• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全球古-中生代之交牙形石研究进展

    吴奎 童金南 李红军 田力 邹亚锐 梁蕾 赵璧

    吴奎, 童金南, 李红军, 田力, 邹亚锐, 梁蕾, 赵璧, 2022. 全球古-中生代之交牙形石研究进展. 地球科学, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196
    引用本文: 吴奎, 童金南, 李红军, 田力, 邹亚锐, 梁蕾, 赵璧, 2022. 全球古-中生代之交牙形石研究进展. 地球科学, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196
    Wu Kui, Tong Jinnan, Li Hongjun, Tian Li, Zou Yarui, Liang Lei, Zhao Bi, 2022. Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals. Earth Science, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196
    Citation: Wu Kui, Tong Jinnan, Li Hongjun, Tian Li, Zou Yarui, Liang Lei, Zhao Bi, 2022. Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals. Earth Science, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196

    全球古-中生代之交牙形石研究进展

    doi: 10.3799/dqkx.2021.196
    基金项目: 

    国家自然科学基金项目 42030513

    国家自然科学基金项目 41530104

    国家自然科学基金项目 41661134047

    国家自然科学基金项目 41602024

    国家自然科学基金项目 42102011

    湖北省自然科学基金项目 2021CFB276

    湖北省地质局专项 KJ2019-01

    湖北省地质局专项 KJ2021-3

    河北省自然科学基金青年项目 D2020403072

    古生物与地质环境演化湖北省重点实验室开放研究基金 PEL-202104

    详细信息
      作者简介:

      吴奎(1992-),男,工程师,博士,主要从事二叠纪-三叠纪之交牙形石研究. ORICD: 0000-0001-9996-8318. E-mail: kuiwu@cug.edu.cn

      通讯作者:

      童金南,E-mail: jntong@cug.edu.cn

    • 中图分类号: P52

    Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals

    • 摘要:

      古-中生代之交发生了许多重要的地质事件,包括“Pangea”大陆的解体、大火成岩省的喷发、晚古生代大冰期的消逝、极端高温事件、两次生物大灭绝以及迟缓的生物复苏等.牙形石作为该时期主要的标准化石,是进行地层对比以及生物与环境协同演化研究的重要依据.近些年,此阶段的牙形石相关研究取得了许多重要的进展,这些新的材料和技术手段上的突破,为人们进行高精度的地层对比、定量重建该时期地球的生物及环境演变起到了关键作用.本文系统地对该时期全球牙形石的研究,包括牙形石的生物学、地层学以及地球化学研究等进行了总结,也提出了部分亟待解决的问题.未来,随着更多技术手段的开发以及更多基础材料的发现,将加强研究人员对该时期牙形石演化的理解,必然也会在研究这段地质历史转折与突变期的古海洋、古环境、古生物过程中发挥更大的作用.

       

    • 图  1  二叠纪-早三叠世最早期牙形石带,包括40个可全球对比的牙形石带及35个地方性牙形石带(修改自Henderson, 2016)

      Fig.  1.  Permian-Earliest Triassic conodont zonation, including 40 global-correlative conodont zones and 35 regional conodont zones (modified from Henderson, 2016)

      图  2  早三叠世国际不同地区牙形石带

      Fig.  2.  Early Triassic global conodont zonation

      图  3  国际二叠纪-三叠纪年代地层划分及界线层型“金钉子”化石研究现状

      1.菊石“金钉子”; 2.有望以牙形石作为“金钉子”; 3.已确认的金钉子; 4.牙形石“金钉子”; 界线年龄引自2021年5月国际年代地层表

      Fig.  3.  Division of Permian-Triassic international chronostratigraphic units and locations of the GSSPs

      图  4  物种x在时间和空间上的分布

      修改自Guex et al. (1991); J(x)表示该物种x在地层中出现的集合,G表示物种x的生存范围,T表示物种在地质历史中存在的时间范围

      Fig.  4.  Tempo and space distributions of species x

      图  5  二叠纪牙形石氧同位素变化曲线(修改自Chen et al., 2013a)

      Fig.  5.  Permian conodont oxygen isotopes curves (modified from Chen et al., 2013a)

      图  6  蓬莱滩、铁桥剖面牙形石氧同位素变化曲线及海平面变化(修改自Chen et al., 2011)

      Fig.  6.  Conodont oxygen isotopes curves and sea level changes of the Penglaitan and Tieqiao sections (modified from Chen et al., 2011)

      图  7  早三叠世牙形石锶同位素、海水温度、氧化还原状态及海平面变化曲线(修改自Song et al., 2015)

      Fig.  7.  Sr isotpes, temperature, redox conditions of the sea water and sea level change during the Early Triassic (modified from Song et al., 2015)

      图  8  早三叠牙形石演化过程中“返祖现象”(修改自Guex, 2016)

      Fig.  8.  "Retrograde" evolution of the conodont during the Early Triassic (modified from Guex, 2016)

      a. "Neospathodus" arcucristatus; b. Protoclarkina crofri; c. Clarkina bitteri; d. C. meishanensis; e. C. krystyni; a'. Kashmirella timorensis; b'. Paragondolella regale; c'. P. excels

