• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川藏交通廊道雅林段水文地质结构控制的水热循环及隧道热害特征

    漆继红 许模 蒋良文 杜世回 易磊 李潇 李晓 利满霖

    漆继红, 许模, 蒋良文, 杜世回, 易磊, 李潇, 李晓, 利满霖, 2022. 川藏交通廊道雅林段水文地质结构控制的水热循环及隧道热害特征. 地球科学, 47(6): 2106-2119. doi: 10.3799/dqkx.2021.201
    引用本文: 漆继红, 许模, 蒋良文, 杜世回, 易磊, 李潇, 李晓, 利满霖, 2022. 川藏交通廊道雅林段水文地质结构控制的水热循环及隧道热害特征. 地球科学, 47(6): 2106-2119. doi: 10.3799/dqkx.2021.201
    Qi Jihong, Xu Mo, Jiang Liangwen, Du Shihui, Yi Lei, Li Xiao, Li Xiao, Li Manlin, 2022. Characteristics of Geothermal Cycle and Tunnel Geothermal Disaster Controlled by Hydrogeological Structure in Ya'an to Linzhi Section of Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2106-2119. doi: 10.3799/dqkx.2021.201
    Citation: Qi Jihong, Xu Mo, Jiang Liangwen, Du Shihui, Yi Lei, Li Xiao, Li Xiao, Li Manlin, 2022. Characteristics of Geothermal Cycle and Tunnel Geothermal Disaster Controlled by Hydrogeological Structure in Ya'an to Linzhi Section of Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2106-2119. doi: 10.3799/dqkx.2021.201

    川藏交通廊道雅林段水文地质结构控制的水热循环及隧道热害特征

    doi: 10.3799/dqkx.2021.201
    基金项目: 

    中国国家铁路集团有限公司科技研究开发课题 P2018G047-07

    四川省科学技术厅2019年科技计划重点项目 2019YFG0460

    详细信息
      作者简介:

      漆继红(1975-),女,副教授,从事水文地质学、地热地质学相关研究及教学工作.ORCID:0000-0003-3486-1709.E-mail:joannqi@hotmail.com

      通讯作者:

      许模, ORCID: 0000-0002-7470-7274.E-mail: xm@cdut.edu.cn

    • 中图分类号: P314

    Characteristics of Geothermal Cycle and Tunnel Geothermal Disaster Controlled by Hydrogeological Structure in Ya'an to Linzhi Section of Sichuan-Tibet Traffic Corridor

    • 摘要: 川西藏东地区水热体系空间分布与川藏交通廊道布局关系的特殊性,使得隧道难以回避复杂多样的水热灾害.为系统分析工程面临的热害问题,对控制水热循环的水文地质结构进行辨识,辅以地球化学特征、钻孔温深关系解析,分析隧道穿越地热系统时可能遭遇热害的类型及灾变特征.活动性深大断裂与大型褶皱为区内重要控热构造,结合次级断裂、岩石富水性、热水出露特征,梳理出7类控制水热循环的水文地质结构;结合隧道与上述结构的空间关系、水热特征影响要素归纳出两大类、13小类的热害类型.典型案例分析显示康定1#隧道出口段、拉月隧道中段分别穿越折多塘温泉、拉月温泉水热系统排泄区,两段可能遭遇高温高压、突发性涌突水灾害.

       

    • 图  1  拟建川藏交通廊道(雅安-林芝段)穿越区断裂构造纲要及水热活动分布区

      Ⅰ.炉霍-道孚-康定水热活动区;Ⅱ.甘孜-新龙-理塘水热活动区;Ⅲ.德格-巴塘-乡城水热活动区;Ⅳ.贡觉-芒康水热活动区;Ⅴ.昌都-察雅-左贡水热活动区;Ⅵ.洛隆-八宿水热活动区;Ⅶ.雅鲁藏布江水热活动区;根据郭长宝等(2020)修改

      Fig.  1.  Fault tectonic outline and hydrothermal activity zones which distribute in the area Sichuan-Tibet railway (Ya'an-Linzhi section) crossing

