• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案

    李尧 崔一飞 李振洪 傅旭东

    李尧, 崔一飞, 李振洪, 傅旭东, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
    引用本文: 李尧, 崔一飞, 李振洪, 傅旭东, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
    Li Yao, Cui Yifei, Li Zhenhong, Fu Xudong, 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
    Citation: Li Yao, Cui Yifei, Li Zhenhong, Fu Xudong, 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194

    川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案

    doi: 10.3799/dqkx.2021.194
    基金项目: 

    国家自然科学基金项目 41941019

    第二次青藏高原科学考察 2019QZKK0906

    详细信息
      作者简介:

      李尧(1991-),男,博士研究生,主要从事山地灾害遥感方面的研究工作.ORCID:0000-0003-2986-8789.E-mail:yaoli@imde.ac.cn

      通讯作者:

      崔一飞,副教授,主要从事工程地质和地质灾害方面的研究工作.ORCID:0000-0002-9559-5988.E-mail: yifeicui@tsinghua.edu.cn

    • 中图分类号: P954

    Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor

    • 摘要: 川藏交通廊道沿线山高谷深,地层岩性多变,新构造运动活跃,气候恶劣复杂,导致滑坡、崩塌、泥石流、冰湖溃决洪水等灾害极其发育,对铁路施工及运营带来严重影响.林芝-波密段就是典型地质灾害高发区域,常年受到冰川泥石流的影响,是川藏交通廊道重大灾害防治的难点区段.虽然目前在单沟尺度上对冰川泥石流的形成条件、影响因素、物源性质取得了一定的认识,但对于川藏交通廊道沿线不同类型的冰川泥石流诱发因素、区域发展演化规律及灾变指标的研究还较为初步,尚未构建完善的监测预警体系.借助多源长时序遥感影像、气象监测数据,结合野外实地验证和历史数据分析发现:川藏交通廊道周边区域冰川泥石流沟谷共99条,主要分布于恰青冰川-易贡乡、加拉贝垒-南迦巴瓦峰和古乡沟-嘎隆寺冰川一带;过去40年冰川经历了复杂的流动速度变化,表现为较小高海拔悬冰川活动性增强,大型沟谷冰川活动性减弱;自1973年以来,研究区冰川泥石流呈现频率增高、规模增大的特征.此外,从冰川泥石流发育沟道比降来看,发生高陡地形的滑坡、冰-岩崩诱发的泥石流频率增加.未来,冰川持续退缩,促使冰川源区冰瀑消失,发育更大规模的悬冰川,会增加这类冰川泥石流的风险;冰川泥石流形成及演化过程具有明显的灾变指标,如悬冰川裂隙密度增加、冰川速度增强、冰湖面积快速增加等.因此,基于以上认识,建议针对不同类型的冰川泥石流地建立完善的监测预警指标,并提出了融合卫星、航空遥感平台,气象、水文地面监测平台,地震动监测平台的冰川泥石流“空-天-地”立体监测框架,针对不同类型冰川泥石流进行灾变信息监测与预警判识,为川藏交通廊道安全施工运营提供技术参考.

       

    • 图  1  研究区位置图

      Fig.  1.   Location of the study area

      图  2  研究区周围气象站的气候数据(1981—2018年)

      Fig.  2.   Climate data of meteorological stations around the study area (1981—2018)

      图  3  研究区重大地震事件(1970—2020年)

      地震数据来源于美国国家地质调查局;a.震级大于5.3级地震事件;b.米林地震前,其周边冰川12月份运动速度图;c.米林地震后,其周边冰川12月份运动速度图

      Fig.  3.   Major earthquake events in the study area (1970—2020)

      图  4  冰川运动速度变化

      a.2017年冰川年运动速度;b.速度变化分布图(1989—2014年)

      Fig.  4.  Glacier velocity change

      图  5  川藏交通廊道沿线冰川泥石流空间分布

      Fig.  5.   Spatial distribution of glacier debris flows along Sichuan-Tibet traffic corridor

      图  6  川藏交通廊道沿线冰川泥石流频次-规模演进(1973—2021年)

      Fig.  6.   Frequency scale evolution diagram of glacial debris flows along Sichuan-Tibet traffic corridor (1973—2021)

