• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆罗布泊富钾卤水矿床异常富集机理

    马黎春 王凯 张瑜 汤庆峰 孙明光

    马黎春, 王凯, 张瑜, 汤庆峰, 孙明光, 2022. 新疆罗布泊富钾卤水矿床异常富集机理. 地球科学, 47(1): 72-81. doi: 10.3799/dqkx.2021.193
    引用本文: 马黎春, 王凯, 张瑜, 汤庆峰, 孙明光, 2022. 新疆罗布泊富钾卤水矿床异常富集机理. 地球科学, 47(1): 72-81. doi: 10.3799/dqkx.2021.193
    Ma Lichun, Wang Kai, Zhang Yu, Tang Qingfeng, Sun Mingguang, 2022. Abnormal Enrichment Mechanism of Potassium-Rich Brine Deposit in Lop Nor Basin of Xinjiang. Earth Science, 47(1): 72-81. doi: 10.3799/dqkx.2021.193
    Citation: Ma Lichun, Wang Kai, Zhang Yu, Tang Qingfeng, Sun Mingguang, 2022. Abnormal Enrichment Mechanism of Potassium-Rich Brine Deposit in Lop Nor Basin of Xinjiang. Earth Science, 47(1): 72-81. doi: 10.3799/dqkx.2021.193

    新疆罗布泊富钾卤水矿床异常富集机理

    doi: 10.3799/dqkx.2021.193
    基金项目: 

    中央级公益性科研院所基本科研业务费专项资金 JYYWF2018

    中国地质调查局项目 N1611

    详细信息
      作者简介:

      马黎春(1978-), 女, 研究员, 主要从事钾盐矿床及盐湖地球化学研究.ORCID: 0000-0003-3648-6914.E-mail: mlichun@cags.ac.cn

    • 中图分类号: P619.211

    Abnormal Enrichment Mechanism of Potassium-Rich Brine Deposit in Lop Nor Basin of Xinjiang

    • 摘要:

      罗布泊是世界上最大的单体硫酸盐型液体钾盐矿床,对于其矿床成因一直存在争议. 基于大量盐泉、地下潜水及地表水的化学实测数据,从水文化学的角度探讨罗布泊富钾卤水矿床成因. 结果表明,矿区富钾卤水钠氯系数为0.76~1.24,钾氯系数为38.58~60.49,主体表现为溶滤型卤水特征,指示有其他来源卤水混合参与成矿;首次在罗布泊东部断裂带发现Ca-Cl型卤水,具有典型的富Na+、K+、Ca2+、Cl-,贫HCO3-、CO32-、SO42-特征,指示罗布泊有深部热液流体补给. 在成矿过程中,Ca-Cl型卤水通过“兑卤”效应,直接改变原有成矿卤水成分及结晶路线,使其矿化度升高,而且富K、Na. 改造后的富“钠”卤水与前期生成的石膏(CaSO4·2H2O)反应,生成钙芒硝(Na2Ca(SO42·2H2O),并赋存于多孔的钙芒硝晶间,形成超常高矿化度富钾卤水矿床.

       

    • 图  1  新疆罗布泊地区地质简图(引自王凯等,2020

      Fig.  1.  Simplified geological map of Lop Nor area in Xinjiang (from Wang et al., 2020)

      图  2  罗布泊盆地周缘盐泉带

      Fig.  2.  Salt spring belts around Lop Nor Basin

      图  3  罗布泊盆地水样采样点分布

      Fig.  3.  The distribution of water sampling points in Lop Nor Basin

      图  4  塔里木河水地球化学变化趋势

      Fig.  4.  Trend of geochemical changes in the Tarim River

      图  5  塔里木河水EQL/EVP蒸发模拟

      FC为浓缩蒸发因子,左侧坐标为盐类矿物析出量(毫摩尔取对数);垂直粉色条带示意钙芒硝开始析出至石盐析出之前

      Fig.  5.  Simulation of evaporation of Tarim River by EQL/EVP

      图  6  罗布泊盆地水化学SO4-Ca-ALK三角相图

      Fig.  6.  SO4-Ca-ALK triangular phase diagram of water chemistry in Lop Nor Basin