      图  2  断裂控制水热系统的水文地质结构

      图中断裂、地形特征、低阻熔融体分布并不反应实际情况,仅为类型概化,以下类同

      Fig.  2.  Hydrogeological structures of geothermal systems forming in faults

      图  3  大型控水褶皱水文地质结构

      Fig.  3.  Hydrogeological structure of huge fold controlling groundwater flow

      图  4  隧道空间布置与热害类型关系示意

      Fig.  4.  The types of geothermal disasters considering the tunnels' layout

      图  5  隧道工程典例穿越区地质背景及热水出露位置

      a.隧道工程典例位置;b.拉月隧道隧址区水热活动分布及地质背景;c.芒康山隧道隧址区水热活动分布及地质背景;d.康定1#隧道隧址区水热活动分布及地质背景

      Fig.  5.  Geological conditions and appearance of geothermal water in the area typical tunnels crossing

      图  6  拉月隧道隧址区热水形成过程及典型隧段热害类型

      Fig.  6.  Geothermal water formation progress in the Layue tunnel site and geothermal disaster types in the typical sections

      图  7  芒康山隧道隧址区热水形成过程及典型隧段热害类型

      a.索奔温泉形成过程及隧道遭遇热害类型;b.曲色温泉形成过程及隧道遭遇热害类型

      Fig.  7.  Geothermal water formation progress in Mangkangshan tunnel site and geothermal disaster types in the typical sections

      图  8  康定1#隧道隧址区热水形成过程及典型隧段热害类型

      a.榆林宫-二道桥-中谷多级水热系统形成示意;b.二道桥温泉形成过程;c.榆林宫温泉形成过程;d.折多塘温泉形成;e.隧道穿越断裂段(F2、F3、F4)热害类型

      Fig.  8.  Geothermal water formation progress in Kangding1# tunnel site and geothermal disaster types in the typical sections

      表  1  川藏交通廊道(雅安-林芝段)典型断裂型水热体系热源配置

      Table  1.   Heat source configuration of typical hydrothermal system which forms in faults Sichuan-Tibet traffic corridor (Ya'an-Linzhi section) crossing

      序号 线路所穿越的局部水热体系 所属地热异常区(编号见1) 控制性断裂带 热源配置制式 深部热源热量传递方式
      1 康定水热活动体系 鲜水河断裂带 壳内放射性生热、剪切生热和深部热流分量 热对流、热传导
      2 巴塘章柯水热活动体系 金沙江断裂带 热传导为主
      3 昌都若巴水热活动体系 澜沧江断裂带
      4 洛隆拥巴水热活动体系 怒江断裂带
      5 喜马拉雅东构造结拉月水热活动体系 雅鲁藏布江缝合带 热对流、热传导
      下载: 导出CSV

      表  2  隧道空间布设、水热特征影响要素变化下热害类型与特征

      Table  2.   Characteristics and types of geothermal disasters considering the tunnels' layout and factors controlling the hydrothermal circulation

