Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau
-
摘要: 为了了解青藏高原察达高速远程滑坡的运动过程与形成机理,运用遥感测绘、无人机地形测绘和现场勘查资料对滑坡进行分区,对滑坡形成机理进行研究,并利用PFC2D数值模拟对地震工况下滑坡运动过程进行模拟.将察达高速远程滑坡分为源区,流通区和堆积区;数值模拟结果得到滑坡平均运动速度为15~20 m/s,运动时间150 s,最大运动距离为2 800 m.察达滑坡为地震条件下诱发的高速远程滑坡,源区砾岩对上部堆积体后缘铲刮推移,使得上部堆积体产生整体变形,其运动过程可分为崩滑→铲刮→滑移→堆积4个阶段.Abstract: To understand the kinetic mechanism of Chada rock avalanche in Tibet plateau, remote sensing mapping, UAV topographic mapping and field survey data are used to zone the rock avalanche and research the formation mechanism of the rock avalanche. PFC2D numerical simulation is used to analyze the rock avalanche movement process under the seismic conditions simulation. The Chada rock avalanche can be divided into source zone, transition zone and accumulation zone. The average movement speed of this rock avalanche is 15-20 m/s. Its duration time is 150 s, and the maximum movement distance is 2 800 m. The Chada rock avalanche was induced by earthquake. The source zone rock mass scrapes and moves the trailing edge of the upper accumulation which resulting in the overall deformation of the upper accumulation. Its movement process can be divided into four stages: collapse → scraping → sliding → emplacement.
-
Key words:
- rock avalanche /
- numerical simulation of PFC2D /
- movement mechanism /
- engineering geology
-
表 1 岩土体物理力学参数
Table 1. Physical and mechanical parameters of rock and soilmass
岩性 重度γ(kN·m-3) c(kPa) φ(°) 砾岩 3 000 1 000 30 板岩 2 800 800 29 堆积体 2 000 60 25 表 2 岩土体微观颗粒材料参数
Table 2. Material parameters of geotechnical model
岩性 粒径(mm) 颗粒密度(kg·m3) 颗粒法向刚度(MN·m-1) 颗粒切向刚度(MN·m-1) 摩擦系数 阻尼系数 砾岩 30 3 000 10 10 0.35 0.3 板岩 10 2 700 10 10 0.3 0.3 堆积体 10 2 000 1 1 0.3 0.2 -
[1] Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract). [2] Chen, J., Chen, R. C., Mi, D. D., et al., 2020. Kinematic Processes and Fragmentation Characteristics of Walai Rock Avalanche Landslide in Tibet. Advanced Engineering Sciences, 52(6): 30-39(in Chinese with English abstract). [3] Cui, J., Gao, C. Y., Zhang, Z. L., et al., 2020. Debris Flow Movement and Accumulation Evolution of Flat Long-Runout Landslide. Advanced Engineering Sciences, 52(6): 22-29(in Chinese with English abstract). [4] Deng, J. H., Gao, Y. J., Yao, X., et al., 2021. Recognition and Implication of Basu Giant Rock Avalanche. Advanced Engineering Sciences, 53(3): 19-28(in Chinese with English abstract). [5] Gao, Y., Li, B., Gao, H. Y., et al., 2020. Progress and Issues in the Research of Impact and Scraping Effect of High-Elevation and Long-Runout Landslide. Journal of Geomechanics, 26(4): 510-519(in Chinese with English abstract). [6] Gao, Y. J., Zhao, S. Y., Deng, J. H., 2020. Developing Law of Damming Landslide and Challenges for Disaster Prevention and Mitigation in the Three-River-Parallel Territory in the Tibetan Plateau. Advanced Engineering Sciences, 52(5): 50-61(in Chinese with English absract). [7] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949(in Chinese with English absract). [8] Guo, C. B., Du, Y. B., Tong, Y. Q., et al., 2016. Huge Long-Runout Landslide Characteristics and Formation Mechanism: A Case Study of the Luanshibao Landslide, Litang County, Tibetan Plateau. Geological Bulletin of China, 35(8): 1332-1345(in Chinese with English abstract). [9] Goren, L., Aharonov, E., Anders, M. H., et al., 2010. The Long Runout of the Heart Mountain Landslide: Heating, Pressurization, and Carbonate Decomposition. Journal of Geophysical Research: Solid Earth, 115(B10): B10210. https://doi.org/10.1029/2009jb007113 [10] Hu, X. B., 2020. Study on Scraping Mechanics and Dynamic Characteristics of Landslide-Debris Flow (Dissertation). Southwest University of Science and Technology, Mianyang(in Chinese with English abstract). [11] Li, Y. L., Liu, J. K., Zhang, J. J., et al., 2021. Characteristics and Potential Hazard of the Chada Collapse in Eastern Tibet. Geoscience, 35(1): 74-82(in Chinese with English absract). [12] Luo, G., Cheng, Q. G., Shen, W. G., et al., 2021. