Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals
-
摘要:
古-中生代之交发生了许多重要的地质事件,包括“Pangea”大陆的解体、大火成岩省的喷发、晚古生代大冰期的消逝、极端高温事件、两次生物大灭绝以及迟缓的生物复苏等.牙形石作为该时期主要的标准化石,是进行地层对比以及生物与环境协同演化研究的重要依据.近些年,此阶段的牙形石相关研究取得了许多重要的进展,这些新的材料和技术手段上的突破,为人们进行高精度的地层对比、定量重建该时期地球的生物及环境演变起到了关键作用.本文系统地对该时期全球牙形石的研究,包括牙形石的生物学、地层学以及地球化学研究等进行了总结,也提出了部分亟待解决的问题.未来,随着更多技术手段的开发以及更多基础材料的发现,将加强研究人员对该时期牙形石演化的理解,必然也会在研究这段地质历史转折与突变期的古海洋、古环境、古生物过程中发挥更大的作用.
Abstract:Numerous geological events took place during the Palaeozoic-Mesozoic upheavals, including breakup of the Pangea supercontinent, eruptions of large igneous provinces, ending of the Late Paleozoic Ice Age, extremely hot temperatures, two mass extinctions, and delayed ecosystem recovery. As the main index fossil of this interval, conodont is an important basis for stratigraphic correlation and the co-evolution history of organisms and the environment. In recent years, significant progress has been achieved through the study of Permian and Early Triassic conodonts and its related researches, which plays an important role in understanding the biotic and environment evolutions. The researches about Permian and Early Triassic conodonts have been summarized in this paper, including conodont biology, stratigraphy, and geochemistry. Moreover, some issues which have remained being overlooked or un-solved are also presented. In the future, the development of more technical approaches and the discoveries of more basic materials would be favored for more deep studies on the evolution of the conodont during this interval, which will further play an indispensable role in paleo-oceanic, paleo-environmental and paleontological studies during this transitional and mutational geologic history.
-
Key words:
- conodont /
- Late Permian /
- Early Triassic /
- Paleo⁃environment /
- bio⁃stratigraphy /
- stratigraphy
-
图 1 二叠纪-早三叠世最早期牙形石带,包括40个可全球对比的牙形石带及35个地方性牙形石带(修改自Henderson, 2016)
Fig. 1. Permian-Earliest Triassic conodont zonation, including 40 global-correlative conodont zones and 35 regional conodont zones (modified from Henderson, 2016)
图 4 物种x在时间和空间上的分布
修改自Guex et al. (1991); J(x)表示该物种x在地层中出现的集合,G表示物种x的生存范围,T表示物种在地质历史中存在的时间范围
Fig. 4. Tempo and space distributions of species x
图 5 二叠纪牙形石氧同位素变化曲线(修改自Chen et al., 2013a)
Fig. 5. Permian conodont oxygen isotopes curves (modified from Chen et al., 2013a)
图 6 蓬莱滩、铁桥剖面牙形石氧同位素变化曲线及海平面变化(修改自Chen et al., 2011)
Fig. 6. Conodont oxygen isotopes curves and sea level changes of the Penglaitan and Tieqiao sections (modified from Chen et al., 2011)
图 7 早三叠世牙形石锶同位素、海水温度、氧化还原状态及海平面变化曲线(修改自Song et al., 2015)
Fig. 7. Sr isotpes, temperature, redox conditions of the sea water and sea level change during the Early Triassic (modified from Song et al., 2015)
图 8 早三叠牙形石演化过程中“返祖现象”(修改自Guex, 2016)
Fig. 8. "Retrograde" evolution of the conodont during the Early Triassic (modified from Guex, 2016)
a. "Neospathodus" arcucristatus; b. Protoclarkina crofri; c. Clarkina bitteri; d. C. meishanensis; e. C. krystyni; a'. Kashmirella timorensis; b'. Paragondolella regale; c'. P. excels
-
[1] Adams, D. C., Rohlf, F. J., Slice, D. E., 2013. A Field Comes of Age: Geometric Morphometrics in the 21st Century. Hystrix, 24(1): 7-14. https://doi.org/10.4404/hystrix-24.1-6283. [2] Agematsu, S., Orchard, M. J., Sashida, K., 2008. Reconstruction of an Apparatus of Neostrachanognathus tahoensis from Oritate, Japan and Species of Neostrachanognathus from Oman. Palaeontology, 51(5): 1201-1211. https://doi.org/10.1111/j.1475-4983.2008.00804.x [3] Agematsu, S., Sano, H., Sashida, K., 2014. Natural Assemblages of Hindeodus Conodonts from a Permian-Triassic Boundary Sequence, Japan. Palaeontology, 57(6): 1277-1289. https://doi.org/10.1111/pala.12114 [4] Aldridge, R. J., Murdock, D. J. E., Gabbott, S. E., et al., 2013. A 17-Element Conodont Apparatus from the Soom Shale Lagerstätte (Upper Ordovician), South Africa. Palaeontology, 56(2): 261-276. https://doi.org/10.1111/j.1475-4983.2012.01194.x [5] Algeo, T. J., Chen, Z. Q., Fraiser, M. L., et al., 2011. Terrestrial-Marine Teleconnections in the Collapse and Rebuilding of Early Triassic Marine Ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 1-11. https://doi.org/10.1016/j.palaeo.2011.01.011 [6] Barbault, R., 1988. Body Size, Ecological Constraints, and the Evolution of Life-History StrategiesEvolutionary Biology, 22: 261-286. https://doi.org/10.1007/978-1-4613-0931-4_6 [7] Behnken, F. H., 1975. Leonardian and Guadalupian (Permian) Conodont Biostratigraphy in Western and Southwestern United States. Journal of Paleontology, 284-315. https://doi.org/10.2307/1303362 [8] Berner, R. A., 2006. GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664. https://doi.org/10.1016/j.gca.2005.11.032 [9] Brayard, A., Bucher, H., Escarguel, G., et al., 2006. The Early Triassic Ammonoid Recovery: Paleoclimatic Significance of Diversity Gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3-4): 374-395. https://doi.org/10.1016/j.palaeo.2006.02.003 [10] Brayard, A., Meier, M., Escarguel, G., et al., 2015. Early Triassic Gulliver Gastropods: Spatio-Temporal Distribution and Significance for Biotic Recovery after the End-Permian Mass Extinction. Earth-Science Reviews, 146: 31-64. https://doi.org/10.1016/j.earscirev.2015.03.005 [11] Brosse, M., Bucher, H., Bagherpour, B., et al., 2015. Conodonts from the Early Triassic Microbialite of Guangxi (South China): Implications for the Aefinition of the Base of the Triassic System. Palaeontology, 58(3): 563-584. https://doi.org/10.1111/pala.12162 [12] Brosse, M., Bucher, H., Goudemand, N., 2016. Quantitative Biochronology of the Permian-Triassic Boundary in South China Based on Conodont Unitary Associations. Earth-Science Reviews, 155: 153-171. https://doi.org/10.1016/j.earscirev.2016.02.003 [13] Burgess, S. D., Bowring, S. A., 2015. High-Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth's Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470 [14] Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the end-Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467-017-00083-9 [15] Carr, T. R., Paull, R. K., Clark, D. L., 1984. Conodont Paleoecology and Biofacies Analysis of the Lower Triassic Thaynes Formation in the Cordilleran Miogeocline. Geological Society of America Special Papers, 196: 283-294. https://doi.org/10.1130/spe196-p283 [16] Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013a. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007 [17] Chen, B., Joachimski, M. M., Sun, Y. D., et al., 2011. Carbon and Conodont Apatite Oxygen Isotope Records of Guadalupian-Lopingian Boundary Sections: Climatic or Sea-Level Signal? Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145-153. https://doi.org/10.1016/j.palaeo.2011.08.016 [18] Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013 [19] Chen, J., Beatty, T. W., Henderson, C. M., et al., 2009. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Dawen Section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian Extinction and Correlation with Meishan. Journal of Asian Earth Sciences, 36(6): 442-458. https://doi.org/10.1016/j.jseaes.2008.08.002 [20] Chen, J., Henderson, C. M., Shen, S. Z., 2008. Conodont Succession around the Permian-Triassic Boundary at the Huangzhishan Section, Zhejiang and Its Stratigraphic Correlation. Acta Palaeontologica Sinica, 47(1): 91-114 (in Chinese with English abstract). [21] Chen, J. B., Zhao, L. S., Chen, Z. Q., et al., 2012. In Situ Rare Earth Elements in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution. Earth Science, 37(1): 25-34 (in Chinese with English abstract). [22] Chen, J., Shen, S. Z., Li, X. H., et al., 2016a. High-Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025 [23] Chen, J., Shen, S. Z., Zhang, Y. C., et al., 2020a. Abrupt Warming in the Latest Permian Detected Using High-Resolution in Situ Oxygen Isotopes of Conodont Apatite from Abadeh, Central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109973. https://doi.org/10.1016/j.palaeo.2020.109973 [24] Chen, J., Song, H. J., He, W. H., et al., 2019a. Size Variation of Brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect Following the Permian-Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 248-257. https://doi.org/10.1016/j.palaeo.2018.07.013 [25] Chen, Y. L., Jiang, H. S., Lai, X. L., et al., 2015. Early Triassic Conodonts of Jiarong, Nanpanjiang Basin, Southern Guizhou Province, South China. Journal of Asian Earth Sciences, 105: 104-121. https://doi.org/10.1016/j.jseaes.2015.03.014 [26] Chen, Y. L., Joachimski, M. M., Richoz, S., et al., 2021. Smithian and Spathian (Early Triassic) Conodonts from Oman and Croatia and Their Depth Habitat Revealed. Global and Planetary Change, 196: 103362. https://doi.org/10.1016/j.gloplacha.2020.103362 [27] Chen, Y. L., Kolar-Jurkovšek, T., Jurkovšek, B., et al., 2016b. Early Triassic Conodonts and Carbonate Carbon Isotope Record of the Idrija-Žiri Area, Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology, 444: 84-100. https://doi.org/10.1016/j.palaeo.2015.12.013 [28] Chen, Y. L., Neubauer, T. A., Krystyn, L., et al., 2016c. Allometry in Anisian (Middle Triassic) Segminiplanate Conodonts and Its Implications for Conodont Taxonomy. Palaeontology, 59(5): 725-741. https://doi.org/10.1111/pala.12253 [29] Chen, Y. L., Richoz, S., Krystyn, L., et al., 2019b. Quantitative Stratigraphic Correlation of Tethyan Conodonts across the Smithian-Spathian (Early Triassic) Extinction Event. Earth-Science Reviews, 195: 37-51. https://doi.org/10.1016/j.earscirev.2019.03.004 [30] Chen, Y. L., Twitchett, R. J., Jiang, H. S., et al., 2013b. Size Variation of Conodonts during the Smithian-Spathian (Early Triassic) Global Warming Event. Geology, 41(8): 823-826. https://doi.org/10.1130/G34171.1 [31] Chen, Y., Jiang, H. S., Ogg, J. G., et al., 2020b. Early-Middle Triassic Boundary Interval: Integrated Chemo-Bio-Magneto-Stratigraphy of Potential GSSPS for the Base of the Anisian Stage in South China. Earth and Planetary Science Letters, 530: 115863. https://doi.org/10.1016/j.epsl.2019.115863 [32] Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475 [33] Chhabra, N. L., Sahni, A., 1981. Late Lower Triassic and Early Middle Triassic Conodont Faunas from Kashmir and Kumaun Sequences in Himalaya. Journal of the Palaeontological Society of India, 25: 135-147. [34] Chu, D. L., Tong, J. N., Song, H. J., et al., 2015. Lilliput Effect in Freshwater Ostracods during the Permian-Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 38-52. https://doi.org/10.1016/j.palaeo.2015.06.003 [35] Clark, D. L., 1959. Conodonts from the Triassic of Nevada and Utah. Journal of Paleontology, 33(2): 305-312. https://doi.org/10.2307/1300758 [36] Clark, D. L., 1983. Extinction of Conodonts. Journal of Paleontology, 57(4): 652-661. [37] Clark, D. L., Carr, T. R., 1984. Conodont Biofacies and Biostratigraphic Schemes in Western North America: A Model. In: Clark, D. L., ed., Conodont Biofacies and Provincialism. Geological Society of America, Boulder. [38] Clark, D. L., Sweet, W. C., Bergström, S. M., 1981. Conodonta. Geological Society of America, Boulder. [39] Cleal, C. J., Thomas, B. A., 2005. Palaeozoic Tropical Rainforests and Their Effect on Global Climates: Is the Past the Key to the Present? Geobiology, 3(1): 13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x [40] Cope, E. D., 1885. On the Evolution of the Vertebrata, Progressive and Retrogressive. The American Naturalist, 19(2): 140-148. https://doi.org/10.1086/273881 [41] Cope, E. D., 1896. Scientific Literature: The Primary Factors of Organic Evolution. Science, 4: 456-459. https://doi.org/10.1126/science.4.91.456 [42] Cotgreave, P., 1993. The Relationship between Body Size and Population Abundance in Animals. Trends in Ecology & Evolution, 8(7): 244-248. https://doi.org/10.1016/0169-5347(93)90199-Y [43] Dagis, A., A., 1984. Early Triassic Conodonts of Northern Middle Siberia. Transactions of the Institute of Geology and Geophysics, Siberian Branch of Academy of Sciences of the USSR, 554: 1-69. [44] Donoghue, P. C. J., 1998. Growth and Patterning in the Conodont Skeleton. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 353(1368): 633-666. https://doi.org/10.1098/rstb.1998.0231 [45] Donoghue, P. C. J., Forey, P. L., Aldridge, R. J., 2000. Conodont Affinity and Chordate Phylogeny. Biological Reviews of the Cambridge Philosophical Society, 75(2): 191-251. https://doi.org/10.1017/s0006323199005472 [46] Donoghue, P. C. J., Purnell, M. A., 1999. Growth, Function, and the Conodont Fossil Record. Geology, 27(3): 251-254. https://doi.org/10.1130/0091-7613(1999)0270251: gfatcf>2.3.co;2 doi: 10.1130/0091-7613(1999)0270251:gfatcf>2.3.co;2 [47] Donoghue, P. C. J., Sansom, I. J., 2002. Origin and Early Evolution of Vertebrate Skeletonization. Microscopy Research and Technique, 59(5): 352-372. https://doi.org/10.1002/jemt.10217 [48] Dudás, F. Ö., Yuan, D. X., Shen, S. Z., et al., 2017. A Conodont-Based Revision of the 87Sr/86Sr Seawater Curve across the Permian-Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 470: 40-53. https://doi.org/10.1016/j.palaeo.2017.01.007 [49] Dzik, J., 1991. Evolution of Oral Apparatuses in the Conodont Chordates. Acta Palaeontologica Polonica, 36(3): 265-323. [50] Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York, 327. [51] Erwin, D. H., 1994. The Permo-Triassic Extinction. Nature, 367(6460): 231-236. https://doi.org/10.1038/367231a0 [52] Fang, Q., Jing, X. C., Deng, S. H., 2012. Raodian-Wuchiapingian Conodont Biostratigraphy at the Shangsi Section, Northern Sichuan. Journal of Stratigraphy, 36(4): 692-699 (in Chinese with English abstract). [53] Gabbott, S. E., Aldridge, R. J., Theron, J. N., 1995. A Giant Conodont with Preserved Muscle Tissue from the Upper Ordovician of South Africa. Nature, 374(6525): 800-803. doi: 10.1038/374800a0 [54] Girard, C., Renaud, S., 1996. Size Variation in Conodonts in Response to the Upper Kellwasser