• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南蒙古古生代岛弧地体中酸性岩石锆石年代学、Hf同位素特征及地质意义

    张伟波 王丰翔 刘翼飞 江思宏 何学洲 于瑞 李谦谦

    张伟波, 王丰翔, 刘翼飞, 江思宏, 何学洲, 于瑞, 李谦谦, 2022. 南蒙古古生代岛弧地体中酸性岩石锆石年代学、Hf同位素特征及地质意义. 地球科学, 47(8): 2824-2838. doi: 10.3799/dqkx.2021.197
    引用本文: 张伟波, 王丰翔, 刘翼飞, 江思宏, 何学洲, 于瑞, 李谦谦, 2022. 南蒙古古生代岛弧地体中酸性岩石锆石年代学、Hf同位素特征及地质意义. 地球科学, 47(8): 2824-2838. doi: 10.3799/dqkx.2021.197
    Zhang Weibo, Wang Fengxiang, Liu Yifei, Jiang Sihong, He Xuezhou, Yu Rui, Li Qianqian, 2022. Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance. Earth Science, 47(8): 2824-2838. doi: 10.3799/dqkx.2021.197
    Citation: Zhang Weibo, Wang Fengxiang, Liu Yifei, Jiang Sihong, He Xuezhou, Yu Rui, Li Qianqian, 2022. Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance. Earth Science, 47(8): 2824-2838. doi: 10.3799/dqkx.2021.197

    南蒙古古生代岛弧地体中酸性岩石锆石年代学、Hf同位素特征及地质意义

    doi: 10.3799/dqkx.2021.197
    基金项目: 

    中国地质调查局项目 DD20211404

    中国地质调查局项目 DD20190437

    中国地质调查局项目 DD20190455

    详细信息
      作者简介:

      张伟波(1987-), 男, 博士研究生, 从事境外矿产资源研究.ORCID: 0000-0001-6246-2487.E-mail: zhangwb2007@163.com

      通讯作者:

      江思宏, ORCID: 0000-0002-7969-3860.E-mail: jiangsihong1@163.com

    • 中图分类号: P597

    Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance

    • 摘要: 南蒙古曼达洛沃-古尔班赛汗岛弧地体是中亚造山带的重要组成部分,为了探讨岛弧地体内岩浆活动及地壳演化过程与斑岩型铜多金属矿床成矿作用的成因关系,对产出在该地体内代表性斑岩铜矿床与成矿作用有关的岩石进行了岩相学、锆石年代学及Hf同位素组成分析. 哈马戈泰铜-金矿床出露的与成矿有关的岩石为花岗闪长岩-二长闪长玢岩组合,LA⁃MC⁃ICP⁃MS锆石定年数据显示,成岩年龄为332~324 Ma;查干苏布尔加矿区产出有二长花岗斑岩,为铜-钼矿化的容矿岩体,本次测定的成岩年龄为~372 Ma;青狐狸斑岩型铜多金属矿化与闪长岩具有成因联系,本次测定的成岩年龄为~333 Ma;奥尤特乌兰铜多金属矿区岩浆岩活动强烈,产出有二长岩和安山岩-花岗闪长岩杂岩体,本次测定的成岩年龄分别为~381 Ma和338~332 Ma. 综上所述,曼达洛沃-古尔班赛汗岛弧地体晚古生代岩浆活动主要分为3个阶段:383~369 Ma、367~363 Ma和338~321 Ma. 其中,与斑岩铜多金属矿化有成因联系的岩浆活动主要集中在375~369 Ma和338~328 Ma两个时期,可能为该区域两个最重要的成矿期. 原位锆石εHft)位于球粒陨石演化线之上,介于+7.85~+16.14之间,部分分析点与亏损地幔值相似,显示成岩物质来源可能是亏损地幔部分熔融形成的新生物质在地壳短暂停留后再次部分熔融的产物,同时也受到了一定程度成熟地壳的混染. Hf同位素两阶段模式年龄tDM2为331~717 Ma,表明本区发生重要的地壳增生事件的时间是新元古代至晚古生代.