    • [1] Adams, D. C., Rohlf, F. J., Slice, D. E., 2013. A Field Comes of Age: Geometric Morphometrics in the 21st Century. Hystrix, 24(1): 7-14. https://doi.org/10.4404/hystrix-24.1-6283.
      [2] Agematsu, S., Orchard, M. J., Sashida, K., 2008. Reconstruction of an Apparatus of Neostrachanognathus tahoensis from Oritate, Japan and Species of Neostrachanognathus from Oman. Palaeontology, 51(5): 1201-1211. https://doi.org/10.1111/j.1475-4983.2008.00804.x
      [3] Agematsu, S., Sano, H., Sashida, K., 2014. Natural Assemblages of Hindeodus Conodonts from a Permian-Triassic Boundary Sequence, Japan. Palaeontology, 57(6): 1277-1289. https://doi.org/10.1111/pala.12114
      [4] Aldridge, R. J., Murdock, D. J. E., Gabbott, S. E., et al., 2013. A 17-Element Conodont Apparatus from the Soom Shale Lagerstätte (Upper Ordovician), South Africa. Palaeontology, 56(2): 261-276. https://doi.org/10.1111/j.1475-4983.2012.01194.x
      [5] Algeo, T. J., Chen, Z. Q., Fraiser, M. L., et al., 2011. Terrestrial-Marine Teleconnections in the Collapse and Rebuilding of Early Triassic Marine Ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 1-11. https://doi.org/10.1016/j.palaeo.2011.01.011
      [6] Barbault, R., 1988. Body Size, Ecological Constraints, and the Evolution of Life-History StrategiesEvolutionary Biology, 22: 261-286. https://doi.org/10.1007/978-1-4613-0931-4_6
      [7] Behnken, F. H., 1975. Leonardian and Guadalupian (Permian) Conodont Biostratigraphy in Western and Southwestern United States. Journal of Paleontology, 284-315. https://doi.org/10.2307/1303362
      [8] Berner, R. A., 2006. GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664. https://doi.org/10.1016/j.gca.2005.11.032
      [9] Brayard, A., Bucher, H., Escarguel, G., et al., 2006. The Early Triassic Ammonoid Recovery: Paleoclimatic Significance of Diversity Gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3-4): 374-395. https://doi.org/10.1016/j.palaeo.2006.02.003
      [10] Brayard, A., Meier, M., Escarguel, G., et al., 2015. Early Triassic Gulliver Gastropods: Spatio-Temporal Distribution and Significance for Biotic Recovery after the End-Permian Mass Extinction. Earth-Science Reviews, 146: 31-64. https://doi.org/10.1016/j.earscirev.2015.03.005
      [11] Brosse, M., Bucher, H., Bagherpour, B., et al., 2015. Conodonts from the Early Triassic Microbialite of Guangxi (South China): Implications for the Aefinition of the Base of the Triassic System. Palaeontology, 58(3): 563-584. https://doi.org/10.1111/pala.12162
      [12] Brosse, M., Bucher, H., Goudemand, N., 2016. Quantitative Biochronology of the Permian-Triassic Boundary in South China Based on Conodont Unitary Associations. Earth-Science Reviews, 155: 153-171. https://doi.org/10.1016/j.earscirev.2016.02.003
      [13] Burgess, S. D., Bowring, S. A., 2015. High-Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth's Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470
      [14] Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the end-Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467-017-00083-9
      [15] Carr, T. R., Paull, R. K., Clark, D. L., 1984. Conodont Paleoecology and Biofacies Analysis of the Lower Triassic Thaynes Formation in the Cordilleran Miogeocline. Geological Society of America Special Papers, 196: 283-294. https://doi.org/10.1130/spe196-p283
      [16] Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013a. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007
      [17] Chen, B., Joachimski, M. M., Sun, Y. D., et al., 2011. Carbon and Conodont Apatite Oxygen Isotope Records of Guadalupian-Lopingian Boundary Sections: Climatic or Sea-Level Signal? Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145-153. https://doi.org/10.1016/j.palaeo.2011.08.016
      [18] Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013
      [19] Chen, J., Beatty, T. W., Henderson, C. M., et al., 2009. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Dawen Section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian Extinction and Correlation with Meishan. Journal of Asian Earth Sciences, 36(6): 442-458. https://doi.org/10.1016/j.jseaes.2008.08.002
      [20] Chen, J., Henderson, C. M., Shen, S. Z., 2008. Conodont Succession around the Permian-Triassic Boundary at the Huangzhishan Section, Zhejiang and Its Stratigraphic Correlation. Acta Palaeontologica Sinica, 47(1): 91-114 (in Chinese with English abstract).
      [21] Chen, J. B., Zhao, L. S., Chen, Z. Q., et al., 2012. In Situ Rare Earth Elements in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution. Earth Science, 37(1): 25-34 (in Chinese with English abstract).
      [22] Chen, J., Shen, S. Z., Li, X. H., et al., 2016a. High-Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025
      [23] Chen, J., Shen, S. Z., Zhang, Y. C., et al., 2020a. Abrupt Warming in the Latest Permian Detected Using High-Resolution in Situ Oxygen Isotopes of Conodont Apatite from Abadeh, Central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109973. https://doi.org/10.1016/j.palaeo.2020.109973
      [24] Chen, J., Song, H. J., He, W. H., et al., 2019a. Size Variation of Brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect Following the Permian-Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 248-257. https://doi.org/10.1016/j.palaeo.2018.07.013
      [25] Chen, Y. L., Jiang, H. S., Lai, X. L., et al., 2015. Early Triassic Conodonts of Jiarong, Nanpanjiang Basin, Southern Guizhou Province, South China. Journal of Asian Earth Sciences, 105: 104-121. https://doi.org/10.1016/j.jseaes.2015.03.014
      [26] Chen, Y. L., Joachimski, M. M., Richoz, S., et al., 2021. Smithian and Spathian (Early Triassic) Conodonts from Oman and Croatia and Their Depth Habitat Revealed. Global and Planetary Change, 196: 103362. https://doi.org/10.1016/j.gloplacha.2020.103362
      [27] Chen, Y. L., Kolar-Jurkovšek, T., Jurkovšek, B., et al., 2016b. Early Triassic Conodonts and Carbonate Carbon Isotope Record of the Idrija-Žiri Area, Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology, 444: 84-100. https://doi.org/10.1016/j.palaeo.2015.12.013
      [28] Chen, Y. L., Neubauer, T. A., Krystyn, L., et al., 2016c. Allometry in Anisian (Middle Triassic) Segminiplanate Conodonts and Its Implications for Conodont Taxonomy. Palaeontology, 59(5): 725-741. https://doi.org/10.1111/pala.12253
      [29] Chen, Y. L., Richoz, S., Krystyn, L., et al., 2019b. Quantitative Stratigraphic Correlation of Tethyan Conodonts across the Smithian-Spathian (Early Triassic) Extinction Event. Earth-Science Reviews, 195: 37-51. https://doi.org/10.1016/j.earscirev.2019.03.004
      [30] Chen, Y. L., Twitchett, R. J., Jiang, H. S., et al., 2013b. Size Variation of Conodonts during the Smithian-Spathian (Early Triassic) Global Warming Event. Geology, 41(8): 823-826. https://doi.org/10.1130/G34171.1
      [31] Chen, Y., Jiang, H. S., Ogg, J. G., et al., 2020b. Early-Middle Triassic Boundary Interval: Integrated Chemo-Bio-Magneto-Stratigraphy of Potential GSSPS for the Base of the Anisian Stage in South China. Earth and Planetary Science Letters, 530: 115863. https://doi.org/10.1016/j.epsl.2019.115863
      [32] Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475
      [33] Chhabra, N. L., Sahni, A., 1981. Late Lower Triassic and Early Middle Triassic Conodont Faunas from Kashmir and Kumaun Sequences in Himalaya. Journal of the Palaeontological Society of India, 25: 135-147.
      [34] Chu, D. L., Tong, J. N., Song, H. J., et al., 2015. Lilliput Effect in Freshwater Ostracods during the Permian-Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 38-52. https://doi.org/10.1016/j.palaeo.2015.06.003
      [35] Clark, D. L., 1959. Conodonts from the Triassic of Nevada and Utah. Journal of Paleontology, 33(2): 305-312. https://doi.org/10.2307/1300758