Crisis (Upper Devonian of the Montagne Noire, France). Comptes Rendus de l'Academie des Sciences, Serie Iia, 323: 435-442. [55] Girard, C., Renaud, S., 2008. Disentangling Allometry and Response to Kellwasser Anoxic Events in the Late Devonian Conodont Genus Ancyrodella. Lethaia, 41(4): 383-394. https://doi.org/10.1111/j.1502-3931.2008.00095.x [56] Goel, R. K., 1977. Triassic Conodonts from Spiti (Himachal Pradesh), India. Journal of Paleontology, 51(6): 1085-1101. https://doi.org/10.2307/1303823 [57] Goudemand, N., Orchard, M. J., Urdy, S., et al., 2011. Synchrotron-Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the First Vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 108(21): 8720-8724. https://doi.org/10.1073/pnas.1101754108 [58] Goudemand, N., Romano, C., Leu, M., et al., 2019. Dynamic Interplay between Climate and Marine Biodiversity Upheavals during the Early Triassic Smithian-Spathian Biotic Crisis. Earth-Science Reviews, 195: 169-178. https://doi.org/10.1016/j.earscirev.2019.01.013 [59] Gross, W., 1954. Zur Conodonten-Frage. Senckenbergiana Lethaea, 35(1-2): 73-85. [60] Guex, J., 1991. Biochronological Correlations. Springer, New York. [61] Guex, J., Galster, F., Hammer, Ø., 2016. Discrete Biochronological Time Scales. Springer, New York. [62] Hammer, Ø., 2013. PAST: Paleontological Statistics Version 3.01. University of Oslo, Noruega. [63] Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648 [64] Hass, W. H., 1941. Morphology of Conodonts. Journal of Paleontology, 15(1): 71-81. [65] Hatleberg, E., Clark, D. L., 1984. Lower Triassic Conodonts and Biofacies Interpretations: Nepal and Svalbard. Geologica et Palaeontologica, 18(12): 101-125. [66] Hayami, I., 1997. Size Changes of Bivalves and a Hypothesis about the Cause of Mass Extinction. Fossils, 62: 24-36 (in Japanese). https://doi.org/10.14825/kaseki.62.0_24 [67] Hayami, I., 1998. Ecology of Mass Extinctions: The Diversity and Shell Size of Bivalves through Time. Iden, 52: 38-44 (in Japanese). [68] He, B., Xu, Y. G., Huang, X. L., et al., 2007a. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021 [69] He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo-Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo-Tethys Ignimbrite Flare-Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011 [70] He, W. H., Shi, G. R., Feng, Q. L., et al., 2007b. Brachiopod Miniaturization and Its Possible Causes during the Permian-Triassic Crisis in Deep Water Environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 145-163. https://doi.org/10.1016/j.palaeo.2006.11.040 [71] He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119 [72] He, W. H., Shi, G. R., Xiao, Y. F., et al., 2017. Body-Size Changes of Latest Permian Brachiopods in Varied Palaeogeographic Settings in South China and Implications for Controls on Animal Miniaturization in a Highly Stressed Marine Ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 33-45. https://doi.org/10.1016/j.palaeo.2017.02.024 [73] He, W. H., Shi, G. R., Yang, T. L., et al., 2016. Patterns of Brachiopod Faunal and Body-Size Changes across the Permian-Triassic Boundary: Evidence from the Daoduishan Section in Meishan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 72-84. https://doi.org/10.1016/j.palaeo.2015.11.023 [74] He, W. H., Twitchett, R. J., Zhang, Y., et al., 2010. Controls on Body Size during the Late Permian Mass Extinction Event. Geobiology, 8(5): 391-402. https://doi.org/10.1111/j.1472-4669.2010.00248.x [75] Heim, N. A., Knope, M. L., Schaal, E. K., et al., 2015. Cope's Rule in the Evolution of Marine Animals. Science, 347(6224): 867-870. https://doi.org/10.1126/science.1260065 [76] Henderson, C. M., 2006. Beware of Your FO and be Aware of the FAD. Permophiles, 47: 8-9. [77] Henderson, C. M., 2016. Permian Conodont Biostratigraphy. Geological Society, London, Special Publications, 450(1): 119-142. https://doi.org/10.1144/sp450.9 [78] Henderson, C. M., Mei, S. L., 2000a. Preliminary Cool Water Permian Conodont Zonation in North Pangea: A Review. Permophiles, 36: 16-23. [79] Henderson, C. M., Mei, S. L., 2000b. Geographical Cline of Conodonts from the Cisuralian-Guadalupian Boundary Interval. 31st International Geological Congress, Rio de Janeiro. [80] Henderson, C. M., Mei, S. L., 2007. Geographical Clines in Permian and Lower Triassic Gondolellids and its Role in Taxonomy. Palaeoworld, 16(1-3): 190-201. https://doi.org/10.1016/j.palwor.2007.05.014 [81] Henderson, C. M., Mei, S. L., 2000c. Permian Correlation between Qquatorial South China and Temperate Northwestern Pangea: Difficulties and Possible Solutions. GeoCanada 2000 Meeting, Calgary. [82] Hilton, J., Cleal, C. J., 2007. The Relationship between Euramerican and Cathaysian Tropical Floras in the Late Palaeozoic: Palaeobiogeographical and Palaeogeographical Implications. Earth-Science Reviews, 85(3-4): 85-116. https://doi.org/10.1016/j.earscirev.2007.07.003 [83] Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1 [84] Hodell, D. A., Mead, G. A., Mueller, P. A., 1990. Variation in the Strontium Isotopic Composition of Seawater (8 Ma to Present): Implications for Chemical Weathering Rates and Dissolved Fluxes to the Oceans. Chemical Geology: Isotope Geoscience Section, 80(4): 291-307. https://doi.org/10.1016/0168-9622(90)90011-Z [85] Huang, C., Gong, Y. M., 2016. Timing and Patterns of the Frasnian-Famennian Event: Evidences from High-Resolution Conodont Biostratigraphy and Event Stratigraphy at the Yangdi Section, Guangxi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 317-338. https://doi.org/10.1016/j.palaeo.2015.10.031 [86] Huang, C., Song, J. J., Shen, J., et al., 2018. The Influence of the Late Devonian Kellwasser Events on Deep-Water Ecosystems: Evidence from Palaeontological and Geochemical Records from South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 60-74. https://doi.org/10.1016/j.palaeo.2018.05.006 [87] Huang, J. Y., Hu, S. X., Zhang, Q. Y., et al., 2019a. Gondolelloid Multielement Conodont Apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 98-110. https://doi.org/10.1016/j.palaeo.2018.07.015 [88] Huang, J. Y., Martínez-Pérez, C., Hu, S. X., et al., 2019b. Middle Triassic Conodont Apparatus Architecture Revealed by Synchrotron X-Ray Microtomography. Palaeoworld, 28(4): 429-440. https://doi.org/10.1016/j.palwor.2018.08.003 [89] Huckriede, R., 1958. Die Conodonten Der Mediterranen Trias Und Ihr Stratigraphischer Wert. Paläontologische Zeitschrift, 32(3-4): 141-175. https://doi.org/10.1007/BF02989028 [90] Igo, H., 1981. Permian Conodont Biostratigraphy of Japan. Palaeont. Soc. Japan, Speci. Pap. , 24: 1-51. [91] Igo, H., 2009. Conodont Succession. In: Shigeta, Y., Zakharov, Y. D., Maeda, H., Popov, A. M., eds., Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science, Tokyo. [92] Isozaki, Y., 1997. Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea. Science, 276(5310): 235-238. https://doi.org/10.1126/science.276.5310.235 [93] Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo-Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth-Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001 [94] Jeffery, C. H., 2001. Heart Urchins at the Cretaceous/Tertiary Boundary: A Tale of Two Clades. Paleobiology, 27(1): 140-158. https://doi.org/10.1666/0094-8373(2001)0270140: huatct>2.0.co;2 doi: 10.1666/0094-8373(2001)0270140:huatct>2.0.co;2 [95] Ji, Z. S., Yao, J. X., Isozaki, Y., et al., 2007. Conodont Biostratigraphy across the Permian-Triassic Boundary at Chaotian, in Northern Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 39-55. https://doi.org/10.1016/j.palaeo.2006.11.033 [96] Jiang, H. S., Joachimski, M. M., Wignall, P. B., et al., 2015. A Delayed End-Permian Extinction in Deep-Water Locations and Its Relationship to Temperature Trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 690-695. https://doi.org/10.1016/j.palaeo.2015.10.002 [97] Jiang, H. S., Lai, X. L., Luo, G. M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 55(1-3): 39-55. https://doi.org/10.1016/j.gloplacha.2006.06.007 [98] Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. https://doi.org/10.1007/s12583-014-0444-4 [99] Jiang, H. S., Lai, X. L., Yan, C. B., et al., 2011. Revised Conodont Zonation and Conodont Evolution across the Permian-Triassic Boundary at the Shangsi Section, Guangyuan, Sichuan, South China. Global and Planetary Change, 77(3-4): 103-115. https://doi.org/10.1016/j.gloplacha.2011.04.003 [100] Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian-Triassic Mass Extinction: New Insights from Armenian Permian-Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1 [101] Joachimski, M. M., Breisig, S., Buggisch, W., et al., 2009. Devonian Climate and Reef Evolution: Insights from Oxygen Isotopes in Apatite. Earth and Planetary Science Letters, 284(3-4): 599-609. https://doi.org/10.1016/j.epsl.2009.05.028 [102] Joachimski, M. M., Buggisch, W., 2002. Conodont Apatite δ18O Signatures Indicate Climatic Cooling as a Trigger of the Late Devonian Mass Extinction. Geology, 30(8): 711-714. https://doi.org/10.1130/0091-7613(2002)0300711: caosic>2.0.co;2 doi: 10.1130/0091-7613(2002)0300711:caosic>2.0.co;2 [103] Joachimski, M. M., Lai, X. L., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1 [104] Kaljo, D., 1996. Diachronous Recovery Patterns in Early Silurian Corals, Graptolites and Acritarchs. Geological Society, London, Special Publications, 102(1): 127-133. https://doi.org/10.1144/gsl.sp.1996.001.01.10 [105] Koike, T., 1988. Lower Triassic Conodonts Platyvillosus from the Taho Limestone in Japan. Science Reports of the Yokohama National University. Section Ⅱ, (35): 61-79. [106] Koike, T., 1996. The First Occurrence of Griesbachian Conodonts in Japan. New Series Palaeontological Society of Japan, 181: 337-346. https://doi.org/10.14825/prpsj1951.1996.181_337 [107] Koike, T., 2004. Early Triassic Neospathodus (Conodonta) Apparatuses from the Taho Formation, Southwest Japan. Paleontological Research, 8(2): 129-140. https://doi.org/10.2517/prpsj.8.129 [108] Kozur, H., 1978. Beitrage zur Stratigraphie des Perms. Teil II: Die Conodontenchronologie des Perms. Freiberger Forschungheft, 334: 85-161. [109] Kozur, H., 1995. Permian Conodont Zonation and Its Importance for the Permian Stratigraphic Standard Scale. Geologisch-Paläontologische Mitteilungen Innsbruck, 20: 165-205. [110] Kozur, H. W., 1993. Integrated Ammonoid-, Conodont and Radiolarian Zonation of the Triassic. Hallesches Jahrbuch fuer Geowissenschaften Reihe B Geologie Palaeontologie Mineralogie, 25: 49-79. [111] Krystyn, L., Richoz, S., Baud, A., et al., 2003. A Unique Permian-Triassic Boundary Section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(3-4): 329-344. https://doi.org/10.1016/S0031-0182(02)00670-3 [112] Krystyn, L., Richoz, S., Bhargava, O. N., 2007. The Induan-Olenekian Boundary (IOB) in Mud-An Update of the Candidate GSSP Section M04. Albertiana, 36: 33-45. [113] Lai, X. L., 1997. A Discussion on Permian-Triassic Conodont Studies. Albertiana, 20: 25-30. [114] Lai, X. L., Wignall, P. B., Zhang, K. X., 2001. Palaeoecology of the Conodonts " Hindeodus" and "Clarkina" during the Permian-Triassic Transitional Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 171(1-2): 63-72. https://doi.org/10.1016/S0031-0182(01)00269-3 [115] Lambert, L. L., 1994. Morphometric Confirmation of the Mesogondolella Idahoensis to M. Nankingensis Transition. Permophiles, 24: 28-35. [116] Landing, E., Geyer, G., Brasier, M. D., et al., 2013. Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy-Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 123: 133-172. https://doi.org/10.1016/j.earscirev.2013.03.008 [117] Leu, M., Bucher, H., Goudemand, N., 2019. Clade-Dependent Size Response of Conodonts to Environmental Changes during the Late Smithian Extinction. Earth-Science Reviews, 195: 52-67. https://doi.org/10.1016/j.earscirev.2018.11.003 [118] Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035 [119] Liang, L., Tong, J. N., Song, H. J., et al., 2016. Lower-Middle Triassic Conodont Biostratigraphy of the Mingtang Section, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 381-393. https://doi.org/10.1016/j.palaeo.2016.07.027 [120] Liu, K., Zhou, X. Q., Jiang, M. S., 2021. Oxygen Isotope Palaeothermometry of Conodont Apatite: A Review. Acta Sedimentologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000-0550.2021.031 [121] Liu, Y. G., Miah, M. R. U., Schmitt, R. A., 1988. Cerium: A Chemical Tracer for Paleo-Oceanic Redox Conditions. Geochimica et Cosmochimica Acta, 52(6): 1361-1371. https://doi.org/10.1016/0016-7037(88)90207-4 [122] Looy, C. V., Brugman, W. A., Dilcher, D. L., et al., 1999. The Delayed Resurgence of Equatorial Forests after the Permian-Triassic Ecologic Crisis. Proceedings of the National Academy of Sciences of the United States of America, 96(24): 13857-13862. https://doi.org/10.1073/pnas.96.24.13857 [123] Lucas, S. G., Orchard, M. J., 2007. Triassic Lithostratigraphy and Biostratigraphy North of Currie, Elko County, Nevada. Triassic of the American West: New Mexico Museum of Natural History and Science Bulletin, 40: 119-126. [124] Lucas, S. G., Shen, S. Z., 2018. The Permian Timescale: An Introduction. Geological Society, London, Special Publications, 450(1), 1-19. https://doi.org/10.1144/SP450.15 [125] Luo, G. M., Lai, X. L., Feng, Q. L., et al., 2008a. End-Permian Conodont Fauna from Dongpan Section: Correlation between the Deep- and Shallow-Water Facies. Science China Earth Sciences, 51(11): 1611-1622. https://doi.org/10.1007/s11430-008-0125-1 [126] Luo, G. M., Lai, X. L., Jiang, H. S., et al., 2006. Size Variation of the End Permian Conodont Neogondolella at Meishan Section, Changxing, Zhejiang and Its Significance. Science China Earth Sciences, 49(4): 337-347. https://doi.org/10.1007/s11430-006-0337-1 [127] Luo, G. M., Lai, X. L., Shi, G. R., et al., 2008b. Size Variation of Conodont Elements of the