      图  7  培龙沟融水-降雨型石流及母冰川速度变化

      Fig.  7.   Meltwater-rainfall debris flow in Peilong gully and glacier velocity

      图  8  色东普冰-岩崩泥石流

      a.悬冰川裂隙发育;b.冰-岩崩泥石流侵蚀特征;c.2016年活跃的主沟道冰川

      Fig.  8.   Ice-rock avalanche induced debris flow in Sedongpu gully

      图  9  川藏交通廊道沿线大型冰湖分布及面积变化(1986—2020年)

      Fig.  9.   Distribution and area variation of large glacial lakes along Sichuan-Tibet traffic corridor (1986—2020)

      图  10   “天-空-地”冰川泥石流监测体系

      Fig.  10.   Glacier debris flow monitoring system based on "Space-Sky-Ground" platforms

      表  1  遥感影像数据

      Table  1.    Remote sensing images used in this study

      卫星 时间
      (日/月/年)
      影像数量 分辨率(m) 重访周期(d) 用途 数据源
      Corona KH-4A 03/03/1967, 02/05/1968 2 3 - 冰川泥石流识别 USGS
      Hexagon KH-9 16/11/1973 1 6 - 冰川泥石流识别 USGS
      Aster 18/11/2002—02/08/2015 12 15 - 冰川泥石流识别 USGS
      Landsat 1 16/12/1972 1 60 - 冰川泥石流识别 USGS
      Landsat 4-5 05/01/1988—04/11/2011 46 30 16 冰川泥石流识别 USGS
      Landsat 7 24/09/1999—08/02/2021 13 30 16 冰川泥石流识别、冰川速度提取 USGS
      Landsat 8 20/07/2013—16/02/2021 16 15/30 16 冰川泥石流识别、冰川速度提取 USGS
      Sentinel 1A (GRD) 12/16/2014—12/31/2018 82 20 12 冰川速度提取 ESA
      Sentinel 2A/B 12/06/2015—12/25/2018 32 10/60 5 冰川泥石流识别、冰川速度提取 ESA
      Ziyuan-3 20171211, 20181130 2 2 - 数值高程(DEM)提取 CCRSDA
      GaoFen-1 11/18/2013—12/06/2019 13 2/8 - 冰川泥石流识别 CCRSDA
      GaoFen-2 01/17/2016—12/26/2018 5 0.8/3.2 - 冰川泥石流识别 CCRSDA
      注:数据来源美国地质调查局(USGS)(https://earthexplorer.usgs.gov/);欧洲航天局(ESA)(https://scihub.copernicus.eu/);中国资源卫星数据与应用中心(CCRSDA)(http://www.cresda.com/EN/).
      下载: 导出CSV

      表  2  色东普沟历史冰川泥石流事件(1973—2018年)

      Table  2.    Historical glacier debris flow in Sedongpu gully (1973—2018)