      [36] Clark, D. L., 1983. Extinction of Conodonts. Journal of Paleontology, 57(4): 652-661.
      [37] Clark, D. L., Carr, T. R., 1984. Conodont Biofacies and Biostratigraphic Schemes in Western North America: A Model. In: Clark, D. L., ed., Conodont Biofacies and Provincialism. Geological Society of America, Boulder.
      [38] Clark, D. L., Sweet, W. C., Bergström, S. M., 1981. Conodonta. Geological Society of America, Boulder.
      [39] Cleal, C. J., Thomas, B. A., 2005. Palaeozoic Tropical Rainforests and Their Effect on Global Climates: Is the Past the Key to the Present? Geobiology, 3(1): 13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x
      [40] Cope, E. D., 1885. On the Evolution of the Vertebrata, Progressive and Retrogressive. The American Naturalist, 19(2): 140-148. https://doi.org/10.1086/273881
      [41] Cope, E. D., 1896. Scientific Literature: The Primary Factors of Organic Evolution. Science, 4: 456-459. https://doi.org/10.1126/science.4.91.456
      [42] Cotgreave, P., 1993. The Relationship between Body Size and Population Abundance in Animals. Trends in Ecology & Evolution, 8(7): 244-248. https://doi.org/10.1016/0169-5347(93)90199-Y
      [43] Dagis, A., A., 1984. Early Triassic Conodonts of Northern Middle Siberia. Transactions of the Institute of Geology and Geophysics, Siberian Branch of Academy of Sciences of the USSR, 554: 1-69.
      [44] Donoghue, P. C. J., 1998. Growth and Patterning in the Conodont Skeleton. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 353(1368): 633-666. https://doi.org/10.1098/rstb.1998.0231
      [45] Donoghue, P. C. J., Forey, P. L., Aldridge, R. J., 2000. Conodont Affinity and Chordate Phylogeny. Biological Reviews of the Cambridge Philosophical Society, 75(2): 191-251. https://doi.org/10.1017/s0006323199005472
      [46] Donoghue, P. C. J., Purnell, M. A., 1999. Growth, Function, and the Conodont Fossil Record. Geology, 27(3): 251-254. https://doi.org/10.1130/0091-7613(1999)0270251: gfatcf>2.3.co;2 doi: 10.1130/0091-7613(1999)0270251:gfatcf>2.3.co;2
      [47] Donoghue, P. C. J., Sansom, I. J., 2002. Origin and Early Evolution of Vertebrate Skeletonization. Microscopy Research and Technique, 59(5): 352-372. https://doi.org/10.1002/jemt.10217
      [48] Dudás, F. Ö., Yuan, D. X., Shen, S. Z., et al., 2017. A Conodont-Based Revision of the 87Sr/86Sr Seawater Curve across the Permian-Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 470: 40-53. https://doi.org/10.1016/j.palaeo.2017.01.007
      [49] Dzik, J., 1991. Evolution of Oral Apparatuses in the Conodont Chordates. Acta Palaeontologica Polonica, 36(3): 265-323.
      [50] Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York, 327.
      [51] Erwin, D. H., 1994. The Permo-Triassic Extinction. Nature, 367(6460): 231-236. https://doi.org/10.1038/367231a0
      [52] Fang, Q., Jing, X. C., Deng, S. H., 2012. Raodian-Wuchiapingian Conodont Biostratigraphy at the Shangsi Section, Northern Sichuan. Journal of Stratigraphy, 36(4): 692-699 (in Chinese with English abstract).
      [53] Gabbott, S. E., Aldridge, R. J., Theron, J. N., 1995. A Giant Conodont with Preserved Muscle Tissue from the Upper Ordovician of South Africa. Nature, 374(6525): 800-803. doi: 10.1038/374800a0
      [54] Girard, C., Renaud, S., 1996. Size Variation in Conodonts in Response to the Upper Kellwasser Crisis (Upper Devonian of the Montagne Noire, France). Comptes Rendus de l'Academie des Sciences, Serie Iia, 323: 435-442.
      [55] Girard, C., Renaud, S., 2008. Disentangling Allometry and Response to Kellwasser Anoxic Events in the Late Devonian Conodont Genus Ancyrodella. Lethaia, 41(4): 383-394. https://doi.org/10.1111/j.1502-3931.2008.00095.x
      [56] Goel, R. K., 1977. Triassic Conodonts from Spiti (Himachal Pradesh), India. Journal of Paleontology, 51(6): 1085-1101. https://doi.org/10.2307/1303823
      [57] Goudemand, N., Orchard, M. J., Urdy, S., et al., 2011. Synchrotron-Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the First Vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 108(21): 8720-8724. https://doi.org/10.1073/pnas.1101754108
      [58] Goudemand, N., Romano, C., Leu, M., et al., 2019. Dynamic Interplay between Climate and Marine Biodiversity Upheavals during the Early Triassic Smithian-Spathian Biotic Crisis. Earth-Science Reviews, 195: 169-178. https://doi.org/10.1016/j.earscirev.2019.01.013
      [59] Gross, W., 1954. Zur Conodonten-Frage. Senckenbergiana Lethaea, 35(1-2): 73-85.
      [60] Guex, J., 1991. Biochronological Correlations. Springer, New York.
      [61] Guex, J., Galster, F., Hammer, Ø., 2016. Discrete Biochronological Time Scales. Springer, New York.
      [62] Hammer, Ø., 2013. PAST: Paleontological Statistics Version 3.01. University of Oslo, Noruega.
      [63] Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648
      [64] Hass, W. H., 1941. Morphology of Conodonts. Journal of Paleontology, 15(1): 71-81.
      [65] Hatleberg, E., Clark, D. L., 1984. Lower Triassic Conodonts and Biofacies Interpretations: Nepal and Svalbard. Geologica et Palaeontologica, 18(12): 101-125.
      [66] Hayami, I., 1997. Size Changes of Bivalves and a Hypothesis about the Cause of Mass Extinction. Fossils, 62: 24-36 (in Japanese). https://doi.org/10.14825/kaseki.62.0_24
      [67] Hayami, I., 1998. Ecology of Mass Extinctions: The Diversity and Shell Size of Bivalves through Time. Iden, 52: 38-44 (in Japanese).
      [68] He, B., Xu, Y. G., Huang, X. L., et al., 2007a. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      [69] He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo-Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo-Tethys Ignimbrite Flare-Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011
      [70] He, W. H., Shi, G. R., Feng, Q. L., et al., 2007b. Brachiopod Miniaturization and Its Possible Causes during the Permian-Triassic Crisis in Deep Water Environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 145-163. https://doi.org/10.1016/j.palaeo.2006.11.040
      [71] He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119
      [72] He, W. H., Shi, G. R., Xiao, Y. F., et al., 2017. Body-Size Changes of Latest Permian Brachiopods in Varied Palaeogeographic Settings in South China and Implications for Controls on Animal Miniaturization in a Highly Stressed Marine Ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 33-45. https://doi.org/10.1016/j.palaeo.2017.02.024
      [73] He, W. H., Shi, G. R., Yang, T. L., et al., 2016. Patterns of Brachiopod Faunal and Body-Size Changes across the Permian-Triassic Boundary: Evidence from the Daoduishan Section in Meishan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 72-84. https://doi.org/10.1016/j.palaeo.2015.11.023
      [74] He, W. H., Twitchett, R. J., Zhang, Y., et al., 2010. Controls on Body Size during the Late Permian Mass Extinction Event. Geobiology, 8(5): 391-402. https://doi.org/10.1111/j.1472-4669.2010.00248.x
      [75] Heim, N. A., Knope, M. L., Schaal, E. K., et al., 2015. Cope's Rule in the Evolution of Marine Animals. Science, 347(6224): 867-870. https://doi.org/10.1126/science.1260065
      [76] Henderson, C. M., 2006. Beware of Your FO and be Aware of the FAD. Permophiles, 47: 8-9.
      [77] Henderson, C. M., 2016. Permian Conodont Biostratigraphy. Geological Society, London, Special Publications, 450(1): 119-142. https://doi.org/10.1144/sp450.9
      [78] Henderson, C. M., Mei, S. L., 2000a. Preliminary Cool Water Permian Conodont Zonation in North Pangea: A Review. Permophiles, 36: 16-23.
      [79] Henderson, C. M., Mei, S. L., 2000b. Geographical Cline of Conodonts from the Cisuralian-Guadalupian Boundary Interval. 31st International Geological Congress, Rio de Janeiro.