      热害类型 隧道与控制水热循环的水文地质结构之间的空间关系 隧道穿越区水热特征影响要素 隧道热害特征
      地形 热水渗流部位 地质构造 岩石及富水性
      平行主干断裂型(A) A1 隧道埋深较浅,处于控制地下水入渗的结构部位 山脊或斜坡地带 热水补给区 远离控热主干构造,可能处于次级断裂穿越区 穿越硬性围岩区域,包括岩浆岩、变质岩及碳酸盐岩,为具有较好富水性的裂隙及孔隙性含水岩层 无高温水热灾害风险,因存在高海拔冰雪及降雨补给入渗,使得隧道内涌水及隧道岩温存在低温热害情况
      A2-1/ A2-2 隧道埋藏较浅到较深,A2-1处于控制热水循环水文地质结构之外;A2-2处于控制地下水径流的结构部位或结构之外 山脊或斜坡地带 A2-1处于热水循环系统之外,A2-2处于热水径流带或之外 远离控热主干断裂带;A2-2处于次级构造组合内或之外 当穿过控制地下水径流的结构部位时,为较好富水性的裂隙及孔隙性含水岩层 A2-1无水热系统带来热害;A2-2若在结构之外地温由隧道埋深控制,在结构内可能遭遇与高岩温温度平衡的水热灾害
      A3-1/ A3-2 隧道埋藏浅,A3-1处于控制热水循环的水文地质结构之外;A3-2处于控制热水径流、上溢的结构部位内 沟谷地带、地形低洼处 A3-1处于热水循环系统之外;A3-2处于热水排泄区 A3-1远离控热主干断裂带;A3-2处于主干断裂或构造组合穿越 A3-1无特征;A3-2穿越硬性围岩区域,包括岩浆岩、变质岩及碳酸盐岩,为具有较好富水性的裂隙及孔隙性含水岩层 A3-1无高温水热灾害风险;A3-2遭遇高温水热灾害风险高,可能存在高压热水、且水量较大
      A4-1/ A4-2 隧道埋藏深,A4-1处于控制热水循控水文地质结构之外,A4-2处于控制水热循环径流的结构部位下方 山脊、斜坡或沟谷地带 A4-1热水循环系统之外,A4-2处于热水径流系统之下 A4-1远离控热主干断裂带;A4-2处于构造组合下方 岩性及富水性无特征 无水热系统的热害风险;因隧道埋藏深,若岩石富水性较强,可能遭遇与高岩温温度平衡的水热灾害
      横穿构造型(B) B1型:横穿断裂型热害表现为A1或A2-2;横穿褶皱表现为A1 B2-1型:横穿断裂和褶皱热害表现均为A2-1或A3-1 B2-2型:横穿断裂型和褶皱热害表现为A2-2 B3-1型:横穿断裂和褶皱型热害均表现为A3-1 B3-2型:横穿断裂型热害表现为A3-2或A4-2;横穿褶皱型表现A3-2 B4型:横穿断裂型热害表现为A4-1或A4-2;横穿褶皱型表现为A4-1
      注:A1型热害由于高海拔冰雪及降雨补给入渗,实际表现为低岩温,此处默认也是热害类型的一种.
      下载: 导出CSV

      表  3  隧道代表性钻孔特征及温深关系

      Table  3.   Characteristics of representative boreholes and relationship between temperature and depth of tunnels