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English absract). [13] Sun, P., Zhang, Y. S., Yin, Y. P., et al., 2009. Discussion on Long Runout Sliding Mechanism of Donghekou Landslide-Debr is Flow. Journal of Engineering Geology, 17(6): 737-744(in Chinese with English absract). [14] Wang, D. J., Lai, Q. Y., Meng, X. L., et al., 2021. Characteristic and Risk Analysis of Typical High Slope in Chada Valley of Southeast Tibet. Journal of Engineering Geology, 29(2): 454-465(in Chinese with English absract). [15] Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181(in Chinese with English absract). [16] Wang, Y. S., Xu, H. B., Luo, Y. H., et al., 2009. Study of Formation Conditions and Toss Motion Program of High Landslides Induced by Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2360-2368. (in Chinese with English abstract). [17] Wei, Z. H., 2019. Study on the Initiation Mechanism and Kinematic Mechanism of Collapsed Clastic Grain Flow (Dissertation). Chongqing Jiaotong University, Chongqing(in Chinese with English abstract). [18] Xia, S. W., 2018. Study on Three Dimensional Numerical Simulation of Yigong Rock Avalanche and It's Dam Breach(Dissertation). Shanghai Jiaotong University, Shanghai(in Chinese with English abstract) [19] Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841(in Chinese with English abstract) [20] Zeng, Q. L., Wei, R. Q., Xue, X. Y., et al., 2018. Characteristics and Runout Mechanism of Super-Large Xinmo Rock Avalanche-Debris Flow in Diexi, Sichuan Province. Journal of Engineering Geology, 26(1): 193-206(in Chinese with English absract). [21] Zhu, Y. X., Dai, F. C., Liang, L. J., 2020. Analysis on the Formation Mechanism of Rapid and Long Runout Landslides in Liquefaction-Type in Tibetan Plateau. Advanced Engineering Sciences, 52(6): 10-21(in Chinese with English absract). [22] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333 [23] 陈剑, 陈瑞琛, 米东东, 等, 2020. 西藏瓦来高速远程滑坡的运动学过程与碎裂化特征. 工程科学与技术, 52(6): 30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006005.htm [24] 崔杰, 高春玉, 张志龙, 等, 2020. 平敞型高速远程滑坡碎屑流运动与堆积演化规律研究. 工程科学与技术, 52(6): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006004.htm [25] 邓建辉, 高云建, 姚鑫, 等, 2021. 八宿巨型滑坡的发现及其意义. 工程科学与技术, 53(3): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103004.htm [26] 高杨, 李滨, 高浩源, 等, 2020. 高位远程滑坡冲击铲刮效应研究进展及问题. 地质力学学报, 26(4): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004008.htm [27] 高云建, 赵思远, 邓建辉, 2020. 青藏高原三江并流区重大堵江滑坡孕育规律及其防灾挑战. 工程科学与技术, 52(5): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005005.htm [28] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589 [29] 郭长宝, 杜宇本, 佟元清, 等, 2016. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理. 地质通报, 35(8): 1332-1345. doi: 10.3969/j.issn.1671-2552.2016.08.014 [30] 胡晓波, 2020. 滑坡碎屑流铲刮效应力学机制及动力特征研究(硕士学位论文). 绵阳: 西南科技大学. [31] 李元灵, 刘建康, 张佳佳, 等, 2021. 藏东察达高位崩塌发育特征及潜在危险. 现代地质, 35(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101009.htm [32] 罗刚, 程谦恭, 沈位刚, 等, 2021. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133 [33] 孙萍, 张永双, 殷跃平, 等, 2009. 东河口滑坡-碎屑流高速远程运移机制探讨. 工程地质学报, 17(6): 737-744. doi: 10.3969/j.issn.1004-9665.2009.06.002 [34] 王杜江, 赖琪毅, 孟祥连, 等, 2021. 藏东南察达沟谷典型高位斜坡特征及风险分析. 工程地质学报, 29(2): 454-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102015.htm [35] 王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm [36] 王运生, 徐鸿彪, 罗永红, 等, 2009. 地震高位滑坡形成条件及抛射运动程式研究. 岩石力学与工程学报, 28(11): 2360-2368. doi: 10.3321/j.issn:1000-6915.2009.11.027 [37] 魏志鸿, 2019. 崩塌碎屑流启动机理与运动机制研究(硕士学位论文). 重庆: 重庆交通大学. [38] 夏式伟, 2018. 易贡滑坡-碎屑流-堰塞坝溃决三维数值模拟研究(硕士学位论文). 上海: 上海交通大学. [39] 殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm [40] 曾庆利, 魏荣强, 薛鑫宇, 等, 2018. 茂县新磨特大滑坡-碎屑流的发育特征与运移机理. 工程地质学报, 26(1): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801021.htm [41] 朱雨轩, 戴福初, 梁莲姬, 2020. 青藏高原典型液化型高速远程滑坡形成机制分析. 工程科学与技术, 52(6): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006003.htm