      遥感时间
      (日/月/年)
      事件类型 是否堵江 诱发因素
      21/12/1973 冰崩泥石流 全堵 -
      30/06/1977 冰崩泥石流 全堵 -
      04/11/1994 冰崩 -
      15/11/1998 冰崩 -
      13/11/2012 冰崩 -
      03/11/2014 冰崩泥石流 全堵 -
      20/11/2016 冰崩 -
      22/10/2017 冰崩泥石流 半堵 鲁朗地震(4.0级)
      03/11/2017 泥石流 半堵 -
      18/11/2017 冰崩泥石流 半堵 米林地震(6.9级)*
      24/07/2018 冰崩泥石流 -
      17/10/2018 冰崩泥石流 大规模堵江 -
      29/10/2018 泥石流 堵江 -
      注:*据刘传正等(2019).
      下载: 导出CSV
    • [1] Azam, M. F., Ramanathan, A., Wagnon, P., et al., 2016. Meteorological Conditions, Seasonal and Annual Mass Balances of Chhota Shigri Glacier, Western Himalaya, India. Annals of Glaciology, 57(71): 328-338. https://doi.org/10.3189/2016aog71a570
      [2] Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432.
      [3] Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract).
      [4] Cheng, Z. L., Liu, J. J., Liu, J. K., 2010. Debris Flow Induced by Glacial Lake Break in Southeast Tibet. WIT Transactions on Engineering Sciences, 67: 101-111. https://doi.org/10.2495/deb100091
      [5] Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31(6): 508-527. https://doi.org/10.2747/0272-3646.31.6.508
      [6] Dai, K. R., Li, Z. H., Xu, Q., et al., 2020. Entering the Era of Earth Observation-Based Landslide Warning Systems: A Novel and Exciting Framework. IEEE Geoscience and Remote Sensing Magazine, 8(1): 136-153. https://doi.org/10.1109/mgrs.2019.2954395
      [7] Fugazza, D., Scaioni, M., Corti, M., et al., 2018. Combination of UAV and Terrestrial Photogrammetry to Assess Rapid Glacier Evolution and Map Glacier Hazards. Natural Hazards and Earth System Sciences, 18(4): 1055-1071. https://doi.org/10.5194/nhess-18-1055-2018.
      [8] Gao, B., Zhang, J. J., Wang, J. C., et al., 2019. Formation Mechanism and Disaster Characteristics of Debris Flow in the Tianmo Gully in Tibet. Hydrogeology & Engineering Geology, 46(5): 144-153(in Chinese with English abstract).
      [9] Gao, Z. M., Ding, M. T., Yang, G. H., et al., 2021. Hazard Assessment of Debris Flow along Zire-Bomi Section of Sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 478-485 (in Chinese with English abstract).
      [10] Hu, G. S., Chen, N. S., Deng, M. F., et al., 2011. Classification and Initiation Conditions of Debris Flows in Linzhi Area, Tibet. Bulletin of Soil and Water Conservation, 31(2): 193-197, 221(in Chinese with English abstract).
      [11] Hu, J., Li, Z. W., Ding, X. L., et al., 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133: 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005
      [12] Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., et al., 2014. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles. Remote Sensing of Environment, 150: 93-103. https://doi.org/10.1016/j.rse.2014.04.025
      [13] Janke, J. R., 2013. Using Airborne LiDAR and USGS DEM Data for Assessing Rock Glaciers and Glaciers. Geomorphology, 195: 118-130. https://doi.org/10.1016/j.geomorph.2013.04.036
      [14] Jia, Y., Cui, P., 2020. The Extreme Climate Background for Glacial Lakes Outburst Flood Events in Tibet. Climate Change Research, 16(4): 395-404(in Chinese with English abstract).
      [15] Jiang, R. C., Zhang, L. M., Peng, D. L., et al., 2021. The Landslide Hazard Chain in the Tapovan of the Himalayas on 7 February 2021. Geophysical Research Letters, 48(17): e2021GL093723. https://doi.org/10.1029/2021gl093723.
      [16] Kääb, A., Jacquemart, M., Gilbert, A., et al., 2021. Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers-More Frequent than Thought? The Cryosphere, 15(4): 1751-1785. https://doi.org/10.5194/tc-15-1751-2021
      [17] Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Tibet in 2016 after Surge-Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561-017-0039-7
      [18] Lan, H. X., Zhang, N., Li, L. P., et al., 2021. Risk Analysis of Major Engineering Geological Hazards for Sichuan-Tibet Railway in the Phase of Feasibility Study. Journal of Engineering Geology, 29(2): 326-341 (in Chinese with English abstract).