      隧道 编号 地层岩性 地质构造 温度梯度
      (℃/100 m)
      温-深线及地温梯度特征
      拉月隧道 L1 片麻岩夹片岩 雅鲁藏布江缝合带 0.8 直线型,常温层厚,梯度远低于均值
      L2 片麻岩夹片岩 雅鲁藏布江缝合带 16.1 上凸型,梯度远高于均值
      芒康山隧道 M1 砂岩 加卡复式向斜 1.1 直线型,梯度明显小于均值
      M2 碳酸盐岩 加卡复式向斜 3.0 直线型,常温层厚,梯度略高于均值
      M3 砂岩夹泥岩 加卡复式向斜 2.1 直线型,梯度小于均值
      康定隧道 K1 板岩夹千枚岩 雅拉河断裂 2.3 局部下凹,梯度略小于均值
      K2 燕山期混合岩 色拉哈-康定断裂 0.5 直线型,梯度远于均值
      K3 印支期花岗岩 折多塘断裂 5.1 上凸型,梯高于均值
      下载: 导出CSV
    • [1] Cheng, C., Bai, L., Ding, L., et al., 2017. Crustal Structure of Eastern Himalayan Syntaxis Revealed by Receiver Function Method. Chinese Journal of Geophysics, 60(8): 2969-2979(in Chinese with English abstract).
      [2] Craw, D., Koons, P. K., Zeitler, P. K., et al., 2005. Fluid Evolution and Thermal Structure in the Rapidly Exhuming Gneiss Complex of Namche Barwa-Gyala Peri, Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 23(9): 829-845. https://doi.org/10.1111/j.1525-1314.2005.00612.x
      [3] Drury, M. J., Jessop, A. M., 1982. The Effect of a Fluid-Filled Fracture on the Temperature Profile in a Borehole. Geothermics, 11(3): 145-152. https://doi.org/10.1016/0375-6505(82)90023-2
      [4] Feng, T., Jiang, L. W., Zhang, G. Z., et al., 2011. Discussion about Estimation Technique of Tunnel Thermal Harm in Ya'an-Kangding Section of the Sichuan-Tibet Railway. Journal of the China Railway Society, 33(5): 11-17(in Chinese with English abstract).
      [5] Guo, C. B., Wang, B. D., Liu, J. K., et al., 2020. Main Progress and Achievements of the Geological Survey Project of Sichuan-Tibet Railway Traffic Corridor. Geological Survey of China, 7(6): 1-12(in Chinese with English abstract).
      [6] Guo, Q. H., Pang, Z. H., Wang, Y. C., et al., 2017. Fluid Geochemistry and Geothermometry Applications of the Kangding High-Temperature Geothermal System in Eastern Himalayas. Applied Geochemistry, 81: 63-75. https://doi.org/10.1016/j.apgeochem.2017.03.007
      [7] Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      [8] Hou, X. W., Li, X. Q., Jiang, L. W., et al., 2011. Estimation of Heat-Harm of Gaoligong Mountain Tunnel of Dali-Ruili Railway. Journal of Railway Engineering Society, 28(5): 60-65(in Chinese with English abstract).
      [9] Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 611-626(in Chinese with English abstract).
      [10] Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910(in Chinese with English abstract).
      [11] Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006
      [12] Li, J. X., Guo, Q. H., Wang, Y. X., 2015. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. Earth Science, 40(9): 1576-1584(in Chinese with English abstract).
      [13] Li, X., Qi, J. H., Xu, M., et al., 2018. Characteristics of the Mix between Salt Water and Fresh Water in Regional Groundwater Discharging Area of Valleys. Journal of Yangtze River Scientific Research Institute, 35(5): 32-36(in Chinese with English abstract).
      [14] Li, X., Qi, J. H., Yi, L., et al., 2021. Hydrochemical Characteristics and Evolution of Geothermal Waters in the Eastern Himalayan Syntaxis Geothermal Field, Southern Tibet. Geothermics, 97: 102233. https://doi.org/10.1016/j.geothermics.2021.102233
      [15] Li, X., Wang, J. J., Huang, X., et al., 2017. Chemical and Isotopic Characteristics of Hot Water in the Kangding-Daofu Section of Xianshuihe Fault Zone, Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 45(6): 733-745(in Chinese with English abstract).
      [16] Li, Z. Q., Hou, Z. Q., Nie, F. J., et al., 2005. Characteristic and Distribution of the Partial Melting Layers in the Upper Crust: Evidence from Active Hydrothermal Fluid in the South Tibet. Acta Geologica Sinica, 79(1): 68-77(in Chinese with English abstract).
      [17] Lin, C. H., Peng, M., Tan, H. D., et al., 2017. Crustal Structure beneath Namche Barwa, Eastern Himalayan Syntaxis: New Insights from Three-Dimensional Magnetotelluric Imaging. Journal of Geophysical Research: Solid Earth, 122: 5082-5100. https://doi.org/10.1016/10.1002/2016jb013825
      [18] Liu, C. J., Diao, Z. Z., Zhang, Z. G., 1998. West Sichuan-East Tibet—An Tethys Geology. Southwest Jiaotong University Press, Chengdu, 4-9(in Chinese).