       

    • 图  1  研究区大地构造位置(a)以及蒙古国主要构造单元(b)

      Fig.  1.  The figure showing the geotectonic location of the study area (a) and Main terranes of Mongolia(b)

      图  2  研究区地质简图及主要斑岩型铜矿床分布

      Fig.  2.  Simplified geological map of study area in South Mongolia, showing major porphyry deposits

      图  3  南蒙古岛弧地体中酸性岩石样品照片和岩相学照片

      Fig.  3.  Specimen photos and photomicrographs of intermediate acidity magmatic rocks in the island arc terrane of South Mongolia

      图  4  南蒙古岛弧地体中酸性岩石样品锆石U⁃Pb谐和图

      Fig.  4.  U⁃Pb concordia diagrams of zircon for intermediate acidity magmatic rocks in the island arc terrane of South Mongolia

      图  5  南蒙古岛弧地体中酸性岩石样品锆石εHf(t)⁃t图解

      Fig.  5.  εHf(t) vs. zircon age plot for intermediate acidity magmatic rocks in the island arc terrane of South Mongolia

      图  6  南蒙古岛弧地体古生代主要岩浆活动

      Fig.  6.  Age of Paleozoic magmatic event in the island arc terrane of South Mongolia

    • [1] Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early⁃Middle Archaean Crustal Evolution Deduced from Lu⁃Hf and U⁃Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/S0016⁃7037(00)00493⁃2
      [2] Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21: 87-110. https://doi.org/10.1016/S1367⁃9120(02)00017⁃2
      [3] Batkhishig, B., Noriyoshi, T., Bignall, G., 2014. Magmatic⁃Hydrothermal Activity in the Shuteen Area, South Mongolia. Economic Geology, 109(7): 1929-1942. https://doi.org/10.2113/econgeo.109.7.1929
      [4] Batkhishig, B., Noriyoshi, T., Greg, B., 2010. Magmatism of the Shuteen Complex and Carboniferous Subduction of the Gurvansaikhan Terrane, South Mongolia. Journal of Asian Earth Sciences, 37(5-6): 399-411. https://doi.org/10.1016/j.landusepol.2010.03.002
      [5] Blight, J. H. S., Petterson, M. G., Crowley, Q. G., et al., 2010a. The Oyut Ulaan Volcanic Group: Stratigraphy, Magmatic Evolution and Timing of Carboniferous Arc Development in SE Mongolia. Journal of the Geological Society, 167(3): 491-509. https://doi.org/10.1144/0016⁃76492009⁃094
      [6] Blight, J. H. S., Crowley, Q. G., Petterson, M. G., 2010b. Granites of the Southern Mongolia Carboniferous Arc: New Geochronological and Geochemical Constraints. Lithos, 116: 35-52. https://doi.org/10.1016/j.lithos.2010.01.001
      [7] Cao, S. N., Wang, B., 2021. Age, Origin and Geological Implications of Early Paleozoic Marine Bentonites, Northern Yili Block of Central Asian Orogenic Belt. Earth Science, 46(8): 2804-2818(in Chinese with English abstract).
      [8] Cheng, Y., Xiao, Q. H., Li T. D., et al., 2019. Magmatism and Tectonic Background of Early Permian Intra⁃Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt. Earth Science, 44(10): 3454-3468(in Chinese with English abstract).
      [9] Claesson, S., Vetrin, V., Bayanova, T., et al., 2000. U⁃Pb Zircon Age from a Devonian Carbonatite Dyke, Kola Peninsula, Russia: A Record of Geological Evolution from the Archean to the Paleozoic. Lithos, 51: 95-108. https://doi.org/10.1016/S0024⁃4937(99)00076⁃6
      [10] Dejidmaa, G., 2005. Mineral Resources and Metallogenic Belts in Southern Mongolia. Geodynamics and Metallogeny of Mongolia, With Special Emphasis on Copper and Gold Deposits. CERCAMS, London, 221.
      [11] Dolgopolova, A., Seltmann, R., Armstrong, R., et al., 2013. Sr⁃Nd⁃Pb⁃Hf Isotope Systematics of the Hugo Dummett Cu⁃Au Porphyry Deposit (Oyu Tolgoi, Mongolia). Lithos, 164: 47-64. https://doi.org/10.1016/j.lithos.2012.11.017
