of Inversion Structure Belts and Their Hydrocarbon Geological in the Songnan⁃Baodao Sag in Deep Water Area of the Qiongdongnan Basin. Haiyang Xuebao, 41(5): 97-106 (in Chinese with English abstract). [32] Yang, S.X., Liang, J.Q., Lu, J.A., et al., 2017. New Understandings on the Characteristics and Controlling Factors of Gas Hydrate Reservoirs in the Shenhu Area on the Northern Slope of the South China Sea. Earth Science Frontiers, 24(4): 1-14 (in Chinese with English abstract). [33] Yu, H. S., 1994. Structure, Stratigraphy and Basin Subsidence of Tertiary Basins along the Chinese Southeastern Continental Margin. Tectonophysics, 235(1-2): 63-76. https://doi.org/10.1016/0040⁃1951(94)90017⁃5 [34] Zhang, W., Liang, J.Q., He, J.X., et al., 2017. Characteristics of Mud Diapir and Gas Chimney and Their Relationship with Reservoir Forming for Petroleum and Natural Gas Hydrate on Northern Slope of the South China Sea. Marine Geology Frontiers, 33(7): 11-23 (in Chinese with English abstract). [35] Zhang, W., Liang, J.Q., Lu, J.A., et al., 2020. Characteristics and Controlling Mechanism of Typical Leakage Gas Hydrate Reservoir Forming System in the Qiongdongnan Basin, Northern South China Sea. Natural Gas Industry, 40(8): 90-99. [36] Zhang, W., Liang, J. Q., Su, P. B., et al. 2018. Distribution and Characteristics of Mud Diapirs, Gas Chimneys, and Bottom Simulating Reflectors Associated with Hydrocarbon Migration and Gas Hydrate Accumulation in the Qiongdongnan Basin, Northern Slope of the South China Sea. Geological Journal, 54(6): 3556-3573. https://doi.org/10.1002/gj.3351 [37] Zheng, M., Li, J.Z., Wu, X.Z., et al., 2019. Potential of Oil and Natural Gas Resources of Main Hydrocarbon⁃Bearing Basins and Key Exploration Fields in China. Earth Science, 44(3): 833-847 (in Chinese with English abstract). [38] Zhou, J., Yang, X.B., Yang, J.H., et al., 2019. Structure⁃Sedimentary Evolution and Gas Accumulation of Paleogene in Songnan Low Uplift of the Qiongdongnan Basin. Earth Science, 44(8): 2704-2716 (in Chinese with English abstract). [39] Zhu, W.L., Huang, B.J., Mi, L.J., et al., 2009. Geochemistry, Origin and Deep⁃Water Exploration Potential of Natural Gases in the Pearl River Mouth and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 93: 741-761. https://doi.org/10.1306/02170908099 [40] 陈多福, 苏正, 冯东, 等, 2005. 海底天然气渗漏系统水合物成藏过程及控制因素. 热带海洋学报, 24(3): 38-46. doi: 10.3969/j.issn.1009-5470.2005.03.006 [41] 陈芳, 苏新, 陆红锋, 等, 2013. 南海神狐海域有孔虫与高饱和度水合物的储存关系. 地球科学, 38(5): 907-915. doi: 10.3799/dqkx.2013.089 [42] 啜世阳, 王华宁, 张宁, 2019. 天然气水合物温度‒压力‒盐浓度三维相平衡曲面方程. 石油与天然气化工, 48(5): 49-55. doi: 10.3969/j.issn.1007-3426.2019.05.010 [43] 杜浩, 石万忠, 梁金强, 等, 2021. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响. 石油地球物理勘探, 56(4): 869-881, 676. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202104021.htm [44] 何家雄, 颜文, 祝有海, 等, 2013. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏. 天然气工业, 33(6): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201306028.htm [45] 何家雄, 姚永坚, 刘海龄, 等, 2008. 南海北部边缘盆地天然气成因类型及气源构成特点. 中国地质, 35(5): 1007-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200805021.htm [46] 侯正瑜, 郭常升, 王景强, 2013. 南沙海域深水区表层沉积物声速与孔隙度相关关系. 海洋科学, 37(7): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201307012.htm [47] 刘杰, 杨睿, 邬黛黛, 等, 2019. 琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素. 海洋学报(中文版), 41(8): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201908002.htm [48] 宁伏龙, 梁金强, 吴能友, 等, 2020. 中国天然气水合物赋存特征. 天然气工业, 40(8): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008002.htm [49] 沙志彬, 梁金强, 苏丕波, 等, 2015. 珠江口盆地东部海域天然气水合物钻探结果及其成藏要素研究. 地学前缘, 22(6): 125-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201506011.htm [50] 王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321 [51] 王秀娟, 吴时国, 董冬冬, 等, 2011. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用. 海洋地质与第四纪地质, 31(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201101017.htm [52] 王真真, 王秀娟, 郭依群, 等, 2014. 白云凹陷陆坡峡谷沉积与迁移特征及其对天然气水合物成藏的影响. 海洋地质与第四纪地质, 34(3): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201403017.htm [53] 徐立涛, 何玉林, 石万忠, 等, 2021. 琼东南盆地深水区天然气水合物成藏主控因素及模式. 石油学报, 42(5): 598-610. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105004.htm [54] 杨金海, 杨希冰, 周杰, 等, 2019. 琼东南盆地深水区松南‒宝岛凹陷反转构造带发育特征及油气地质意义. 海洋学报, 41(5): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201905009.htm [55] 杨胜雄, 梁金强, 陆敬安, 等, 2017. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识. 地学前缘, 24(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm [56] 张伟, 梁金强, 何家雄, 等, 2017. 南海北部陆坡泥底辟/气烟囱基本特征及其与油气和水合物成藏关系. 海洋地质前沿, 33(7): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707002.htm [57] 郑民, 李建忠, 吴晓智, 等, 2019. 我国主要含油气盆地油气资源潜力及未来重点勘探领域. 地球科学, 44(3): 833-847. doi: 10.3799/dqkx.2019.957 [58] 周杰, 杨希冰, 杨金海, 等, 2019. 琼东南盆地松南低凸起古近系构造‒沉积演化特征与天然气成藏. 地球科学, 44(8): 2704-2716. doi: 10.3799/dqkx.2019.104