      表  1  罗布泊盆地不同入流水源化学组分

      Table  1.   Chemical compositions of different inflow waters in Lop Nor Basin

      水源类型 TDS(g/L) Na+(g/L) K+(g/L) Ca2+(g/L) Mg2+(g/L) HCO3(g/L) CO32‒(g/L) Cl(g/L) SO42‒(g/L) Li+(mg/L) B3+(mg/L)
      盐泉 最大值 488.01 133.00 13.50 4.55 127.00 0.26 0.79 354.00 68.40 144.00 215.00
      最小值 18.64 1.42 0.04 0.10 0.15 0.00 0.00 8.03 0.35 0.10 1.85
      平均值 190.40 41.51 1.87 0.89 19.81 0.14 0.06 104.16 22.13 15.29 25.49
      变异系数(%) 85.22 102.39 138.80 121.17 203.40 40.48 229.97 103.44 83.46 225.72 149.94
      潜水 最大值 412.90 133.00 12.20 3.86 54.30 0.69 0.43 188.00 101.00 64.80 175.00
      最小值 3.84 1.32 0.03 0.00 0.02 0.00 0.00 1.35 1.01 0.02 0.58
      平均值 277.32 84.12 5.31 0.36 11.83 0.17 0.04 138.50 36.99 10.57 41.20
      变异系数(%) 46.29 49.48 101.55 166.26 117.25 85.87 173.56 48.34 71.42 125.26 98.85
      河水 最大值 1.00 0.20 0.02 0.09 0.04 0.23 0.00 0.27 0.34 0.06 0.31
      最小值 0.57 0.07 0.01 0.05 0.02 0.13 0.00 0.09 0.16 0.01 0.09
      平均值 0.69 0.10 0.01 0.06 0.03 0.17 0.00 0.12 0.20 0.03 0.18
      变异系数(%) 18.65 34.19 35.68 18.92 21.27 17.33 / 38.09 23.68 59.33 42.77
      下载: 导出CSV

      表  2  罗布泊富钾卤水化学组分

      Table  2.   Chemical compositions of potassium-rich brine in Lop Nor Basin

      矿区 TDS(g/L) Ca2+(g/L) Mg2+(g/L) Na+(g/L) Cl(g/L) SO4(g/L) K+(g/L) HCO3(g/L) Br(mg/L) B3+(mg/L) Li+(mg/L)
      新庆矿区 最大值 356 0.8 20.1 101.7 186.1 5.9 8.8 0.2 35.2 724.5 18.1
      最小值 256 0.0 6.3 48.4 130.5 0.3 6.7 0.1 2.1 293.9 3.4
      平均值 332 0.2 11.2 80.9 167.9 2.3 7.2 0.2 15.1 478.5 11.2
      变异系数(%) 31 83 31 15 8 75 13 31 48 24 29
      罗北凹地 最大值 385 0.4 29.3 99.2 194.7 7.4 9.8 0.3 29.3 715 25.3
      最小值 278 0.0 6.3 41.6 104.9 0.2 5.5 0.1 1.9 293.9 8.4
      平均值 367 0.2 13.6 81.3 176.3 2.5 8.0 0.2 12.1 504.2 16.8
      变异系数(%) 26 77 36 16 8 77 12 0 61 20 23
      腾龙矿区 最大值 334 0.6 23.4 93.2 191.8 9.5 9.3 0.3 48.8 755.6 17.6
      最小值 247 0.0 7.8 24.4 102.8 0.2 6.1 0.0 2.5 277.3 8.9
      平均值 325 0.2 14.8 71.6 164.1 3.0 7.7 0.1 15.5 507.5 14.0
      变异系数(%) 24 93 31 23 11 83 12 38 65 25 15
      下载: 导出CSV