      [12] Enkhjargal, B., Jargalan, S., 2016. Porphyry Copper Deposits in South Mongolia. ShigenChishitsu, 66(3), 135-146. https://doi.org/10.11456/shigenchishitsu.66.135
      [13] Gerel, O., Myagmarsuren, S., Oyungerel, S., et al., 2006. Granitoids of Mongolia and Related Metallogeny: Example on South Mongolia//Structural and Tectonic Correlation Across the Central Asia Orogenic Collage: Implication for Continental Growth and Intracontinental Deformation. Second International Workshop and Field Excursions for IGC Project. 480: 59-64.
      [14] Gerel, O., Pirajno, F., Batkhishig, B., et al., 2021. Mineral Resources of Mongolia. Springer, Switzerland.
      [15] Helo, C., Hegner, E., Kröner, A., et al., 2006. Geochemical Signature of Paleozoic Accretionary Complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on Arc Environments and Crustal Growth. Chemical Geology, 227(3-4): 236-257. https://doi.org/10.1016/j.chemgeo.2005.10.003
      [16] Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In⁃Situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract).
      [17] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract).
      [18] Hou, W. R., Nie, F. J., Jiang, S. H., et al., 2010. The Geology and Ore⁃Forming Mechanism of the Tsagaan Suvarga Large⁃Size Cu⁃Mo Porphyry Deposit In Mongolia. Acta Geoscientica Sinica, 31(03): 307-320(in Chinese with English abstract).
      [19] Hou, Z. Q., 2004. Porphyry Cu⁃Mo⁃Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract).
      [20] Jahn, B. M., Litvinovsky, B. A., Zanvilevich A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian⁃Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113: 521-539. https://doi.org/10.1016/j.lithos.2009.06.015
      [21] Jiang, S. H., Han, S. J., Chen, Z. H. et al., 2019. Summary on Metallogeny of Copper Deposits in Mongolia. Geological Science and Technology Information, 38(5) : 1-19(in Chinese with English abstract).
      [22] Kirwin, D. J., Wilson, C. C., Turmagnai, D., et al., 2005a. Exploration History, Geology, and Mineralisation of the Kharmagtai Gold⁃Copper Porphyry District, South Gobi Region, Mongolia. Geodynamics and Metallogeny of Mongolia With A Special Emphasis on Copper and Gold Deposits. SEG⁃IAGOD Field Trip, 14: 16.
      [23] Kirwin, D. J., Forster, C. N., Kavalieris, I., et al. 2005b. The Oyu Tolgoi Copper⁃Gold Porphyry Deposits, South Gobi, Mongolia. Geodynamics and Metallogeny of Mongolia With A Special Emphasis on Copper and Gold Deposits. SEG⁃IAGOD Field Trip, 14-16.
      [24] Lamb, M. A., Badarch, G., 1997. Paleozoic Sedimentary Basins and Volcanic⁃Arc Systems of Southern Mongolia: New Stratigraphic and Sedimentologic Constraints. International Geology Review, 39(6): 542-576. https://doi.org/10.1080/00206819709465288
      [25] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U⁃Pb Isotope and Trace Element Analyses by LA⁃ICP⁃MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434⁃010⁃3052⁃4
      [26] Mao, J. W., Luo, M. C., Xie, G. Q. et al., 2014. Basic Characteristics and New Advances in Research and Exploration on Porphyry Copper Deposits. Acta Geologica Sinica, 88(12): 2153-2175(in Chinese with English abstract).
      [27] Mao, J. W., Zhang, Z. H., Wang Yt. et al., 2012. The Main Types, Characteristics and Prospecting Exploration of Ore Deposits Abroad. Geological Publishing House, Beijing, 189-244(in Chinese).