      [19] Legg, N. T., Meigs, A. J., Grant, G. E., et al., 2014. Debris Flow Initiation in Proglacial Gullies on Mount Rainier, Washington. Geomorphology, 226: 249-260. https://doi.org/10.1016/j.geomorph.2014.08.003.
      [20] Leggat, M. S., Owens, P. N., Stott, T. A., et al., 2015. Hydro-Meteorological Drivers and Sources of Suspended Sediment Flux in the Pro-Glacial Zone of the Retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada. Earth Surface Processes and Landforms, 40(11): 1542-1559. https://doi.org/10.1002/esp.3755
      [21] Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234 (in Chinese with English abstract).
      [22] Liu, J. K., Zhang, J. J., Gao, B., et al., 2019. An Overview of Glacial Lake Outburst Flood in Tibet, China. Journal of Glaciology and Geocryology, 41(6): 1335-1347 (in Chinese with English abstract).
      [23] Lu, J. Y., Yu, G. A., Huang, H. Q., 2021. Research and Prospect on Formation Mechanism of Debris Flows in High Mountains under the Influence of Climate Change. Journal of Glaciology and Geocryology, 43(2): 555-567 (in Chinese with English abstract).
      [24] Ni, H. Y., Lü, X. J., Yanf, D. W., 2005. Fractal Feature and Geological Significance of Accumulations at Peilong Section along Sichuan⁃Tibet Highway. Journal of Engineering Geology, 13(4): 451-454(in Chinese with English abstract).
      [25] Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract).
      [26] Papadopoulos, G. A., Plessa, A., 2000. Magnitude-Distance Relations for Earthquake-Induced Landslides in Greece. Engineering Geology, 58(3-4): 377-386. https://doi.org/10.1016/s0013-7952(00)00043-0
      [27] Qu, Y. P., Tang, C., Liu, Y., et al., 2015a. Investigation and Analysis of Glacier Debris Flow in Nyingchi Area, Tibet. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 2): 4013-4022 (in Chinese with English abstract).
      [28] Qu, Y. P., Zhu, J., Bu, X. H., et al., 2015b. Preliminary Starting Experiment Study of Glacial Rainfall Debris Flow, in Nyingchi, Tibet. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 1): 3256-3266 (in Chinese with English abstract).
      [29] Samsonov, S., Tiampo, K., Cassotto, R., 2021. SAR-Derived Flow Velocity and Its Link to Glacier Surface Elevation Change and Mass Balance. Remote Sensing of Environment, 258: 112343. https://doi.org/10.1016/j.rse.2021.112343
      [30] Satyabala, S. P., 2016. Spatiotemporal Variations in Surface Velocity of the Gangotri Glacier, Garhwal Himalaya, India: Study Using Synthetic Aperture Radar Data. Remote Sensing of Environment, 181: 151-161. https://doi.org/10.1016/j.rse.2016.03.042
      [31] Schneider, D., Bartelt, P., Caplan-Auerbach, J., et al., 2010. Insights into Rock-Ice Avalanche Dynamics by Combined Analysis of Seismic Recordings and a Numerical Avalanche Model. Journal of Geophysical Research: Earth Surface, 115(F4): F04026. https://doi.org/10.1029/2010jf001734
      [32] Shugar, D., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): eabh4455. https://doi.org/10.1126/science.abh4455
      [33] Tong, L. Q., Tu, J. N., Pei, L. X., et al., 2018. Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River. Journal of Engineering Geology, 26(6): 1552-1561 (in Chinese with English abstract).
      [34] Walter, F., Amann, F., Kos, A., et al., 2020. Direct Observations of a Three Million Cubic Meter Rock-Slope Collapse with almost Immediate Initiation of Ensuing Debris Flows. Geomorphology, 351: 106933. https://doi.org/10.1016/j.geomorph.2019.106933.
      [35] Wang, J., 2018. Influence of Morine on the Debris Flow in Parlung Tsangpo Basin (Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      [36] Wang, Z., Hu, K. H., Ma, C., et al., 2021. Landscape Change in Response to Multiperiod Glacial Debris Flows in Peilong Catchment, Southeastern Tibet. Journal of Mountain Science, 18(3): 567-582. https://doi.org/10.1007/s11629-020-6172-6
      [37] Wu, K. P., Liu, S. Y., Jiang, Z., et al., 2018. Remote-Sensing Estimate of Glacier Mass Balance over the Central Nyainqentanglha Range during 1968-2013. The Cryosphere Discussions. https://doi.org/10.5194/tc-2018-90
