[1] |
Birgel, D., Feng, D., Harry, H, et al., 2011. Changing Redox Conditions at Cold Seeps as Revealed by Authigenic Carbonates from Alaminos Canyon, Northern Gulf of Mexico. Chemical Geology, 285(1-4): 82-96. https://doi.org/10.1016/j.chemgeo.2011.03.004
|
[2] |
Blumenberg, M., Seifert, R., Reitner, J., et al., 2004. Membrane Lipid Patterns Typify Distinct Anaerobic Methanotrophic Consortia. Proceedings of the National Academy of Sciences, 101(30): 11111-11116. https://doi.org/10.1073/pnas.0401188101
|
[3] |
Blumer, M., Guillard, R., Chase, T., 1971. Hydrocarbons of Marine Phytoplankton. Marine Biology, 8(3): 183-189. https://doi.org/10.1007/BF00355214
|
[4] |
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572
|
[5] |
Chen, D.F., Chen, X.P., Chen G.Q., 2002. Geology and Geochemistry of Cold Seepage and Venting-Related Carbonates. Acta Sedimentologica Sinica, (1): 34-40(in Chinese with English abstract).
|
[6] |
Chen, Z. Yang, H.P., Huang Y.Q., et al., 2007. Characteristics of Cold Seeps and Structures of Chemoautosynthesis-Based Communities in Seep Sediments. Journal of Tropical Oceanography, (06): 73-82(in Chinese with English abstract).
|
[7] |
Cui, Z.H., He, Z.H., Jia, G.D., 2021. Composition Distribution of N-Alkanes in Slope Sediments of the Northeast Sunda Shelf Since the Last Glacial Period and Its Palaeo-Vegetation Significance, Earth Science, 46(01): 331-340(in Chinese with English abstract).
|
[8] |
Dattagupta, S., Miles, L. L., Barnabei, M. S., et al., 2006. The Hydrocarbon Seep Tubeworm Lamellibrachia luymesi Primarily Eliminates Sulfate and Hydrogen Ions across Its Roots to Conserve Energy and Ensure Sulfide Supply. Journal of Experimental Biology, 209(19): 3795-3805. https://doi.org/10.1242/jeb.02413
|
[9] |
Ding, L., Zhao, M.X., 2010. Application Of Biomarkers And Carbon Isotopes to Cold Seep Biogeochemical Processes. Marine Geology & Quaternary Geology., 30(2): 133-142(in Chinese with English abstract).
|
[10] |
Elvert, M., Hopmans, E., Treude, T., et al., 2010. Spatial Variations of Methanotrophic Consortia at Cold Methane Seeps: Implications from a High-Rresolution Molecular and Isotopic Approach. Geobiology, 3(3): 195-209. https://doi.org/10.1111/j.1472-4669.2005.00051.x
|
[11] |
Fang, Y.X., Wei, J. G, Gu, H.L., et al., 2019. Chemical and Structural Characteristics of Gas Hydrates from the Haima Cold Seeps in the Qiongdongnan Basin of the South China Sea. Journal of Asian Earth Sciences, (182): 56-78. https://doi.org/10.1016/j.jseaes.2019.103924
|
[12] |
Gan, J., Zhang, Y.Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(08): 2627-2635(in Chinese with English abstract).