      [28] Nasdala, L., Hofmeiste, R W., Norberg, N., et al., 2008. Zircon M257⁃A Homogeneous Natural Reference Material for the Ion Microprobe U⁃Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. https://doi.org/10.1111/j.1751⁃908X.2008.00914.x
      [29] Nie, F. J., Jiang, S. H., Bai, D. M., et al., 2010. Types and Temporal Spatial Distribution of Metallic Deposits in Southern Mongolia and Its Neighboring Areas. Acta Geoscientica Sinica, 31(3): 267-288(in Chinese with English abstract).
      [30] Perello, J., Cox, D., Garamjav, D., et al., 2001. Oyu Tolgoi, Mongolia: Siluro⁃Devonian Porphyry Cu⁃Au⁃(Mo) and High⁃Sulfidation Cu Mineralization with a Cretaceous Chalcocite Blanket. Economic Geology, 96(6): 1407- 1428. https://doi.org/10.2113/gsecongeo.96.6.1407
      [31] Rippington, S., Cunningham, D., England, R., 2008. Structure and Petrology of the Altan Uul Ophiolite: New Evidence for a Late Carboniferous Suture in the Gobi Altai, Southern Mongolia. Journal of the Geological Society, 165(3): 711-723. https://doi.org/10.1144/0016⁃76492007⁃091
      [32] Safonova, I., Kotlyarov, A., Krivonogov, S., et al., 2017. Intra⁃Oceanic Arcs of the Paleo⁃Asian Ocean. Gondwana Research, 50(2): 167-194. https://doi.org/10.1016/j.gr.2017.04.005
      [33] Seltmann, R., Porter, T. M. 2005. The Porphyry Cu⁃Au/Mo Deposits of Central Eurasia: 1. Tectonic, Geologic and Metallogenic Setting and Significantdeposits. In: Porter, T. M., ed., Super Porphyry Copper and Gold Deposits: A Global Perspective. PGC, Adelaide, 467-512.
      [34] Sengör, A. M. C., Natal′in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi. org/10.1038/364299a0 doi: 10.1038/364299a0
      [35] Sengör, A. M. C., Natal'In, B. A., 1996. Turkic⁃Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      [36] Shen, P., Pan, H. D., Seitmuratova, E., 2015. Characteristics of the Porphyry Cu Deposits in the Central Asia Metallogenic Domain. Acta Petrologica Sinica, 31(2): 315-332(in Chinese with English abstract).
      [37] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      [38] Sinclair, W. D., Goodfellow, W. D., 2007. Porphyry Deposits. Geological Association of Canada, Mineral Deposits Division, 5: 223-243.
      [39] Wainwright, A. J., Tosdal, R. M., Wooden, J. L., et al., 2011. U⁃Pb (Zircon) and Geochemical Constraints on the Age, Origin, and Evolution of Paleozoic Arc Magmas in the Oyu Tolgoi porphyry Cu⁃Au District, Southern Mongolia. Gondwana Research, 19(3): 764-787. https://doi.org/10.1016/j.gr.2010.11.012
      [40] Wang, L., Zhang, S. T., Fang, Y., et al., 2021. Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China. Journal of Earth Science, 32(2): 370-389. https://doi.org/10.1007/s12583⁃021⁃1427⁃x
      [41] Wang, T., Huang H., Song P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. (in Chinese with English Abstract).
      [42] Watanabe, Y., Stein, H. J., 2000. Re⁃Os Ages for the Erdenet and Tsagaan Suvarga Porphyry Cu⁃Mo Deposits, Mongolia, and Tectonic Implications. Economic Geology, 95(7): 1537-1542. https://doi.org/10.2113/gsecongeo.95.7.1537
      [43] Wilson, M., 1989. Review of Igneous Petrogenesis: Aglobal Tectonic Approach. Terra Nova, 1(2): 218-222. https://doi.org/10.1111/j.1365⁃3121.1989.tb00357.x
      [44] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi. org/10.1144/0016⁃76492006⁃022 doi: 10.1144/0016⁃76492006⁃022