      [80] Henderson, C. M., Mei, S. L., 2007. Geographical Clines in Permian and Lower Triassic Gondolellids and its Role in Taxonomy. Palaeoworld, 16(1-3): 190-201. https://doi.org/10.1016/j.palwor.2007.05.014
      [81] Henderson, C. M., Mei, S. L., 2000c. Permian Correlation between Qquatorial South China and Temperate Northwestern Pangea: Difficulties and Possible Solutions. GeoCanada 2000 Meeting, Calgary.
      [82] Hilton, J., Cleal, C. J., 2007. The Relationship between Euramerican and Cathaysian Tropical Floras in the Late Palaeozoic: Palaeobiogeographical and Palaeogeographical Implications. Earth-Science Reviews, 85(3-4): 85-116. https://doi.org/10.1016/j.earscirev.2007.07.003
      [83] Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1
      [84] Hodell, D. A., Mead, G. A., Mueller, P. A., 1990. Variation in the Strontium Isotopic Composition of Seawater (8 Ma to Present): Implications for Chemical Weathering Rates and Dissolved Fluxes to the Oceans. Chemical Geology: Isotope Geoscience Section, 80(4): 291-307. https://doi.org/10.1016/0168-9622(90)90011-Z
      [85] Huang, C., Gong, Y. M., 2016. Timing and Patterns of the Frasnian-Famennian Event: Evidences from High-Resolution Conodont Biostratigraphy and Event Stratigraphy at the Yangdi Section, Guangxi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 317-338. https://doi.org/10.1016/j.palaeo.2015.10.031
      [86] Huang, C., Song, J. J., Shen, J., et al., 2018. The Influence of the Late Devonian Kellwasser Events on Deep-Water Ecosystems: Evidence from Palaeontological and Geochemical Records from South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 60-74. https://doi.org/10.1016/j.palaeo.2018.05.006
      [87] Huang, J. Y., Hu, S. X., Zhang, Q. Y., et al., 2019a. Gondolelloid Multielement Conodont Apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 98-110. https://doi.org/10.1016/j.palaeo.2018.07.015
      [88] Huang, J. Y., Martínez-Pérez, C., Hu, S. X., et al., 2019b. Middle Triassic Conodont Apparatus Architecture Revealed by Synchrotron X-Ray Microtomography. Palaeoworld, 28(4): 429-440. https://doi.org/10.1016/j.palwor.2018.08.003
      [89] Huckriede, R., 1958. Die Conodonten Der Mediterranen Trias Und Ihr Stratigraphischer Wert. Paläontologische Zeitschrift, 32(3-4): 141-175. https://doi.org/10.1007/BF02989028
      [90] Igo, H., 1981. Permian Conodont Biostratigraphy of Japan. Palaeont. Soc. Japan, Speci. Pap. , 24: 1-51.
      [91] Igo, H., 2009. Conodont Succession. In: Shigeta, Y., Zakharov, Y. D., Maeda, H., Popov, A. M., eds., Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science, Tokyo.
      [92] Isozaki, Y., 1997. Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea. Science, 276(5310): 235-238. https://doi.org/10.1126/science.276.5310.235
      [93] Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo-Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth-Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001
      [94] Jeffery, C. H., 2001. Heart Urchins at the Cretaceous/Tertiary Boundary: A Tale of Two Clades. Paleobiology, 27(1): 140-158. https://doi.org/10.1666/0094-8373(2001)0270140: huatct>2.0.co;2 doi: 10.1666/0094-8373(2001)0270140:huatct>2.0.co;2
      [95] Ji, Z. S., Yao, J. X., Isozaki, Y., et al., 2007. Conodont Biostratigraphy across the Permian-Triassic Boundary at Chaotian, in Northern Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 39-55. https://doi.org/10.1016/j.palaeo.2006.11.033
      [96] Jiang, H. S., Joachimski, M. M., Wignall, P. B., et al., 2015. A Delayed End-Permian Extinction in Deep-Water Locations and Its Relationship to Temperature Trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 690-695. https://doi.org/10.1016/j.palaeo.2015.10.002
      [97] Jiang, H. S., Lai, X. L., Luo, G. M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 55(1-3): 39-55. https://doi.org/10.1016/j.gloplacha.2006.06.007
      [98] Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. https://doi.org/10.1007/s12583-014-0444-4
      [99] Jiang, H. S., Lai, X. L., Yan, C. B., et al., 2011. Revised Conodont Zonation and Conodont Evolution across the Permian-Triassic Boundary at the Shangsi Section, Guangyuan, Sichuan, South China. Global and Planetary Change, 77(3-4): 103-115. https://doi.org/10.1016/j.gloplacha.2011.04.003
      [100] Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian-Triassic Mass Extinction: New Insights from Armenian Permian-Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1
      [101] Joachimski, M. M., Breisig, S., Buggisch, W., et al., 2009. Devonian Climate and Reef Evolution: Insights from Oxygen Isotopes in Apatite. Earth and Planetary Science Letters, 284(3-4): 599-609. https://doi.org/10.1016/j.epsl.2009.05.028
      [102] Joachimski, M. M., Buggisch, W., 2002. Conodont Apatite δ18O Signatures Indicate Climatic Cooling as a Trigger of the Late Devonian Mass Extinction. Geology, 30(8): 711-714. https://doi.org/10.1130/0091-7613(2002)0300711: caosic>2.0.co;2 doi: 10.1130/0091-7613(2002)0300711:caosic>2.0.co;2
      [103] Joachimski, M. M., Lai, X. L., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1
      [104] Kaljo, D., 1996. Diachronous Recovery Patterns in Early Silurian Corals, Graptolites and Acritarchs. Geological Society, London, Special Publications, 102(1): 127-133. https://doi.org/10.1144/gsl.sp.1996.001.01.10
      [105] Koike, T., 1988. Lower Triassic Conodonts Platyvillosus from the Taho Limestone in Japan. Science Reports of the Yokohama National University. Section Ⅱ, (35): 61-79.
      [106] Koike, T., 1996. The First Occurrence of Griesbachian Conodonts in Japan. New Series Palaeontological Society of Japan, 181: 337-346. https://doi.org/10.14825/prpsj1951.1996.181_337
      [107] Koike, T., 2004. Early Triassic Neospathodus (Conodonta) Apparatuses from the Taho Formation, Southwest Japan. Paleontological Research, 8(2): 129-140. https://doi.org/10.2517/prpsj.8.129
      [108] Kozur, H., 1978. Beitrage zur Stratigraphie des Perms. Teil II: Die Conodontenchronologie des Perms. Freiberger Forschungheft, 334: 85-161.
      [109] Kozur, H., 1995. Permian Conodont Zonation and Its Importance for the Permian Stratigraphic Standard Scale. Geologisch-Paläontologische Mitteilungen Innsbruck, 20: 165-205.
      [110] Kozur, H. W., 1993. Integrated Ammonoid-, Conodont and Radiolarian Zonation of the Triassic. Hallesches Jahrbuch fuer Geowissenschaften Reihe B Geologie Palaeontologie Mineralogie, 25: 49-79.
      [111] Krystyn, L., Richoz, S., Baud, A., et al., 2003. A Unique Permian-Triassic Boundary Section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(3-4): 329-344. https://doi.org/10.1016/S0031-0182(02)00670-3
      [112] Krystyn, L., Richoz, S., Bhargava, O. N., 2007. The Induan-Olenekian Boundary (IOB) in Mud-An Update of the Candidate GSSP Section M04. Albertiana, 36: 33-45.
      [113] Lai, X. L., 1997. A Discussion on Permian-Triassic Conodont Studies. Albertiana, 20: 25-30.
      [114] Lai, X. L., Wignall, P. B., Zhang, K. X., 2001. Palaeoecology of the Conodonts " Hindeodus" and "Clarkina" during the Permian-Triassic Transitional Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 171(1-2): 63-72. https://doi.org/10.1016/S0031-0182(01)00269-3
      [115] Lambert, L. L., 1994. Morphometric Confirmation of the Mesogondolella Idahoensis to M. Nankingensis Transition. Permophiles, 24: 28-35.
      [116] Landing, E., Geyer, G., Brasier, M. D., et al., 2013. Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy-Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 123: 133-172. https://doi.org/10.1016/j.earscirev.2013.03.008