      [19] Luo, L. L., 1994. Inquisition of the Distribution and Cause of the Hot Springs in Western Sichuan. Journal of Chongqing Teachers College (Natural Science Edition), 11(2): 39-47(in Chinese with English abstract).
      [20] Ma, X., Fu, L., Li, T. F., et al., 2021. Analysis of Geothermal Origin in Eastern Himalayan Syntaxis. Geoscience, 35(1): 209-219(in Chinese with English abstract).
      [21] Na, J., Jiang, X., Jiang, Z. J., 2021. Numerical Modelling of Stable Isotope Transport Processes in a Hydrogeothermal System of Kangding-Laoyuling Area. Earth Science, 45(7): 2646-2656(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.249
      [22] Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.070
      [23] Pang, Z. H., Reed, M., 1998. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods. Geochimica et Cosmochimica Acta, 62(6): 1083-1091. https://doi.org/10.1016/s0016-7037(98)00037-4
      [24] Qi, J. H., Li, X., Xu, M., et al., 2018. Origin of Saline Springs in Yanjing, Tibet: Hydrochemical and Isotopic Characteristics. Applied Geochemistry, 96: 164-176. https://doi.org/10.1016/j.apgeochem.2018.06.013
      [25] Qi, J. H., Xu, M., An, C. J., et al., 2017. Characterizations of Geothermal Springs along the Moxi Deep Fault in the Western Sichuan Plateau, China. Physics of the Earth and Planetary Interiors, 263: 12-22. https://doi.org/10.1016/j.pepi.2017.01.001
      [26] Shen, X. J., Zhang, W. R., Yang, S. Z., et al., 1990. Heat Flow Evidence for the Differentiated Crust-Mantle Thermal Structures of the Northern and Southern Terranes of the Qinghai-Xizang Plateau. Bulletin of the Chinese Acadmy of Geological Sciences, 11(2): 203-214(in Chinese with English abstract).
      [27] Tang, X. C., Zhang, J., Pang, Z. H., et al., 2017. The Eastern Tibetan Plateau Geothermal Belt, Western China: Geology, Geophysics, Genesis, and Hydrothermal System. Tectonophysics, 717: 433-448. https://doi.org/10.1007/s12665-016-6342-6
      [28] Tian, J., Pang, Z. H., Guo, Q., et al., 2018. Geochemistry of Geothermal Fluids with Implications on the Sources of Water and Heat Recharge to the Rekeng High-Temperature Geothermal System in the Eastern Himalayan Syntax. Geothermics, 74: 92-105. https://doi.org/10.1016/j.geothermics.2018.02.006
      [29] Wang, C. Y., Chen, W. P., Wang, L., 2013. Temperature beneath Tibet. Earth and Planetary Science Letters, 375: 326-337. https://doi.org/10.1016/j.epsl.2013.05.052.
      [30] Wang, J. Y., Xiong, L. P., Pang, Z. H., 1993. Low-Medium Temperature Geothermal System of Convective Type. Science Press, Beijing, 118(in Chinese).
      [31] Wei, W. B., Jing, S., Ye, G. F., et al., 2009. Conductive Structure and Rheology of the Lithosphere in Southern Tibet: Results of Ultra-Wide Band Magnetotelluric Sounding. Science in China (Series D), 39(11): 1591-1606(in Chinese).
      [32] Xu, M., Kang, X. B., Zhang, Q., 2021. Types of Hydrogeological Structure in Deep-Incised River Valley. Journal of Engineering Geology(in press)(in Chinese with English abstract).
      [33] Xu, Z. X., Zhang, L. G., Jiang, L. W., et al., 2021. Engineering Geological Environment and Main Engineering Geological Problems of Ya'an-Linzhi Section of the Sichuan-Tibet Railway. Advanced Engineering Science, 53(3): 29-42(in Chinese with English abstract).
      [34] Yi, L., Qi, J. H., Li, X., et al., 2021. Geochemical Characteristics and Genesis of the High-Temperature Geothermal Systems in the North Section of the Sanjiang Orogenic Belt in Southeast Tibetan Plateau. Journal of Volcanology and Geothermal Research, 414: 107244. https://doi.org/10.1016/j.jvolgeores.2021.107244.
      [35] Zeng, Q. G., Wang, B. D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.152
      [36] Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2003. Discussion on the Tectonic Framework and Formation Process of the Nanjabawa Tectonic Junction in the Eastern Himalayas. Science in China (Series D), 33(4): 373-383(in Chinese).
      [37] Zhang, J., Li, W. Y., Tang, X. C., et al., 2017. Geothermal Analysis of High Temperature Hydrothermal Area in Western Sichuan. Scientia Sinica Terrae, 47(8): 899-915(in Chinese). doi: 10.1360/N072016-00196
      [38] Zhang, M. T., 1977. Geothermal Resources and Utilization. Energy, (1): 49-52(in Chinese with English abstract).