Hindeodus-Isarcicella Clade during the Permian-Triassic Transition in South China and Its Implication for Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264(1-2): 176-187. https://doi.org/10.1016/j.palaeo.2008.04.015 [128] Lyu, Z. Y., Orchard, M. J., Chen, Z. Q., et al., 2019. Uppermost Permian to Lower Triassic Conodont Successions from the Enshi Area, Western Hubei Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 49-64. https://doi.org/10.1016/j.palaeo.2017.08.015 [129] Markevich, P., V., Zakharov, Y., D., 2004. Triassic and Jurassic of the Sikote-Alin, Book 1: Terrigenous Assemblage. Dalnauka, Vladivostok (in Russian with English abstract). [130] Mayr, E., 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist. Columbia University Press, New York. https://doi.org/10.1038/151347a0 [131] Mazza, M., Martinez-Perez, C., 2015. Unravelling Conodont (Conodonta) Ontogenetic Processes in the Late Triassic through Growth Series Reconstructions and X-Ray Microtomography. Bollettino Della Societa Paleontologica Italiana, 54(3): 161-186. https://doi.org/10.4435/BSPI.2015.10 [132] McGhee, G. R. Jr, Sheehan, P. M., Bottjer, D. J., et al., 2004. Ecological Ranking of Phanerozoic Biodiversity Crises: Ecological and Taxonomic Severities are Decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(3-4): 289-297. https://doi.org/10.1016/j.palaeo.2004.05.010 [133] Medici, L., Savioli, M., Ferretti, A., et al., 2021. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis? Journal of Earth Science, 32(3): 501-511. https://doi.org/10.1007/s12583-020-1094-3 [134] Mei, S. L, Henderson, C. M., 2000. Western Canadian Cordilleran Terranes: A Natural Laboratory for Testing Permian Conodont Provincialism and Geographic Clines. The Geological Society of America, 96th Annual Meeting, Boulder. [135] Mei, S. L., Henderson, C. M., 2001. Evolution of Permian Conodont Provincialism and Its Significance in Global Correlation and Paleoclimate Implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 170(3-4): 237-260. https://doi.org/10.1016/S0031-0182(01)00258-9 [136] Mei, S. L., Henderson, C. M., Cao, C. Q., 2004. Conodont Sample-Population Approach to Defining the Base of the Changhsingian Stage, Lopingian Series, Upper Permian. Geological Society, London, Special Publications, 230(1): 105-121. https://doi.org/10.1144/gsl.sp.2004.230.01.06 [137] Mei, S. L., Henderson, C. M., Jin, Y. G., 1999a. Permian Conodont Provincialism, Zonation and Global Correlation. Permophiles, 35: 9-16. [138] Mei, S. L., Henderson, C. M., Wardlaw, B. R., et al., 1999b. On Provincialism, Evolution and Zonation of Permian and Earliest Triassic Conodonts. Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. China University of Geosciences Press, Wuhan. [139] Metcalfe, I., Henderson, C. M., Wakita, K., 2017. Lower Permian Conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, Northern Thailand. Gondwana Research, 44: 54-66. https://doi.org/10.1016/j.gr.2016.12.003 [140] Metcalfe, I., Nicoll, R. S., 2007. Conodont Biostratigraphic Control on Transitional Marine to Non-Marine Permian-Triassic Boundary Sequences in Yunnan-Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 56-65. https://doi.org/10.1016/j.palaeo.2006.11.034 [141] Metcalfe, I., Nicoll, R. S., Willink, R. J., 2008. Conodonts from the Permian-Triassic Transition in Australia and Position of the Permian-Triassic Boundary. Australian Journal of Earth Sciences, 55(3): 365-377. https://doi.org/10.1080/08120090701769480 [142] Metcalfe, I., Nicoll, R. S., Willink, R., et al., 2013. Early Triassic (Induan-Olenekian) Conodont Biostratigraphy, Global Anoxia, Carbon Isotope Excursions and Environmental Perturbations: New Data from Western Australian Gondwana. Gondwana Research, 23(3): 1136-1150. https://doi.org/10.1016/j.gr.2012.07.002 [143] Monnet, C., Bucher, H., 1999. Biochronologie Quantitative (Associations Unitaires) des Faunes D'ammonites Du Cenomanien Du Sud-Est de La France. Bulletin De La Societe Geologique De France, 170: 599-610. [144] Mosimann, J. E., 1970. Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions. Journal of the American Statistical Association, 65(330): 930-945. https://doi.org/10.1080/01621459.1970.10481136 [145] Movshovich, E. V., Kozur, H., Pavlov, A. M., et al., 1979. Complexes of Conodonts from the Lower Permian of the Pre-Urals and Problems of Correlation of Lower Permian Deposits. Conodonts of the Urals and Their Stratigraphic Significance. Trudy Institute of Geology and Geochemistry, Urals Science Centre, Akademii Nauk SSSR, 145: 94-133. [146] Müller, K. J., 1956. Triassic Conodonts from Nevada. Journal of Paleontology, 818-830. https://doi.org/10.2307/1300423 [147] Müller, K. J., Robison, R. A., 1981. Zoological Affinities of Conodonts. In: Robison, R. A., ed., Part W: Miscellanea, Supplement, 2: Conodonta. University of Kansas, Lawrence. [148] Nakrem, H. A., Orchard, M. J., Weischat, W., et al., 2008. Triassic Conodonts from Svalbard and Their Boreal Correlations. Polar Research, 27(3): 523-539. https://doi.org/10.1111/j.1751-8369.2008.00076.x. [149] Newell, N. D., 1952. Periodicity in Invertebrate Evolution. Journal of Paleontology, 26(3): 371-385. [150] Nützel, A., Ware, D., Bucher, H., et al., 2018. An Early Triassic (Dienerian) Microgastropod Assemblage from the Salt Range, Pakistan and Its Implication for Gastropod Recovery from the End-Permian Mass Extinction. Bulletin of Geosciences, 93(1): 53-70. https://doi.org/10.3140/bull.geosci.1682 [151] Orchard, J. M., Krystyn, L., 1998. Conodonts of the Lowermost Triassic of Spiti, and New Zonation Based on Neogondolella Successions. Rivista Italiana di Paleontologia e Stratigrafia, 104(3): 341-368. https://doi.org/10.13130/2039-4942/5339 [152] Orchard, M. J., 1995. Taxonomy and Correlation of Lower Triassic (Spathian) Segminate Conodonts from Oman and Revision of Some Species of Neospathodus. Journal of Paleontology, 69(1): 110-122. https://doi.org/10.1017/s0022336000026962 [153] Orchard, M. J., 1996. Conodont Fauna from the Permian-Triassic Boundary: Observations and Reservations. Permophiles, 28: 29-35. [154] Orchard, M. J., 2007. Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 93-117. https://doi.org/10.1016/j.palaeo.2006.11.037 [155] Orchard, M. J., 2008. Lower Triassic Conodonts from the Canadian Arctic, Their Intercalibration with Ammonoid-Based Stages and a Comparison with Other North American Olenekian Faunas. Polar Research, 27(3): 393-412. https://doi.org/10.1111/j.1751-8369.2008.00072.x [156] Orchard, M. J., Tozer, E., 1997a. Triassic Conodont Biochronology and Intercalibration with the Canadian Ammonoid Sequence. Albertiana, 20: 33-44. [157] Orchard, M. J., Tozer, E., 1997b. Triassic Conodont Biochronology, Its Calibration with the Ammonoid Standard, and a Biostratigraphic Summary for the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 45(4): 675-692. https://doi.org/10.35767/GSCPGBULL.45.4.675 [158] Orchard, M. J., Zonneveld, J. P., 2009. The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake Area: Lithostratigraphy, Conodont Biostratigraphy, and a New Biozonation for the Lower Olenekian (Smithian). Canada Journal of Earth Science, 46: 757-790. https://doi.org/10.1139/E09-051 [159] Palmer, M. R., Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters, 92(1): 11-26. https://doi.org/10.1016/0012-821X(89)90017-4 [160] Pander, C. H., 1856. Monographie der Fossilen Fische des Silurischen Systems des Russisch-Baltischen Gouvernements. Akademie der Wissenschaften, St Petersburg. [161] Paull, R. K., 1980. Conodont Biosratigraphy of the Lower Triassic Dinwoody Formation in Northwestern Utah, Northeastern Nevada, and Southeastern Idaho (Dissertation). University of Wisconsin, Madison. [162] Paull, R. K., 1982. Conodont Biostratigraphy of Lower Triassic Rocks, Terrace Mountains, Northwestern Utah. Utah Geological Association, Salt Lake City. [163] Paull, R. K., 1983. Definition and Stratigraphic Significance of the Lower Triassic (Smithian) Conodont Gladigondolella meeki n. sp. in the Western United States. Journal of Paleontology, 188-192. https://doi.org/10.2307/1304621 [164] Paull, R. K., 1988. Distribution Pattern of Lower Triassic (Scythian) Conodonts in the Western United States: Documentation of the Pakistan Connection. Palaios, 3(6): 598-605. https://doi.org/10.2307/3514448 [165] Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023 [166] Purnell, M. A., 1995. Microwear on Conodont Elements and Macrophagy in the First Vertebrates. Nature, 374(6525): 798-800. https://doi.org/10.1038/374798a0 [167] Purnell, M. A., Bitter, P. H., 1992. Blade-Shaped Conodont Elements Functioned as Cutting Teeth. Nature, 359(6396): 629-631. https://doi.org/10.1038/359629a0 [168] Renaud, S., Girard, C., 1999. Strategies of Survival during Extreme Environmental Perturbations: Evolution of Conodonts in Response to the Kellwasser Crisis (Upper Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology, 146(1-4): 19-32. https://doi.org/10.1016/S0031-0182(98)00138-2 [169] Rigo, M., Joachimski, M. M., 2010. Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 55(3): 471-478. https://doi.org/10.4202/app.2009.0100 [170] Romano, C., Goudemand, N., Vennemann, T. W., 2013. Climatic and Biotic Upheavals Following the End-Permian Mass Extinction. Nature Geoscience, 6(1): 57-60. https://doi.org/10.1038/NGEO1667 [171] Sansom, I. J., Smith, M. P., Armstrong, H. A., et al., 1992. Presence of the Earliest Vertebrate Hard Tissue in Conodonts. Science, 256(5061): 1308-1311. https://doi.org/10.1126/science.1598573 [172] Schaal, E. K., Clapham, M. E., Rego, B. L., et al., 2016. Comparative Size Evolution of Marine Clades from the Late Permian through Middle Triassic. Paleobiology, 42(1): 127-142. https://doi.org/10.1017/pab.2015.36 [173] Schmidt, H., 1934. Conodonten-Funde in Ursprünglichem Zusammenhang. Palaeontologische Zeitschrift, 16(1-2): 76-85. https://doi.org/10.1007/BF03041668 [174] Scotese, C. R., 2009. Late Proterozoic Plate Tectonics and Palaeogeography: A Tale of Two Supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications, 326(1): 67-83. https://doi.org/10.1144/SP326.4 [175] Scott, H. W., 1934. The Zoological Relationships of the Conodonts. Journal of Paleontology, 8(4): 448-455. [176] Shen, S. Z., Ramezani, J., Chen, J., et al., 2019b. A Sudden End-Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1 [177] Shen, S. Z., Yuan, D. X., Henderson, C. M., et al., 2020. Progress, Problems and Prospects: An Overview of the Guadalupian Series of South China and North America. Earth-Science Reviews, 211: 103412. https://doi.org/10.1016/j.earscirev.2020.103412 [178] Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019a. Permian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 154-188. https://doi.org/10.1007/s11430-017-9228-4 [179] Shi, G. R., Shen, S. Z., 2000. Asian-Western Pacific Permian Brachiopoda in Space and Time: Biogeography and Extinction Patterns. Developments in Palaeontology and Stratigraphy, 18: 327-352. https://doi.org/10.1016/S0920-5446(00)80019-9 [180] Shi, G. R., Zhang, Y. C., Shen, S. Z., et al., 2016. Nearshore-Offshore-Basin Species Diversity and Body Size Variation Patterns in Late Permian (Changhsingian) Brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 96-107. https://doi.org/10.1016/j.palaeo.2015.07.046 [181] Shigeta, Y., Zakharov, Y. D., Maeda, H., et al., 2009. The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science, Tokyo. [182] Signor, P. W., Lipps, J. H., Silver, L. T., et al., 1982. Sampling Bias, Gradual Extinction Patterns, and Catastrophes in the Fossil Record. In: Silver, L. T., Schultz, P. H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America, Boulder. [183] Solien, M. A., 1979. Conodont Biostratigraphy of the Lower Triassic Thaynes Formation, Utah. Journal of Paleontology, 53: 276-306. https://doi.org/10.2307/1303871 [184] Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038 [185] Song, H. J., Tong, J. N., Chen, Z. Q., 2011. Evolutionary Dynamics of the Permian-Triassic Foraminifer Size: Evidence for Lilliput Effect in the End-Permian Mass Extinction and Its Aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 98-110. https://doi.org/10.1016/j.palaeo.2010.10.036 [186] Song, H. J., Wignall, P. B., Chu, D. L., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4: 4132. https://doi.org/10.1038/srep04132 [187] Song, H. J., Wignall, P. B., Dunhill, A. M., 2018. Decoupled Taxonomic and Ecological Recoveries from the Permo-Triassic Extinction. Science Advances, 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat5091 [188] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353-354: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005 [189] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6(1): 52-56. https://doi.org/10.1038/ngeo1649 [190] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2015. Integrated Sr Isotope Variations and Global Environmental Changes through the Late Permian to Early Late Triassic. Earth and Planetary Science Letters, 424: 140-147. https://doi.org/10.1016/j.epsl.2015.05.035 [191] Song, H. Y., Du, Y., Algeo, T. J., et al., 2019. Cooling-Driven Oceanic Anoxia across the Smithian/Spathian Boundary (Mid-Early Triassic). Earth-Science Reviews, 195: 133-146. https://doi.org/10.1016/j.earscirev.2019.01.009 [192] Stanley, S. M., 2016. Estimates of the Magnitudes of Major Marine Mass Extinctions in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 113(42): E6325-E6334. https://doi.org/10.1073/pnas.1613094113 [193] Sun, D. Y., Tong, J. N., Xiong, Y. L., et al., 2012a. Conodont Biostratigraphy and Evolution across Permian-Triassic Boundary at Yangou Section, Leping, Jiangxi Province, South China. Journal of Earth Science, 23(3): 311-325. https://doi.org/10.1007/s12583-012-0255-4 [194] Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012b. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126 [195] Sun, Y. D., Liu, X. T., Yan, J. X., et al., 2017. Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 42-63. https://doi.org/10.1016/j.palaeo.2016.10.013 [196] Sun, Y. D., Wiedenbeck, M., Joachimski, M. M., et al., 2016. Chemical and Oxygen Isotope Composition of Gem-Quality Apatites: Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry (SIMS). Chemical Geology, 440: 164-178. https://doi.org/10.1016/j.chemgeo.2016.07.013 [197] Sun, Z. Y., Liu, S., Ji, C., et al., 2020. Synchrotron-Aided Reconstruction of the Prioniodinin Multielement Conodont Apparatus (Hadrodontina) from the Lower Triassic of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109913. https://doi.org/10.1016/j.palaeo.2020.109913 [198] Sun, Z. Y., Liu, S., Ji, C., et al., 2021. Gondolelloid Multielement Conodont Apparatus (Scythogondolella) from the Lower Triassic of Jiangsu, East China, Revealed by High-Resolution X-Ray Microtomography. Palaeoworld, 30(2): 286-295. https://doi.org/10.1016/j.palwor.2020.06.001 [199] Sweet, W. C., 1970a. Permian and Triassic Conodonts from a Section at Guryul Ravine, Vihi district, Kashmir. University of Kansas, Lawrence. [200] Sweet, W. C., 1970b. Uppermost Permian and Lower Triassic Conodonts of the Salt Range and Trans-Indus Ranges, West Pakistan, in Stratigraphic Boundary Problems. In: Kummel, B., Teichert, C., eds., Permian and Triassic of West Pakistan. University of Kansas, Lawrence. [201] Sweet, W. C., 1988. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-extinct Animal Phylum. Clarendon Press, Oxford. [202] Takahashi, S., Yamakita, S., Suzuki, N., 2019. Natural Assemblages of the Conodont Clarkina in Lowermost Triassic Deep-Sea Black Claystone from Northeastern Japan, with Probable Soft-Tissue Impressions. Palaeogeography, Palaeoclimatology, Palaeoecology, 524: 212-229. https://doi.org/10.1016/j.palaeo.2019.03.034 [203] Tian, L., Tong, J. N., Xiao, Y. F., et al., 2019. Environmental Instability Prior to End-Permian Mass Extinction Reflected in Biotic and Facies Changes on Shallow Carbonate Platforms of the Nanpanjiang Basin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 23-36. https://doi.org/10.1016/j.palaeo.2018.05.011 [204] Tian, S. G., 1993. Late permian-Earliest Triassic Conodont Palaeoecology in Northwestern Hunan. Acta Palaeontologica Sinica, 32(3): 332-345 (in Chinese with English abstract). [205] Tong, J. N., Yin, H. F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7): 803-815. https://doi.org/10.1016/S1367-9120(01)00058-X [206] Tong, J. N., Zakharov, Y. D., Orchard, M. J., et al., 2003. A Candidate of the Induan-Olenekian Boundary Stratotype in the Tethyan Region. Science China Earth Sciences, 46(11): 1182-1200. https://doi.org/10.1360/03yd0295 [207] Tong, J. N., Zakharov, Y. D., Orchard, M. J., et al., 2004. Proposal of Chaohu Section as the GSSP Candidate of the Induan-Olenekian Boundary. Albertiana, 29: 13-27. [208] Trotter, J. A., Barnes, C. R., McCracken, A. D., 2016. Rare Earth Elements in Conodont Apatite: Seawater or Pore-Water Signatures? Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 92-100. https://doi.org/10.1016/j.palaeo.2016.09.007 [209] Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550-554. https://doi.org/10.1126/science.1155814 [210] Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038 [211] Twitchett, R. J., 2007. The Lilliput Effect in the Aftermath of the End-Permian Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 132-144. https://doi.org/10.1016/j.palaeo.2006.11.038 [212] Urbanek, A., 1993. Biotic Crises in the History of Upper Silurian Graptoloids: A Palaeobiological Model. Historical Biology, 7(1): 29-50. https://doi.org/10.1080/10292389309380442 [213] Wang, C. Y., 1996. Conodont evolutionary Lineage and Zonation for the Latest Permian and the Earliest Triassic. Permophiles, 29: 30-37. [214] Wang, C. Y., Wang, Z. H., 1981. Permian Conodont Biostratigraphy of China. Geological Society of America Special Papers, 187(3): 227-236. https://doi.org/10.1130/SPE187-p227 [215] Wang, D. C., Jiang, H. S., Gu, S. Z., et al., 2016a. Cisuralian-Guadalupian Conodont Sequence from the Shaiwa Section, Ziyun, Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 457: 1-22. https://doi.org/10.1016/j.palaeo.2016.05.030 [216] Wang, L. N., Wignall, P. B., Wang, Y. B., et al., 2016b. Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 156-166. https://doi.org/10.1016/j.palaeo.2015.11.032 [217] Wang, X. D., Wang, X. J., Zhang, F., et al., 2006a. Diversity Patterns of Carboniferous and Permian Rugose Corals in South China. Geological Journal, 41(3-4): 329-343. https://doi.org/10.1002/gj.1041 [218] Wang, Y., Shen, S. Z., Cao, C. Q., et al., 2006b. The Wuchiapingian-Changhsingian Boundary (Upper Permian) at Meishan of Changxing County, South China. Journal of Asian Earth Sciences, 26(6): 575-583. https://doi.org/10.1016/j.jseaes.2004.12.003 [219] Wang, Z. H., Wang, Y. G., 1995. Permian-Lower Triassic Conodont from Selong Xishan of Nylam, S. Tibet, China. Acta Micropalaeontologica Sinica, 12(4): 333-348 (in Chinese with English abstract). [220] Wang, Z. H., Zhong, R., 1990. Triassic Conodont Biostratigraphy of Different Facies Realms in Eastern Yunnan, Western Guizhou and Northern Guangxi. Journal of Stratigraphy, 14(1): 15-35 (in Chinese with English abstract). [221] Wardlaw, B. R., Collinson, J. W., 1984. Conodont Paleoecology of the Permian Phosphoria Formation and Related Rocks of Wyoming and Adjacent Areas. Geological Society of America Special Papers, 196: 263-282. https://doi.org/10.1130/SPE196-p263 [222] Wignall, P. B., Myers, K. J., 1988. Interpreting Benthic Oxygen Levels in Mudrocks: A New Approach. Geology, 16(5): 452-455. https://doi.org/10.1130/0091-7613(1988)0162.3.CO;2 [223] Wu, H. T., He, W. H., Shi, G. R., et al., 2018. A New Permian-Triassic Boundary Brachiopod Fauna from the Xinmin Section, Southwestern Guizhou, South China and Its Extinction Patterns. Alcheringa: An Australasian Journal of Palaeontology, 42(3): 339-372. https://doi.org/10.1080/03115518.2018.1462400 [224] Wu, K., Tian, L., Liang, L., et al., 2019. Recurrent Biotic Rebounds during the Early Triassic: Biostratigraphy and Temporal Size Variation of Conodonts from the Nanpanjiang Basin, South China. Journal of the Geological Society, 176(6): 1232-1246. https://doi.org/10.1144/jgs2019-065 [225] Wu, K., Tong, J. N., Metcalfe, I., et al., 2020. Quantitative Stratigraphic Correlation of the Lower Triassic in South China Based on Conodont Unitary Associations. Earth-Science Reviews, 200: 102997. https://doi.org/10.1016/j.earscirev.2019.102997 [226] Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six-Fold Increase of Atmospheric pCO2 during the Permian-Triassic Mass Extinction. Nature Communications, 12: 2137. https://doi.org/10.1038/s41467-021-22298-7 [227] Xiao, Y. F., Suzuki, N., He, W. H., 2018a. Low-Latitudinal Standard Permian Radiolarian Biostratigraphy for Multiple Purposes with Unitary Association, Graphic Correlation, and Bayesian Inference Methods. Earth-Science Reviews, 179: 168-206. https://doi.org/10.1016/j.earscirev.2018.02.011 [228] Xiao, Y. F., Wu, K., Tian, L., et al., 2018b. Framboidal Pyrite Evidence for Persistent Low Oxygen Levels in Shallow-Marine Facies of the Nanpanjiang Basin during the Permian-Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 243-255. https://doi.org/10.1016/j.palaeo.2018.08.012 [229] Yang, S. R., Wang, X. P., Hao, W. C., 1986. Early and Middle Triassic Conodonts Sequence in Western Guangxi. Acta Scicentiarum Naturalum Universitis Pekinesis, 22(4): 90-106 (in Chinese with English abstract). [230] Ye, Q., Jiang, H. S., 2016. Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the Dawoling Section, Hunan Province. Earth Science, 41(11): 1883-1892 (in Chinese with English abstract). [231] Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004 [232] Youngquist, W., Hawley, R. W., Miller, A. K., 1951. Phosphoria Conodonts from Southeastern Idaho. Journal of Paleontology, 25(3): 356-364. [233] Yuan, D. X., Chen, J., Zhang, Y. C., et al., 2015. Changhsingian Conodont Succession and the End-Permian Mass Extinction Event at the Daijiagou Section in Chongqing, Southwest China. Journal of Asian Earth Sciences, 105: 234-251. https://doi.org/10.1016/j.jseaes.2015.04.002 [234] Yuan, D. X., Shen, S. Z., Henderson, C. M., 2017. Revised Wuchiapingian Conodont Taxonomy and Succession of South China. Journal of Paleontology, 91(6): 1199-1219. https://doi.org/10.1017/jpa.2017.71 [235] Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont-Based Integrated High-Resolution Timescale for the Changhsingian Stage and End-Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. https://doi.org/10.1016/j.lithos.2014.03.026 [236] Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth-Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002 [237] Yuan, D. X., Zhang, Y. C., Shen, S. Z., 2018. Conodont Succession and Reassessment of Major Events around the Permian-Triassic Boundary at the Selong Xishan Section, Southern Tibet, China. Global and Planetary Change, 161: 194-210. https://doi.org/10.1016/j.gloplacha.2017.12.024 [238] Zakharov, Y. D., Bondarenko, L. G., Popov, A. M., et al., 2021. New Findings of Latest Early Olenekian (Early Triassic) Fossils in South Primorye, Russian Far East, and Their Stratigraphical Significance. Journal of Earth Science, 32(3): 554-572. https://doi.org/10.1007/s12583-020-1390-y [239] Zakharov, Y. D., Popov, A. M., Buryi, G. I., 2005. Unique Marine Olenekian-Anisian Boundary Section from South Primorye, Russian Far East. Journal of Earth Science, 16(3): 219-230. [240] Zeng, W. P., Purnell, M. A., Jiang, H. S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583-021-1459-2 [241] Zhang, G. J., Zhang, X. L., Li, D. D., et al., 2021. Evidence for the Expansion of Anoxia during the Smithian from a Quantitative Interpretation of Paired C-Isotopes. Global and Planetary Change, 204: 103551. https://doi.org/10.1016/j.gloplacha.2021.103551 [242] Zhang, L. S., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049 [243] Zhang, M. H., Jiang, H. S., Purnell, M. A., et al., 2017. Testing Hypotheses of Element Loss and Lnstability in the Apparatus Composition of Complex Conodonts: Articulated Skeletons of Hindeodus. Palaeontology, 60(4): 595-608. https://doi.org/v10.1111 / pala.12305 doi: 10.1111/pala.12305 [244] Zhang, N., Henderson, C. M., Xia, W. C., et al., 2010. Conodonts and Radiolarians through the Cisuralian-Guadalupian Boundary from the Pingxiang and Dachongling Sections, Guangxi Region, South China. Alcheringa: An Australasian Journal of Palaeontology, 34(2): 135-160. https://doi.org/10.1080/03115510903523292 [245] Zhang, Y., Zhang, K. X., Shi, G. R., et al., 2014. Restudy of Conodont Biostratigraphy of the Permian-Triassic Boundary Section in Zhongzhai, Southwestern Guizhou Province, South China. Journal of Asian Earth Sciences, 80: 75-83. https://doi.org/10.1016/j.jseaes.2013.10.032 [246] Zhao, H., Dahl, T. W., Chen, Z. Q., et al., 2020. Anomalous Marine Calcium Cycle Linked to Carbonate Factory Change after the Smithian Thermal Maximum (Early Triassic). Earth-Science Reviews, 211: 103418. https://doi.org/10.1016/j.earscirev.2020.103418 [247] Zhao, L. S., Chen, Y. L., Chen, Z. Q., et al., 2013b. Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 28(8): 523-540. https://doi.org/10.2110/palo.2012.p12-107r [248] Zhao, L. S., Chen, Z. Q., Algeo, T. J., et al., 2013a. Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis? Global and Planetary Change, 105: 135-151. https://doi.org/10.1016/j.gloplacha.2012.09.001 [249] Zhao, L., S., Orchard, M. J., Tong, J. N., et al., 2007. Lower Triassic Conodont Sequence in Chaohu, Anhui Province, China and Its Global Correation. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 24-38. https://doi.org/10.1016/j.palaeo.2006.11.032 [250] Zhao, L. S., Wu, Y. B., Hu, Z. C., et al., 2009. Trace Element Compositions in Conodont Phosphates Responses to Biotic Extinction Event: A Case Study for Main Act of Global Boundary Stratotype Section and Point of the Permian-Triassic. Earth Science, 34(5): 725-732 (in Chinese with English abstract). [251] Zhou, L. Q., Williams, I. S., Liu, J. H., et al., 2012. Methodology of SHRIMP In-Situ O Isotopes Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618 (in Chinese with English abstract). [252] Zhou, M. F., Malpas, J., Song, X. Y., et al., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 196(3-4): 113-122. https://doi.org/10.1016/S0012-821X(01)00608-2 [253] 陈军, Henderson, C. M., 沈树忠, 2008. 浙江黄芝山剖面二叠-三叠系界线附近的牙形类序列及其地层对比. 古生物学报, 47(1): 91-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200801008.htm [254] 陈剑波, 赵来时, 陈中强, 等, 2012. 浙江煤山牙形石微区原位REE组成及古环境意义. 地球科学, 37(1): 25-34. doi: 10.3799/dqkx.2012.003 [255] 房强, 景秀春, 邓胜徽, 等, 2012. 川北上寺剖面罗德阶-吴家坪阶牙形石生物地层. 地层学杂志, 36(4): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204003.htm [256] 刘康, 周锡强, 江茂生, 2021. 牙形刺氧同位素古温度计: 研究进展与展望. 沉积学报, 在线发表. https://doi.org/10.14027/j.issn.1000-0550.2021.031 [257] 田树刚, 1993. 湘西北晚二叠世-早三叠世早期牙形石古生态. 古生物学报, 32(3): 332-345. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199303003.htm [258] 王志浩, 王义刚, 1995. 中国西藏聂拉木色龙西山二叠系-下三叠统牙形刺. 微体古生物学报, 12(4): 333-348. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT504.000.htm [259] 王志浩, 钟端, 1990. 滇东、黔西和桂北不同相区的三叠纪牙形刺生物地层. 地层学杂志, 14(1): 15-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199001001.htm [260] 杨守仁, 王新平, 郝维城, 1986. 广西西部早、中三叠世牙形石序列. 北京大学学报(自然科学版), 22(4): 90-106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198604012.htm [261] 叶茜, 江海水, 2016. 湖南嘉禾大窝岭剖面吴家坪阶-长兴阶界线牙形石生物地层及一次碳同位素负偏. 地球科学, 41(11): 1883-1892. doi: 10.3799/dqkx.2016.130 [262] 赵来时, 吴元保, 胡兆初, 等, 2009. 牙形石微量元素对生物绝灭事件的响应: 以二叠-三叠系全球层型剖面第一幕绝灭事件为例. 地球科学, 34(5): 725-732. doi: 10.3321/j.issn:1000-2383.2009.05.002 [263] 周丽芹, Williams, I. S., 刘建辉, 等, 2012. 牙形石SHRIMP微区原位氧同位素分析方法. 地质学报, 86(4): 611-618. doi: 10.3969/j.issn.0001-5717.2012.04.007