      [117] Leu, M., Bucher, H., Goudemand, N., 2019. Clade-Dependent Size Response of Conodonts to Environmental Changes during the Late Smithian Extinction. Earth-Science Reviews, 195: 52-67. https://doi.org/10.1016/j.earscirev.2018.11.003
      [118] Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035
      [119] Liang, L., Tong, J. N., Song, H. J., et al., 2016. Lower-Middle Triassic Conodont Biostratigraphy of the Mingtang Section, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 381-393. https://doi.org/10.1016/j.palaeo.2016.07.027
      [120] Liu, K., Zhou, X. Q., Jiang, M. S., 2021. Oxygen Isotope Palaeothermometry of Conodont Apatite: A Review. Acta Sedimentologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000-0550.2021.031
      [121] Liu, Y. G., Miah, M. R. U., Schmitt, R. A., 1988. Cerium: A Chemical Tracer for Paleo-Oceanic Redox Conditions. Geochimica et Cosmochimica Acta, 52(6): 1361-1371. https://doi.org/10.1016/0016-7037(88)90207-4
      [122] Looy, C. V., Brugman, W. A., Dilcher, D. L., et al., 1999. The Delayed Resurgence of Equatorial Forests after the Permian-Triassic Ecologic Crisis. Proceedings of the National Academy of Sciences of the United States of America, 96(24): 13857-13862. https://doi.org/10.1073/pnas.96.24.13857
      [123] Lucas, S. G., Orchard, M. J., 2007. Triassic Lithostratigraphy and Biostratigraphy North of Currie, Elko County, Nevada. Triassic of the American West: New Mexico Museum of Natural History and Science Bulletin, 40: 119-126.
      [124] Lucas, S. G., Shen, S. Z., 2018. The Permian Timescale: An Introduction. Geological Society, London, Special Publications, 450(1), 1-19. https://doi.org/10.1144/SP450.15
      [125] Luo, G. M., Lai, X. L., Feng, Q. L., et al., 2008a. End-Permian Conodont Fauna from Dongpan Section: Correlation between the Deep- and Shallow-Water Facies. Science China Earth Sciences, 51(11): 1611-1622. https://doi.org/10.1007/s11430-008-0125-1
      [126] Luo, G. M., Lai, X. L., Jiang, H. S., et al., 2006. Size Variation of the End Permian Conodont Neogondolella at Meishan Section, Changxing, Zhejiang and Its Significance. Science China Earth Sciences, 49(4): 337-347. https://doi.org/10.1007/s11430-006-0337-1
      [127] Luo, G. M., Lai, X. L., Shi, G. R., et al., 2008b. Size Variation of Conodont Elements of the Hindeodus-Isarcicella Clade during the Permian-Triassic Transition in South China and Its Implication for Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264(1-2): 176-187. https://doi.org/10.1016/j.palaeo.2008.04.015
      [128] Lyu, Z. Y., Orchard, M. J., Chen, Z. Q., et al., 2019. Uppermost Permian to Lower Triassic Conodont Successions from the Enshi Area, Western Hubei Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 49-64. https://doi.org/10.1016/j.palaeo.2017.08.015
      [129] Markevich, P., V., Zakharov, Y., D., 2004. Triassic and Jurassic of the Sikote-Alin, Book 1: Terrigenous Assemblage. Dalnauka, Vladivostok (in Russian with English abstract).
      [130] Mayr, E., 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist. Columbia University Press, New York. https://doi.org/10.1038/151347a0
      [131] Mazza, M., Martinez-Perez, C., 2015. Unravelling Conodont (Conodonta) Ontogenetic Processes in the Late Triassic through Growth Series Reconstructions and X-Ray Microtomography. Bollettino Della Societa Paleontologica Italiana, 54(3): 161-186. https://doi.org/10.4435/BSPI.2015.10
      [132] McGhee, G. R. Jr, Sheehan, P. M., Bottjer, D. J., et al., 2004. Ecological Ranking of Phanerozoic Biodiversity Crises: Ecological and Taxonomic Severities are Decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(3-4): 289-297. https://doi.org/10.1016/j.palaeo.2004.05.010
      [133] Medici, L., Savioli, M., Ferretti, A., et al., 2021. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis? Journal of Earth Science, 32(3): 501-511. https://doi.org/10.1007/s12583-020-1094-3
      [134] Mei, S. L, Henderson, C. M., 2000. Western Canadian Cordilleran Terranes: A Natural Laboratory for Testing Permian Conodont Provincialism and Geographic Clines. The Geological Society of America, 96th Annual Meeting, Boulder.
      [135] Mei, S. L., Henderson, C. M., 2001. Evolution of Permian Conodont Provincialism and Its Significance in Global Correlation and Paleoclimate Implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 170(3-4): 237-260. https://doi.org/10.1016/S0031-0182(01)00258-9
      [136] Mei, S. L., Henderson, C. M., Cao, C. Q., 2004. Conodont Sample-Population Approach to Defining the Base of the Changhsingian Stage, Lopingian Series, Upper Permian. Geological Society, London, Special Publications, 230(1): 105-121. https://doi.org/10.1144/gsl.sp.2004.230.01.06
      [137] Mei, S. L., Henderson, C. M., Jin, Y. G., 1999a. Permian Conodont Provincialism, Zonation and Global Correlation. Permophiles, 35: 9-16.
      [138] Mei, S. L., Henderson, C. M., Wardlaw, B. R., et al., 1999b. On Provincialism, Evolution and Zonation of Permian and Earliest Triassic Conodonts. Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. China University of Geosciences Press, Wuhan.
      [139] Metcalfe, I., Henderson, C. M., Wakita, K., 2017. Lower Permian Conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, Northern Thailand. Gondwana Research, 44: 54-66. https://doi.org/10.1016/j.gr.2016.12.003
      [140] Metcalfe, I., Nicoll, R. S., 2007. Conodont Biostratigraphic Control on Transitional Marine to Non-Marine Permian-Triassic Boundary Sequences in Yunnan-Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 56-65. https://doi.org/10.1016/j.palaeo.2006.11.034
      [141] Metcalfe, I., Nicoll, R. S., Willink, R. J., 2008. Conodonts from the Permian-Triassic Transition in Australia and Position of the Permian-Triassic Boundary. Australian Journal of Earth Sciences, 55(3): 365-377. https://doi.org/10.1080/08120090701769480
      [142] Metcalfe, I., Nicoll, R. S., Willink, R., et al., 2013. Early Triassic (Induan-Olenekian) Conodont Biostratigraphy, Global Anoxia, Carbon Isotope Excursions and Environmental Perturbations: New Data from Western Australian Gondwana. Gondwana Research, 23(3): 1136-1150. https://doi.org/10.1016/j.gr.2012.07.002
      [143] Monnet, C., Bucher, H., 1999. Biochronologie Quantitative (Associations Unitaires) des Faunes D'ammonites Du Cenomanien Du Sud-Est de La France. Bulletin De La Societe Geologique De France, 170: 599-610.
      [144] Mosimann, J. E., 1970. Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions. Journal of the American Statistical Association, 65(330): 930-945. https://doi.org/10.1080/01621459.1970.10481136
      [145] Movshovich, E. V., Kozur, H., Pavlov, A. M., et al., 1979. Complexes of Conodonts from the Lower Permian of the Pre-Urals and Problems of Correlation of Lower Permian Deposits. Conodonts of the Urals and Their Stratigraphic Significance. Trudy Institute of Geology and Geochemistry, Urals Science Centre, Akademii Nauk SSSR, 145: 94-133.
      [146] Müller, K. J., 1956. Triassic Conodonts from Nevada. Journal of Paleontology, 818-830. https://doi.org/10.2307/1300423
      [147] Müller, K. J., Robison, R. A., 1981. Zoological Affinities of Conodonts. In: Robison, R. A., ed., Part W: Miscellanea, Supplement, 2: Conodonta. University of Kansas, Lawrence.
      [148] Nakrem, H. A., Orchard, M. J., Weischat, W., et al., 2008. Triassic Conodonts from Svalbard and Their Boreal Correlations. Polar Research, 27(3): 523-539. https://doi.org/10.1111/j.1751-8369.2008.00076.x.
      [149] Newell, N. D., 1952. Periodicity in Invertebrate Evolution. Journal of Paleontology, 26(3): 371-385.
      [150] Nützel, A., Ware, D., Bucher, H., et al., 2018. An Early Triassic (Dienerian) Microgastropod Assemblage from the Salt Range, Pakistan and Its Implication for Gastropod Recovery from the End-Permian Mass Extinction. Bulletin of Geosciences, 93(1): 53-70. https://doi.org/10.3140/bull.geosci.1682