      [45] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu ⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      [46] Xia, B., Chen, G. W., Wang, H., 2002. Analysis of Tectonic Settings of Global Super Large Porphyry Copper Deposits. Science in China (Series D), (S1): 87-95(in Chinese with English abstract).
      [47] Yakubchuk, A., 2005. Geodynamic Evolution of Accreted Terranes of Mongolia Against the Background of the Altaid and Transbaikal⁃Mongolian Collages. In: Seltmann, R., Gerel, O., Kirwin, D. J., eds., Geodynamics and Metallogeny of Mongolia With A Special Emphasis on Copper and Gold Deposits. IAGOD Guidebook Series 11, London, 13-24.
      [48] Yakubchuk, A., Seltmann, R., Shatov, V., et al., 2001. The Altaids: Tectonic Evolution and Metallogeny. SEG Discovery, (46): 1-14. https://doi.org/10.5382/SEGnews.2001⁃46.fea
      [49] Yarmolyuk, V. V., Kovalenko, V. I., Sal'Nikova, E. B., et al., 2008. Geochronology of Igneous Rocks and Formation of the Late Paleozoic South Mongolian Active Margin of the Siberian Continent. Stratigraphy and Geological Correlation, 16(2): 162-181. https://doi.org/10.1134/S0869593808020056
      [50] Zhu, M. S., Anaad, C., Baatar M., et al., 2015. SHRIMP Zircon U⁃Pb Dating of Tsagaan Suvarga and Shuteen Porphyry Copper Deposits: Constraints on Metallogenic Time and Tectonic Setting of Porphyry⁃Type Mineralization in South Gob, Mongolia. Geological Bulletin of China, 34(4): 675-685(in Chinese with English abstract).
      [51] 曹胜楠, 王博, 2021. 中亚造山带伊犁北缘早古生代海相斑脱岩地质意义. 地球科学, 46(8): 2804-2818. doi: 10.3799/dqkx.2020.279
      [52] 程杨, 肖庆辉, 李廷栋, 等, 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, 44(10): 3454-3468. doi: 10.3799/dqkx.2019.085
      [53] 侯可军, 李延河, 田有荣, 2009. LA⁃MC⁃ICP⁃MS锆石微区原位U⁃Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      [54] 侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用. 岩石学报, (10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [55] 侯万荣, 聂凤军, 江思宏, 等, 2010. 蒙古国查干苏布尔加大型铜-钼矿床地质特征及成因. 地球学报, 31(3): 307-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003006.htm
      [56] 侯增谦. 2004. 斑岩Cu⁃Mo⁃Au矿床: 新认识与新进展. 地学前缘, (1): 131-144. doi: 10.3321/j.issn:1005-2321.2004.01.010
      [57] 江思宏, 韩世炯, 陈郑辉, 等, 2019. 蒙古国铜矿床成矿规律. 地质科技情报, 38(5): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905001.htm
      [58] 毛景文, 罗茂澄, 谢桂青, 等, 2014. 斑岩铜矿床的基本特征和研究勘查新进展. 地质学报, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm
      [59] 毛景文, 张作衡, 王义天, 等, 2012. 国外主要矿床类型, 特点及找矿勘查. 地质出版社, 北京, 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201903037.htm
      [60] 聂凤军, 江思宏, 白大明, 等, 2010. 蒙古国南部及邻区金属矿床类型及其时空分布特征. 地球学报, 31(3): 267-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003004.htm
      [61] 申萍, 潘鸿迪, Seitmuratova, E., 2015. 中亚成矿域斑岩铜矿床基本特征. 岩石学报, 31(2): 315-332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201502003.htm
      [62] 王涛, 黄河, 宋鹏, 等, 2020. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
      [63] 吴福元, 李献华, 郑永飞, 等, 2007. Lu⁃Hf同位素体系及其岩石学应用. 岩石学报, (2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [64] 夏斌, 陈根文, 王核, 2002. 全球超大型斑岩铜矿床形成的构造背景分析. 中国科学(D辑: 地球科学), (S1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2002S1009.htm
      [65] 朱明帅, Anaad Chimedtseren, Baatar Munkhtsengel, 等, 2015. 蒙古国查干苏布尔加和苏廷铜矿容矿斑岩体SHRIMP锆石U⁃Pb年龄——对南戈壁斑岩型铜矿成矿时代及成矿背景的约束. 地质通报, 34(4): 675-685. doi: 10.3969/j.issn.1671-2552.2015.04.008
    • dqkxzx-47-8-2824-附表.docx
    • 加载中
    图(6)
    计量
    • 文章访问数:  279
    • HTML全文浏览量:  35
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-11
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回