      [39] Zhang, Y. S., Guo, C. B., Li, X. Q., et al., 2021. Key Problems on Hydro-Engineering-Environmental Geology along the Sichuan-Tibet Railway Corridor: Current Status and Development Direction. Hydrogeology & Engineering Geology, 48(5): 1-12(in Chinese with English abstract).
      [40] Zhao, Q. S., 1984. The Hydrogeochemical Characteristics and Formation Model of Hot Water in the Xianshuihe Fault Zone. Journal of Chengdu University of Science and Technology, 16(2): 77-88(in Chinese with English abstract).
      [41] Zhou, X. C., Wang, W. L., Li, L. W., et al., 2020. Geochemical Features of Hot Spring Gases in the Jinshajiang-Red River Fault Zone, Southeast Tibetan Plateau. Acta Petrologica Sinica, 36(7): 2197-2214(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.07.18
      [42] 程成, 白玲, 丁林, 等, 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构. 地球物理学报, 60(8): 2969-2979. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201708006.htm
      [43] 冯涛, 蒋良文, 张广泽, 等, 2016. 川藏交通廊道雅康段隧道水热害评估方法探讨. 铁道工程学报, 33(5): 11-17. doi: 10.3969/j.issn.1006-2106.2016.05.003
      [44] 郭长宝, 王保弟, 刘建康, 等, 2020. 川藏交通廊道交通廊道地质调查工程主要进展与成果. 中国地质调查, 7(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202006001.htm
      [45] 侯新伟, 李向全, 蒋良文, 等, 2011. 大瑞铁路高黎贡山隧道热害评估. 铁道工程学报, 28(5): 60-65. doi: 10.3969/j.issn.1006-2106.2011.05.013
      [46] 胡圣标, 何丽娟, 汪集旸, 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005
      [47] 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      [48] 李洁祥, 郭清海, 王焰新, 2015. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例. 地球科学, 40(9): 1576-1584. doi: 10.3799/dqkx.2015.142
      [49] 李潇, 漆继红, 许模, 等, 2018. 区域性地下水流河谷区排泄咸淡混合特征分析. 长江科学院院报, 35(5): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201805010.htm
      [50] 李晓, 王金金, 黄珣, 等, 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征. 成都理工大学学报(自然科学版), 45(6): 733-745. doi: 10.3969/j.issn.1671-9727.2018.06.09
      [51] 李振清, 侯增谦, 聂凤军, 等, 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据. 地质学报, 79(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501007.htm
      [52] 刘朝基, 刁志忠, 张正贵, 1996. 川西藏东特提斯地质. 成都: 西南交通大学出版社, 4-9.
      [53] 罗来麟, 1994. 四川西部温泉分布成因初探. 重庆师范学院学报(自然科学版), 11(2): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF402.009.htm
      [54] 马鑫, 付雷, 李铁锋, 等, 2021. 喜马拉雅东构造结地区地热成因分析. 现代地质, 35(1): 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101023.htm
      [55] 那金, 姜雪, 姜振蛟, 2021. 康定-老榆林地热系统氢氧同位素迁移数值模拟分析. 地球科学, 46(7): 2646-2656. doi: 10.3799/dqkx.2020.249
      [56] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏交通廊道工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
      [57] 沈显杰, 张文仁, 杨淑贞, 等, 1990. 青藏高原南北地体壳幔热结构差异的大地热流证据. 中国地质科学院院报, 11(2): 203-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199002019.htm
      [58] 汪集旸, 熊亮萍, 庞忠和, 1993. 中低温对流型地热系统. 北京: 科学出版社, 118.
      [59] 魏文博, 金胜, 叶高峰, 等, 2009. 藏南岩石圈导电性结构与流变性—超宽频带大地电磁测深研究结果. 中国科学(D辑), 39(11): 1591-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200911011.htm
      [60] 许模, 康小兵, 张强, 等, 2021. 深切河谷水文地质结构类型. 工程地质学报(待刊).
      [61] 徐正宣, 张利国, 蒋良文, 等, 2021. 川藏交通廊道雅安至林芝段工程地质环境及主要工程地质问题. 工程科学与技术, 53(3): 29-42.
      [62] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
      [63] 张健, 李午阳, 唐显春, 等, 2017. 川西高温水热活动区的地热学分析. 中国科学: 地球科学, 47(8): 899-915. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708003.htm
      [64] 张进江, 季建清, 钟大赉, 等, 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑), 33(4): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304009.htm
      [65] 章铭陶, 1977. 地热能资源及其利用. 能源, (1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN197701015.htm
      [66] 张永双, 郭长宝, 李向全, 等, 2021. 川藏交通廊道廊道关键水工环地质问题: 现状与发展方向. 水文地质工程地质, 48(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105001.htm
      [67] 赵庆生, 1984. 鲜水河断裂带热水水文地球化学特征及形成模式. 成都科技大学学报, 16(2): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198402008.htm
      [68] 周晓成, 王万丽, 李立武, 等, 2020. 金沙江-红河断裂带温泉气体地球化学特征. 岩石学报, 36(7): 2197-2214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007018.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  386
    • HTML全文浏览量:  110
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-14
    • 刊出日期:  2022-06-25

    目录

      /

      返回文章
      返回