      [151] Orchard, J. M., Krystyn, L., 1998. Conodonts of the Lowermost Triassic of Spiti, and New Zonation Based on Neogondolella Successions. Rivista Italiana di Paleontologia e Stratigrafia, 104(3): 341-368. https://doi.org/10.13130/2039-4942/5339
      [152] Orchard, M. J., 1995. Taxonomy and Correlation of Lower Triassic (Spathian) Segminate Conodonts from Oman and Revision of Some Species of Neospathodus. Journal of Paleontology, 69(1): 110-122. https://doi.org/10.1017/s0022336000026962
      [153] Orchard, M. J., 1996. Conodont Fauna from the Permian-Triassic Boundary: Observations and Reservations. Permophiles, 28: 29-35.
      [154] Orchard, M. J., 2007. Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 93-117. https://doi.org/10.1016/j.palaeo.2006.11.037
      [155] Orchard, M. J., 2008. Lower Triassic Conodonts from the Canadian Arctic, Their Intercalibration with Ammonoid-Based Stages and a Comparison with Other North American Olenekian Faunas. Polar Research, 27(3): 393-412. https://doi.org/10.1111/j.1751-8369.2008.00072.x
      [156] Orchard, M. J., Tozer, E., 1997a. Triassic Conodont Biochronology and Intercalibration with the Canadian Ammonoid Sequence. Albertiana, 20: 33-44.
      [157] Orchard, M. J., Tozer, E., 1997b. Triassic Conodont Biochronology, Its Calibration with the Ammonoid Standard, and a Biostratigraphic Summary for the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 45(4): 675-692. https://doi.org/10.35767/GSCPGBULL.45.4.675
      [158] Orchard, M. J., Zonneveld, J. P., 2009. The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake Area: Lithostratigraphy, Conodont Biostratigraphy, and a New Biozonation for the Lower Olenekian (Smithian). Canada Journal of Earth Science, 46: 757-790. https://doi.org/10.1139/E09-051
      [159] Palmer, M. R., Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters, 92(1): 11-26. https://doi.org/10.1016/0012-821X(89)90017-4
      [160] Pander, C. H., 1856. Monographie der Fossilen Fische des Silurischen Systems des Russisch-Baltischen Gouvernements. Akademie der Wissenschaften, St Petersburg.
      [161] Paull, R. K., 1980. Conodont Biosratigraphy of the Lower Triassic Dinwoody Formation in Northwestern Utah, Northeastern Nevada, and Southeastern Idaho (Dissertation). University of Wisconsin, Madison.
      [162] Paull, R. K., 1982. Conodont Biostratigraphy of Lower Triassic Rocks, Terrace Mountains, Northwestern Utah. Utah Geological Association, Salt Lake City.
      [163] Paull, R. K., 1983. Definition and Stratigraphic Significance of the Lower Triassic (Smithian) Conodont Gladigondolella meeki n. sp. in the Western United States. Journal of Paleontology, 188-192. https://doi.org/10.2307/1304621
      [164] Paull, R. K., 1988. Distribution Pattern of Lower Triassic (Scythian) Conodonts in the Western United States: Documentation of the Pakistan Connection. Palaios, 3(6): 598-605. https://doi.org/10.2307/3514448
      [165] Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023
      [166] Purnell, M. A., 1995. Microwear on Conodont Elements and Macrophagy in the First Vertebrates. Nature, 374(6525): 798-800. https://doi.org/10.1038/374798a0
      [167] Purnell, M. A., Bitter, P. H., 1992. Blade-Shaped Conodont Elements Functioned as Cutting Teeth. Nature, 359(6396): 629-631. https://doi.org/10.1038/359629a0
      [168] Renaud, S., Girard, C., 1999. Strategies of Survival during Extreme Environmental Perturbations: Evolution of Conodonts in Response to the Kellwasser Crisis (Upper Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology, 146(1-4): 19-32. https://doi.org/10.1016/S0031-0182(98)00138-2
      [169] Rigo, M., Joachimski, M. M., 2010. Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 55(3): 471-478. https://doi.org/10.4202/app.2009.0100
      [170] Romano, C., Goudemand, N., Vennemann, T. W., 2013. Climatic and Biotic Upheavals Following the End-Permian Mass Extinction. Nature Geoscience, 6(1): 57-60. https://doi.org/10.1038/NGEO1667
      [171] Sansom, I. J., Smith, M. P., Armstrong, H. A., et al., 1992. Presence of the Earliest Vertebrate Hard Tissue in Conodonts. Science, 256(5061): 1308-1311. https://doi.org/10.1126/science.1598573
      [172] Schaal, E. K., Clapham, M. E., Rego, B. L., et al., 2016. Comparative Size Evolution of Marine Clades from the Late Permian through Middle Triassic. Paleobiology, 42(1): 127-142. https://doi.org/10.1017/pab.2015.36
      [173] Schmidt, H., 1934. Conodonten-Funde in Ursprünglichem Zusammenhang. Palaeontologische Zeitschrift, 16(1-2): 76-85. https://doi.org/10.1007/BF03041668
      [174] Scotese, C. R., 2009. Late Proterozoic Plate Tectonics and Palaeogeography: A Tale of Two Supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications, 326(1): 67-83. https://doi.org/10.1144/SP326.4
      [175] Scott, H. W., 1934. The Zoological Relationships of the Conodonts. Journal of Paleontology, 8(4): 448-455.
      [176] Shen, S. Z., Ramezani, J., Chen, J., et al., 2019b. A Sudden End-Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1
      [177] Shen, S. Z., Yuan, D. X., Henderson, C. M., et al., 2020. Progress, Problems and Prospects: An Overview of the Guadalupian Series of South China and North America. Earth-Science Reviews, 211: 103412. https://doi.org/10.1016/j.earscirev.2020.103412
      [178] Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019a. Permian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 154-188. https://doi.org/10.1007/s11430-017-9228-4
      [179] Shi, G. R., Shen, S. Z., 2000. Asian-Western Pacific Permian Brachiopoda in Space and Time: Biogeography and Extinction Patterns. Developments in Palaeontology and Stratigraphy, 18: 327-352. https://doi.org/10.1016/S0920-5446(00)80019-9
      [180] Shi, G. R., Zhang, Y. C., Shen, S. Z., et al., 2016. Nearshore-Offshore-Basin Species Diversity and Body Size Variation Patterns in Late Permian (Changhsingian) Brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 96-107. https://doi.org/10.1016/j.palaeo.2015.07.046
      [181] Shigeta, Y., Zakharov, Y. D., Maeda, H., et al., 2009. The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science, Tokyo.
      [182] Signor, P. W., Lipps, J. H., Silver, L. T., et al., 1982. Sampling Bias, Gradual Extinction Patterns, and Catastrophes in the Fossil Record. In: Silver, L. T., Schultz, P. H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America, Boulder.
      [183] Solien, M. A., 1979. Conodont Biostratigraphy of the Lower Triassic Thaynes Formation, Utah. Journal of Paleontology, 53: 276-306. https://doi.org/10.2307/1303871
      [184] Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
      [185] Song, H. J., Tong, J. N., Chen, Z. Q., 2011. Evolutionary Dynamics of the Permian-Triassic Foraminifer Size: Evidence for Lilliput Effect in the End-Permian Mass Extinction and Its Aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 98-110. https://doi.org/10.1016/j.palaeo.2010.10.036
      [186] Song, H. J., Wignall, P. B., Chu, D. L., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4: 4132. https://doi.org/10.1038/srep04132
      [187] Song, H. J., Wignall, P. B., Dunhill, A. M., 2018. Decoupled Taxonomic and Ecological Recoveries from the Permo-Triassic Extinction. Science Advances, 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat5091
      [188] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353-354: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005
      [189] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6(1): 52-56. https://doi.org/10.1038/ngeo1649