      [38] Wu, K. P., Liu, S. Y., Zhu, Y., et al., 2021. High-Resolution Monitoring of Glacier Dynamics Based on Unmanned Aerial Vehicle Survey in the Meili Snow Mountain. Progress in Geography, 40(9): 1581-1589 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2021.09.012
      [39] Xu, L. J., Hu, Z. Y., Zhao, Y. N., et al, 2019. Climate Change Characteristics in Qinghai-Tibetan Plateau during 1961-2010. Plateau Meteorology, 38(5): 911-919 (in Chinese with English abstract).
      [40] Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966 (in Chinese with English abstract).
      [41] Yao, T. D., Yao, Z. J., 2010. Impacts of Glacial Reretreat on Runoff on Tibetan Plateau. Chinese Journal of Nature, 32(1): 4-8 (in Chinese with English abstract).
      [42] Zaginaev, V., Petrakov, D., Erokhin, S., et al., 2019. Geomorphic Control on Regional Glacier Lake Outburst Flood and Debris Flow Activity over Northern Tien Shan. Global and Planetary Change, 176: 50-59. https://doi.org/10.1016/j.gloplacha.2019.03.003
      [43] Zhao, X., Zhang, H. T., Zhao, Z. F., et al., 2020. Study on the Genesis of Rainfall-Glacier Mixed Type Debris Flow of Haibalo Gully in Northwest Yunnan on July 28, 2019. Journal of Engineering Geology, 28(6): 1339-1349 (in Chinese with English abstract).
      [44] Zheng, G. X., Mergili, M., Emmer, A., et al., 2021. The 2020 Glacial Lake Outburst Flood at Jinwuco, Tibet: Causes, Impacts, and Implications for Hazard and Risk Assessment. The Cryosphere, 15(7): 1-28.
      [45] 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      [46] 高波, 张佳佳, 王军朝, 等, 2019. 西藏天摩沟泥石流形成机制与成灾特征. 水文地质工程地质, 46(5): 144-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201905020.htm
      [47] 高泽民, 丁明涛, 杨国辉, 等, 2021. 川藏交通廊道孜热-波密段泥石流灾害危险性评价. 工程地质学报, 29(2): 478-485.
      [48] 胡桂胜, 陈宁生, 邓明枫, 等, 2011. 西藏林芝地区泥石流类型及形成条件分析. 水土保持通报, 31(2): 193-197, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201102040.htm
      [49] 贾洋, 崔鹏, 2020. 西藏冰湖溃决灾害事件极端气候特征. 气候变化研究进展, 16(4): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202004001.htm
      [50] 兰恒星, 张宁, 李郎平, 等, 2021. 川藏交通廊道可研阶段重大工程地质风险分析. 工程地质学报, 29(2): 326-341.
      [51] 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
      [52] 刘建康, 张佳佳, 高波, 等, 2019. 我国西藏地区冰湖溃决灾害综述. 冰川冻土, 41(6): 1335-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906006.htm
      [53] 鲁建莹, 余国安, 黄河清, 2021. 气候变化影响下高山区泥石流形成机制研究及展望. 冰川冻土, 43(2): 555-567. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202102020.htm
      [54] 倪化勇, 吕学军, 杨德伟, 2005. 川藏公路培龙沟路段堆积物的分形特征及其地质意义. 工程地质学报, 13(4): 451-454. doi: 10.3969/j.issn.1004-9665.2005.04.004
      [55] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏交通廊道工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
      [56] 屈永平, 唐川, 刘洋, 等, 2015a. 西藏林芝地区冰川降雨型泥石流调查分析. 岩石力学与工程学报, 34(增刊2): 4013-4022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2047.htm
      [57] 屈永平, 朱静, 卜祥航, 等, 2015b. 西藏林芝地区冰川降雨型泥石流起动实验初步研究. 岩石力学与工程学报, 34(增刊1): 3256-3266. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1081.htm
      [58] 童立强, 涂杰楠, 裴丽鑫, 等, 2018. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨. 工程地质学报, 26(6): 1552-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806017.htm
      [59] 王姣, 2018. 帕隆藏布流域冰碛物对泥石流活动影响(博士学位论文). 北京: 中国科学院大学.
      [60] 吴坤鹏, 刘时银, 朱钰, 等, 2021. 基于无人机摄影测量的梅里雪山明永冰川末端表面高程动态监测. 地理科学进展, 40(9): 1581-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109013.htm
      [61] 徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析. 高原气象, 38(5): 911-919. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905001.htm
      [62] 许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
      [63] 姚檀栋, 姚治君, 2010. 青藏高原冰川退缩对河水径流的影响. 自然杂志, 32(1): 4-8. doi: 10.3969/j.issn.0253-9608.2010.01.002
      [64] 赵鑫, 张海太, 赵志芳, 等, 2020. 滇西北海巴洛沟"7·28"降雨-冰川融水混合型泥石流成因研究. 工程地质学报, 28(6): 1339-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006020.htm
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  471
    • HTML全文浏览量:  99
    • PDF下载量:  107
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-29
    • 刊出日期:  2022-06-25

    目录

      /

      返回文章
      返回