|
[13] |
Ge, L., Jiang, S.Y., Blumenberg M, et al., 2015. Lipid Biomarkers and Their Specific Carbon Isotopic Compositions of Cold Seep Carbonates from the South China Sea. Marine and Petroleum Geology, 66: 501-510. https://doi.org/10.1016/j.marpetgeo.2015.02.005
|
[14] |
Goi, M. A., Ruttenberg, K. C., Eglinton, T. I., 1997. Sources and Contribution of Terrestrial Organic Carbon in the Gulf of Mexico. Nature, 389(6648): 275-278. https://doi.org/10.1038/38477
|
[15] |
Gontharet, S., Stadnitskaia, A., Bouloubassi, I., et al., 2009. Palaeo Methane-Seepage History Traced by Biomarker Patterns in a Carbonate Crust, Nile Deep-Sea Fan (Eastern Mediterranean Sea). Marine Geology, 261(1-4): 105-113. https://doi.org/10.1016/j.margeo.2008.11.006
|
[16] |
Guan, H.X., Birgel, D., Peckmann, J., et al., 2018. Lipid Biomarker Patterns of Authigenic Carbonates Reveal Fluid Composition and Seepage Intensity at Haima cold Seeps, South China Sea. Journal of Asian Earth Sciences, 168(DEC. ): 163-172. https://doi.org/10.1016/j.jseaes.2018.04.035
|
[17] |
Guan, H.X., Feng, D., Birgel D, et al., 2019a. Lipid Biomarker Patterns Reflect Different Formation Environments of Musseland Tubeworm Dominated Seep Carbonates from the Gulf of Mexico (Atwater Valley and Green Canyon). Chemical Geology, 505: 36-47. https://doi.org/10.1016/j.chemgeo.2018.12.005
|
[18] |
Guan, H.X., Sun, Z.L., Mao, S.Y., et al., 2019b. Authigenic Carbonate Formation Revealed by Lipid Biomarker Inventory at Hydrocarbon Seeps: A Case Study From the Okinawa Trough. Marine and Petroleum Geology, 101: 502-511. https://doi.org/10.1016/j.marpetgeo.2018.12.028
|
[19] |
Gretchen, D, Onstad, A., et al., 2000. Sources of Particulate Organic Matter in Rivers from the Continental USA: Lignin Phenol and Stable Carbon Isotope Compositions. Geochimica et Cosmochimica Acta, 64(20): 3539-3546. https://doi.org/10.1016/S0016-7037(00)00451-8
|
[20] |
Han, J., Calvin, M., 1969. Hydrocarbon Distribution of Algae and Bacteria, and Microbiological Activity in Sediments. Proceedings of the National Academy of Sciences, 64(2): 436-443. https://doi.org/10.1073/pnas.64.2.436
|
[21] |
Hinrichs, K. U., Hayes, J. M., Sylva, S. P., et al., 1999. Methane-Consuming Archaebacteria in Marine Sediments. Nature, 398(6730). https://doi.org/10.1038/19751
|
[22] |
Liang, Q.Y., Hu, Y., Feng, D., et al., 2017. Authigenic Carbonates from Newly Discovered Active Cold Seeps on the Northwestern Slope of the South China Sea Constraints on Fluid Sources, Formation Environments, and Seepage Dynamics. Deep Sea Res Pt I: Oceanogr Res Pap, 124: 31-41. https://doi.org/10.1016/j.dsr.2017.04.015
|
[23] |
Ma, Q.Q., Wei, X., Wu, Y., et al., 2015. Composition and Distribution of Organic Matter in the Surface Sediments of the Changjiang River in Post-Three Gorges Dam period. China Environmental Science, 35(08): 2485-2493(in Chinese with English abstract).
|
[24] |
Meyers, P., 2003. Applications of Organic Geochemistry to Paleolimnological Reconstructions: ASummary of Examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289. https://doi.org/10.1016/S0146-6380(02)00168-7
|
[25] |
Nauhaus, K., Treude, T., Boetius, A., et al., 2010. Environmental Regulation of the Anaerobic Oxidation of Methane: AComparison of ANME-I and ANME-Ⅱ Communities. Environmental Microbiology, 7(1): 98-106. https://doi.org/10.1111/j.1462-2920.2004.00669.x
|
[26] |
Niemann, H., Elvert, M., 2008. Diagnostic Lipid Biomarker and Stable Carbon Isotope Signatures of Microbial Communities Mediating the Anaerobic Oxidation of Methane with Sulphate. Organic Geochemistry, 39(12): 1668-1677. https://doi.org/10.1016/j.orggeochem.2007.11.003
|
[27] |
Knittel, K., Boetius, A., Lemke, A., et al., 2003. Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon). Geomicrobiology, 20(4): 269-294. https://doi.org/10.1080/01490450303896
|
[28] |
Knittel, K., Boetius, A., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual review of microbiology, 63(1): 311-334. https://doi.org/10.1146/annurev.micro.61.080706.093130
|
[29] |
Orphan, V. J., Hinrichs, K. U., Ussler, W., et al., 2001. Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental Microbiology, 67(4): 1922-1934. https://doi.org/10.1128/AEM.67.4.1922-1934.2001
|
[30] |
Pan, A.Y., Shen, B.J., Yao, S.P., et al., 2017. Advances in Biogeochemical Study of Glycerol Diether Membrane Lipids, Marine Geology Frontiers, 33(09): 1-12(in Chinese with English abstract).