      [190] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2015. Integrated Sr Isotope Variations and Global Environmental Changes through the Late Permian to Early Late Triassic. Earth and Planetary Science Letters, 424: 140-147. https://doi.org/10.1016/j.epsl.2015.05.035
      [191] Song, H. Y., Du, Y., Algeo, T. J., et al., 2019. Cooling-Driven Oceanic Anoxia across the Smithian/Spathian Boundary (Mid-Early Triassic). Earth-Science Reviews, 195: 133-146. https://doi.org/10.1016/j.earscirev.2019.01.009
      [192] Stanley, S. M., 2016. Estimates of the Magnitudes of Major Marine Mass Extinctions in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 113(42): E6325-E6334. https://doi.org/10.1073/pnas.1613094113
      [193] Sun, D. Y., Tong, J. N., Xiong, Y. L., et al., 2012a. Conodont Biostratigraphy and Evolution across Permian-Triassic Boundary at Yangou Section, Leping, Jiangxi Province, South China. Journal of Earth Science, 23(3): 311-325. https://doi.org/10.1007/s12583-012-0255-4
      [194] Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012b. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      [195] Sun, Y. D., Liu, X. T., Yan, J. X., et al., 2017. Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 42-63. https://doi.org/10.1016/j.palaeo.2016.10.013
      [196] Sun, Y. D., Wiedenbeck, M., Joachimski, M. M., et al., 2016. Chemical and Oxygen Isotope Composition of Gem-Quality Apatites: Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry (SIMS). Chemical Geology, 440: 164-178. https://doi.org/10.1016/j.chemgeo.2016.07.013
      [197] Sun, Z. Y., Liu, S., Ji, C., et al., 2020. Synchrotron-Aided Reconstruction of the Prioniodinin Multielement Conodont Apparatus (Hadrodontina) from the Lower Triassic of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109913. https://doi.org/10.1016/j.palaeo.2020.109913
      [198] Sun, Z. Y., Liu, S., Ji, C., et al., 2021. Gondolelloid Multielement Conodont Apparatus (Scythogondolella) from the Lower Triassic of Jiangsu, East China, Revealed by High-Resolution X-Ray Microtomography. Palaeoworld, 30(2): 286-295. https://doi.org/10.1016/j.palwor.2020.06.001
      [199] Sweet, W. C., 1970a. Permian and Triassic Conodonts from a Section at Guryul Ravine, Vihi district, Kashmir. University of Kansas, Lawrence.
      [200] Sweet, W. C., 1970b. Uppermost Permian and Lower Triassic Conodonts of the Salt Range and Trans-Indus Ranges, West Pakistan, in Stratigraphic Boundary Problems. In: Kummel, B., Teichert, C., eds., Permian and Triassic of West Pakistan. University of Kansas, Lawrence.
      [201] Sweet, W. C., 1988. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-extinct Animal Phylum. Clarendon Press, Oxford.
      [202] Takahashi, S., Yamakita, S., Suzuki, N., 2019. Natural Assemblages of the Conodont Clarkina in Lowermost Triassic Deep-Sea Black Claystone from Northeastern Japan, with Probable Soft-Tissue Impressions. Palaeogeography, Palaeoclimatology, Palaeoecology, 524: 212-229. https://doi.org/10.1016/j.palaeo.2019.03.034
      [203] Tian, L., Tong, J. N., Xiao, Y. F., et al., 2019. Environmental Instability Prior to End-Permian Mass Extinction Reflected in Biotic and Facies Changes on Shallow Carbonate Platforms of the Nanpanjiang Basin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 23-36. https://doi.org/10.1016/j.palaeo.2018.05.011
      [204] Tian, S. G., 1993. Late permian-Earliest Triassic Conodont Palaeoecology in Northwestern Hunan. Acta Palaeontologica Sinica, 32(3): 332-345 (in Chinese with English abstract).
      [205] Tong, J. N., Yin, H. F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7): 803-815. https://doi.org/10.1016/S1367-9120(01)00058-X
      [206] Tong, J. N., Zakharov, Y. D., Orchard, M. J., et al., 2003. A Candidate of the Induan-Olenekian Boundary Stratotype in the Tethyan Region. Science China Earth Sciences, 46(11): 1182-1200. https://doi.org/10.1360/03yd0295
      [207] Tong, J. N., Zakharov, Y. D., Orchard, M. J., et al., 2004. Proposal of Chaohu Section as the GSSP Candidate of the Induan-Olenekian Boundary. Albertiana, 29: 13-27.
      [208] Trotter, J. A., Barnes, C. R., McCracken, A. D., 2016. Rare Earth Elements in Conodont Apatite: Seawater or Pore-Water Signatures? Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 92-100. https://doi.org/10.1016/j.palaeo.2016.09.007
      [209] Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550-554. https://doi.org/10.1126/science.1155814
      [210] Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038
      [211] Twitchett, R. J., 2007. The Lilliput Effect in the Aftermath of the End-Permian Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 132-144. https://doi.org/10.1016/j.palaeo.2006.11.038
      [212] Urbanek, A., 1993. Biotic Crises in the History of Upper Silurian Graptoloids: A Palaeobiological Model. Historical Biology, 7(1): 29-50. https://doi.org/10.1080/10292389309380442
      [213] Wang, C. Y., 1996. Conodont evolutionary Lineage and Zonation for the Latest Permian and the Earliest Triassic. Permophiles, 29: 30-37.
      [214] Wang, C. Y., Wang, Z. H., 1981. Permian Conodont Biostratigraphy of China. Geological Society of America Special Papers, 187(3): 227-236. https://doi.org/10.1130/SPE187-p227
      [215] Wang, D. C., Jiang, H. S., Gu, S. Z., et al., 2016a. Cisuralian-Guadalupian Conodont Sequence from the Shaiwa Section, Ziyun, Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 457: 1-22. https://doi.org/10.1016/j.palaeo.2016.05.030
      [216] Wang, L. N., Wignall, P. B., Wang, Y. B., et al., 2016b. Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 156-166. https://doi.org/10.1016/j.palaeo.2015.11.032
      [217] Wang, X. D., Wang, X. J., Zhang, F., et al., 2006a. Diversity Patterns of Carboniferous and Permian Rugose Corals in South China. Geological Journal, 41(3-4): 329-343. https://doi.org/10.1002/gj.1041
      [218] Wang, Y., Shen, S. Z., Cao, C. Q., et al., 2006b. The Wuchiapingian-Changhsingian Boundary (Upper Permian) at Meishan of Changxing County, South China. Journal of Asian Earth Sciences, 26(6): 575-583. https://doi.org/10.1016/j.jseaes.2004.12.003
      [219] Wang, Z. H., Wang, Y. G., 1995. Permian-Lower Triassic Conodont from Selong Xishan of Nylam, S. Tibet, China. Acta Micropalaeontologica Sinica, 12(4): 333-348 (in Chinese with English abstract).
      [220] Wang, Z. H., Zhong, R., 1990. Triassic Conodont Biostratigraphy of Different Facies Realms in Eastern Yunnan, Western Guizhou and Northern Guangxi. Journal of Stratigraphy, 14(1): 15-35 (in Chinese with English abstract).
      [221] Wardlaw, B. R., Collinson, J. W., 1984. Conodont Paleoecology of the Permian Phosphoria Formation and Related Rocks of Wyoming and Adjacent Areas. Geological Society of America Special Papers, 196: 263-282. https://doi.org/10.1130/SPE196-p263
      [222] Wignall, P. B., Myers, K. J., 1988. Interpreting Benthic Oxygen Levels in Mudrocks: A New Approach. Geology, 16(5): 452-455. https://doi.org/10.1130/0091-7613(1988)0162.3.CO;2
      [223] Wu, H. T., He, W. H., Shi, G. R., et al., 2018. A New Permian-Triassic Boundary Brachiopod Fauna from the Xinmin Section, Southwestern Guizhou, South China and Its Extinction Patterns. Alcheringa: An Australasian Journal of Palaeontology, 42(3): 339-372. https://doi.org/10.1080/03115518.2018.1462400
      [224] Wu, K., Tian, L., Liang, L., et al., 2019. Recurrent Biotic Rebounds during the Early Triassic: Biostratigraphy and Temporal Size Variation of Conodonts from the Nanpanjiang Basin, South China. Journal of the Geological Society, 176(6): 1232-1246. https://doi.org/10.1144/jgs2019-065
      [225] Wu, K., Tong, J. N., Metcalfe, I., et al., 2020. Quantitative Stratigraphic Correlation of the Lower Triassic in South China Based on Conodont Unitary Associations. Earth-Science Reviews, 200: 102997. https://doi.org/10.1016/j.earscirev.2019.102997
      [226] Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six-Fold Increase of Atmospheric pCO2 during the Permian-Triassic Mass Extinction. Nature Communications, 12: 2137. https://doi.org/10.1038/s41467-021-22298-7
      [227] Xiao, Y. F., Suzuki, N., He, W. H., 2018a. Low-Latitudinal Standard Permian Radiolarian Biostratigraphy for Multiple Purposes with Unitary Association, Graphic Correlation, and Bayesian Inference Methods. Earth-Science Reviews, 179: 168-206. https://doi.org/10.1016/j.earscirev.2018.02.011
      [228] Xiao, Y. F., Wu, K., Tian, L., et al., 2018b. Framboidal Pyrite Evidence for Persistent Low Oxygen Levels in Shallow-Marine Facies of the Nanpanjiang Basin during the Permian-Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 243-255. https://doi.org/10.1016/j.palaeo.2018.08.012
      [229] Yang, S. R., Wang, X. P., Hao, W. C., 1986. Early and Middle Triassic Conodonts Sequence in Western Guangxi. Acta Scicentiarum Naturalum Universitis Pekinesis, 22(4): 90-106 (in Chinese with English abstract).
      [230] Ye, Q., Jiang, H. S., 2016. Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the Dawoling Section, Hunan Province. Earth Science, 41(11): 1883-1892 (in Chinese with English abstract).
      [231] Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      [232] Youngquist, W., Hawley, R. W., Miller, A. K., 1951. Phosphoria Conodonts from Southeastern Idaho. Journal of Paleontology, 25(3): 356-364.
      [233] Yuan, D. X., Chen, J., Zhang, Y. C., et al., 2015. Changhsingian Conodont Succession and the End-Permian Mass Extinction Event at the Daijiagou Section in Chongqing, Southwest China. Journal of Asian Earth Sciences, 105: 234-251. https://doi.org/10.1016/j.jseaes.2015.04.002
      [234] Yuan, D. X., Shen, S. Z., Henderson, C. M., 2017. Revised Wuchiapingian Conodont Taxonomy and Succession of South China. Journal of Paleontology, 91(6): 1199-1219. https://doi.org/10.1017/jpa.2017.71
      [235] Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont-Based Integrated High-Resolution Timescale for the Changhsingian Stage and End-Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. https://doi.org/10.1016/j.lithos.2014.03.026
      [236] Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth-Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002
      [237] Yuan, D. X., Zhang, Y. C., Shen, S. Z., 2018. Conodont Succession and Reassessment of Major Events around the Permian-Triassic Boundary at the Selong Xishan Section, Southern Tibet, China. Global and Planetary Change, 161: 194-210. https://doi.org/10.1016/j.gloplacha.2017.12.024
      [238] Zakharov, Y. D., Bondarenko, L. G., Popov, A. M., et al., 2021. New Findings of Latest Early Olenekian (Early Triassic) Fossils in South Primorye, Russian Far East, and Their Stratigraphical Significance. Journal of Earth Science, 32(3): 554-572. https://doi.org/10.1007/s12583-020-1390-y
      [239] Zakharov, Y. D., Popov, A. M., Buryi, G. I., 2005. Unique Marine Olenekian-Anisian Boundary Section from South Primorye, Russian Far East. Journal of Earth Science, 16(3): 219-230.
      [240] Zeng, W. P., Purnell, M. A., Jiang, H. S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583-021-1459-2
      [241] Zhang, G. J., Zhang, X. L., Li, D. D., et al., 2021. Evidence for the Expansion of Anoxia during the Smithian from a Quantitative Interpretation of Paired C-Isotopes. Global and Planetary Change, 204: 103551. https://doi.org/10.1016/j.gloplacha.2021.103551
      [242] Zhang, L. S., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049
      [243] Zhang, M. H., Jiang, H. S., Purnell, M. A., et al., 2017. Testing Hypotheses of Element Loss and Lnstability in the Apparatus Composition of Complex Conodonts: Articulated Skeletons of Hindeodus. Palaeontology, 60(4): 595-608. https://doi.org/v10.1111 / pala.12305 doi: 10.1111/pala.12305
      [244] Zhang, N., Henderson, C. M., Xia, W. C., et al., 2010. Conodonts and Radiolarians through the Cisuralian-Guadalupian Boundary from the Pingxiang and Dachongling Sections, Guangxi Region, South China. Alcheringa: An Australasian Journal of Palaeontology, 34(2): 135-160. https://doi.org/10.1080/03115510903523292
      [245] Zhang, Y., Zhang, K. X., Shi, G. R., et al., 2014. Restudy of Conodont Biostratigraphy of the Permian-Triassic Boundary Section in Zhongzhai, Southwestern Guizhou Province, South China. Journal of Asian Earth Sciences, 80: 75-83. https://doi.org/10.1016/j.jseaes.2013.10.032
      [246] Zhao, H., Dahl, T. W., Chen, Z. Q., et al., 2020. Anomalous Marine Calcium Cycle Linked to Carbonate Factory Change after the Smithian Thermal Maximum (Early Triassic). Earth-Science Reviews, 211: 103418. https://doi.org/10.1016/j.earscirev.2020.103418
      [247] Zhao, L. S., Chen, Y. L., Chen, Z. Q., et al., 2013b. Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 28(8): 523-540. https://doi.org/10.2110/palo.2012.p12-107r
      [248] Zhao, L. S., Chen, Z. Q., Algeo, T. J., et al., 2013a. Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis? Global and Planetary Change, 105: 135-151. https://doi.org/10.1016/j.gloplacha.2012.09.001
      [249] Zhao, L., S., Orchard, M. J., Tong, J. N., et al., 2007. Lower Triassic Conodont Sequence in Chaohu, Anhui Province, China and Its Global Correation. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 24-38. https://doi.org/10.1016/j.palaeo.2006.11.032
      [250] Zhao, L. S., Wu, Y. B., Hu, Z. C., et al., 2009. Trace Element Compositions in Conodont Phosphates Responses to Biotic Extinction Event: A Case Study for Main Act of Global Boundary Stratotype Section and Point of the Permian-Triassic. Earth Science, 34(5): 725-732 (in Chinese with English abstract).
      [251] Zhou, L. Q., Williams, I. S., Liu, J. H., et al., 2012. Methodology of SHRIMP In-Situ O Isotopes Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618 (in Chinese with English abstract).
      [252] Zhou, M. F., Malpas, J., Song, X. Y., et al., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 196(3-4): 113-122. https://doi.org/10.1016/S0012-821X(01)00608-2
      [253] 陈军, Henderson, C. M., 沈树忠, 2008. 浙江黄芝山剖面二叠-三叠系界线附近的牙形类序列及其地层对比. 古生物学报, 47(1): 91-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200801008.htm
      [254] 陈剑波, 赵来时, 陈中强, 等, 2012. 浙江煤山牙形石微区原位REE组成及古环境意义. 地球科学, 37(1): 25-34. doi: 10.3799/dqkx.2012.003
      [255] 房强, 景秀春, 邓胜徽, 等, 2012. 川北上寺剖面罗德阶-吴家坪阶牙形石生物地层. 地层学杂志, 36(4): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204003.htm
      [256] 刘康, 周锡强, 江茂生, 2021. 牙形刺氧同位素古温度计: 研究进展与展望. 沉积学报, 在线发表. https://doi.org/10.14027/j.issn.1000-0550.2021.031
      [257] 田树刚, 1993. 湘西北晚二叠世-早三叠世早期牙形石古生态. 古生物学报, 32(3): 332-345. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199303003.htm
      [258] 王志浩, 王义刚, 1995. 中国西藏聂拉木色龙西山二叠系-下三叠统牙形刺. 微体古生物学报, 12(4): 333-348. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT504.000.htm
      [259] 王志浩, 钟端, 1990. 滇东、黔西和桂北不同相区的三叠纪牙形刺生物地层. 地层学杂志, 14(1): 15-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199001001.htm
      [260] 杨守仁, 王新平, 郝维城, 1986. 广西西部早、中三叠世牙形石序列. 北京大学学报(自然科学版), 22(4): 90-106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198604012.htm
      [261] 叶茜, 江海水, 2016. 湖南嘉禾大窝岭剖面吴家坪阶-长兴阶界线牙形石生物地层及一次碳同位素负偏. 地球科学, 41(11): 1883-1892. doi: 10.3799/dqkx.2016.130
      [262] 赵来时, 吴元保, 胡兆初, 等, 2009. 牙形石微量元素对生物绝灭事件的响应: 以二叠-三叠系全球层型剖面第一幕绝灭事件为例. 地球科学, 34(5): 725-732. doi: 10.3321/j.issn:1000-2383.2009.05.002
      [263] 周丽芹, Williams, I. S., 刘建辉, 等, 2012. 牙形石SHRIMP微区原位氧同位素分析方法. 地质学报, 86(4): 611-618. doi: 10.3969/j.issn.0001-5717.2012.04.007
    • 加载中
    图(8)
    计量
    • 文章访问数:  620
    • HTML全文浏览量:  89
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-12
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回