|
[31] |
Wang, J.S., Wang, Y.B., Li, Q., 2007. Potential Relationship between Extremophiles and Hydrocarbon Resources in Marine Extreme Environment, Earth Science, 32(6): 781-788(in Chinese with English abstract).
|
[32] |
Yu, X.G., Han, X.Q., Li, H.L., et al., 2008. Biomarkers and Carbon Isotope Composition of Anaerobic Oxidation of Methane in Sediments and Carbonates of Northeastern Part of Dongsha, South China Sea, Acta Oceanologica Sinica, (03): 77-84(in Chinese with English abstract).
|
[33] |
Robson, J., Rowland, S., 1993. Chromatographic and Spectral Characterisation of 2, 6, 11, 15-Tetramethylhexadecane (Crocetane) and 2, 6, 9, 13-Tetramethyltetradecane: Reference Acyclic Isoprenoids for Geochemical Studies. Organic geochemistry, 20(7): 1093-1098. https://doi.org/10.1016/0146-6380(93)90117-T
|
[34] |
Stadnitskaia, A., Nadezhkin, D., Abbas, B., et al., 2008. Carbonate Formation by Anaerobic Oxidation of Methane: Evidence from Lipid Biomarker and Fossil 16S rDNA. Geochimica et Cosmochimica Acta, 72(7): 1824-1836. https://doi.org/10.1016/j.gca.2008.01.020
|
[35] |
Thiel, V., Peckmann, J., Seifert, R., et al., 1999. Highly Isotopically Depleted Isoprenoids: Molecular Markers for Ancient Methane Venting. Geochimica et Cosmochimica Acta, 63(23-24): 3959-3966. https://doi.org/10.1016/S0016-7037(99)00177-5
|
[36] |
Zhang, W., Liang, J.Q., Lu, J.A., et al., 2020. Characteristics and Controlling Mechanism of Typical Leakage Gas Hydrate Reservoir Forming System in the Qiongdongnan Basin, northern South China Sea, Natural Gas Industry, 40(8): 90-99(in Chinese with English abstract).
|
[37] |
Zhao, M.X., Zhang, Y.Z., Xing, L., et al., 2011. The Composition and Distribution of N-Alkanes in Surface Sediments from the South Yellow Sea and Their Potential as Organic Matter Source Indicators, Periodical of Ocean University of China, 41(4): 90-96(in Chinese with English abstract).
|
[38] |
陈多福, 陈先沛, 陈光谦, 2002. 冷泉流体沉积碳酸盐岩的地质地球化学特征. 沉积学报, (1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
|
[39] |
陈忠, 杨华平, 黄奇瑜, 等, 2007. 海底甲烷冷泉特征与冷泉生态系统的群落结构. 热带海洋学报, (6): 73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013
|
[40] |
崔子恒, 贺娟, 贾国东, 2021. 末次冰期以来巽他陆架东北部陆坡区正构烷烃分布特征及其古植被意义. 地球科学, 46(1): 331-340. doi: 10.3799/dqkx.2019.246
|
[41] |
丁玲, 赵美训, 2010. 生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用. 海洋地质与第四纪地质, 30(2): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201002027.htm
|
[42] |
甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202
|
[43] |
马倩倩, 魏星, 吴莹, 等, 2015. 三峡大坝建成后长江河流表层沉积物中有机物组成与分布特征. 中国环境科学, 35(8): 2485-2493. doi: 10.3969/j.issn.1000-6923.2015.08.029
|
[44] |
潘安阳, 申宝剑, 姚素平, 等, 2017. 甘油二醚膜类脂化合物的生物地球化学研究进展. 海洋地质前沿, 33(9): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201709001.htm
|
[45] |
王家生, 王永标, 李清, 2007. 海洋极端环境微生物活动与油气资源关系. 地球科学, (6): 781-788. doi: 10.3321/j.issn:1000-2383.2007.06.008
|
[46] |
于晓果, 韩喜球, 李宏亮, 等, 2008. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成. 海洋学报(中文版), (3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200803010.htm
|
[47] |
张伟, 梁金强, 陆敬安, 等, 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制. 天然气工业, 40(8): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008011.htm
|
[48] |
赵美训, 张玉琢, 邢磊, 等, 2011. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义. 中国海洋大学学报(自然科学版), 41(4): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201104016.htm
|