      表  3  罗布泊Ca-Cl型泉点卤水化学组分

      Table  3.   Chemical compositions of Ca-Cl brine in Lop Nor Basin

      样品编号 Na(g/L) K(g/L) Ca(g/L) Mg(g/L) HCO3(mg/L) Cl(g/L) SO4(g/L) Li(mg/L) Sr(mg/L)
      SPW 1.52 1.11 4.55 125 263 354 1.35 141 71.3
      下载: 导出CSV

      表  4  罗布泊Ca-Cl型泉点固相化学组分

      Table  4.   Chemical compositions of solid phase from Ca-Cl brine in Lop Nor Basin

      样品编号 Na(%) K(%) Ca(%) Mg(%) HCO3(%) Cl(%) SO4(%) Li(ug/g) Sr(ug/g)
      SPG1 0.37 0.09 0.24 12.40 0.16 35.3 < 0.15 33.9 19.8
      SPG2 7.84 10.00 0.53 6.31 0.15 40.1 1.0 11.7 138.0
      下载: 导出CSV
    • [1] Chen, Y.Z., Wang, M.L., Yang, Z.C., et al., 2001. The Making of Potash-Bearing Salts Mixtures through the Processing of Magnesium Sulfate Sub-Type Brine in Lop Nur Saline Lake, Xinjiang. Acta Geoscientia Sinica, 22(5): 465-470 (in Chinese with English abstract).
      [2] Deng, Z.Q., 1987. The Characteristics of Gravitational and Magnetical Field of Luobupo Region in Xinjiang and Its Architectonic Significance. Xinjiang Geology, 5(1): 85-91 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJDI198701009.htm
      [3] Gu, X. L., Zhao, Z.H., Li, Q. H., et al., 2003. Analysis of the Developing Prospect of the Unconfined Brine Kalium Mine in the North Hollow of the Lop Nur Region. Hydrogeology & Engineering Geology, 30(2): 32-36, 5 (in Chinese with English abstract).
      [4] Guo, Z.J., Zhang, Z.C., 1995. The Geological Interpretation of the Forming and Evolution of Lop Nur, NW China. Geological Journal of Universities, 1(2): 82-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX502.009.htm
      [5] Hardie, L. A., 1990. The Roles of Rifting and Hydrothermal CaCl2 Brines in the Origin of Potash Evaporites: An Hypothesis. American Journal of Science, 290(1): 43-106. https://doi.org/10.2475/ajs.290.1.43
      [6] Hu, D.S., Zhang, H.J., 2004. Lake-Evaporated Salt Resources and the Environmental Evolution in the Lop Nur Region. Journal of Glaciology and Geocryology, 26(2): 212-218 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-BCDT200402017.htm
      [7] Lin, J.X., Zhang, J., Ju, Y.J., et al., 2005. The Lithostratigraphy, Magnetostratigraphy, and Climatostratigraphy in the Lop Nur Region, Xinjiang. Journal of Stratigraphy, 29(4): 317-322 (in Chinese with English abstract).
      [8] Liu, C.L., Jiao, P.C., Wang, M.L., et al., 2003. Ascending Brine Fluids in Quaternary Salty Lake of Lop Nur in Xinjiang and Their Significance in Potash Formation. Mineral Deposits, 22(4): 386-392 (in Chinese with English abstract).
      [9] Liu, C.L., Wang, M.L., Jiao, P.C., et al., 2002. Formation of Pores and Brine Reserving Mechanism of the Aquifers in Quaternary Potash Deposits in Lop Nur Lake, Xinjiang, China. Geological Review, 48(4): 437-443, 450 (in Chinese with English abstract).
      [10] Liu, D.M., Li, D.W., Yang, W.R., et al., 2005. Evidence from Fission Track Ages for the Tectonic Uplift of the Himalayan Orogen during Late Cenozoic. Earth Science, 30(2): 147-152 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200502003.htm
      [11] Lowenstein, T. K., Risacher, F., 2009. Closed Basin Brine Evolution and the Influence of Ca-Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquatic Geochemistry, 15: 71-94. https://doi.org/10.1007/s10498-008-9046-z
      [12] Luo, C., Peng, Z.C., Liu, W.G., et al., 2008. Evidence from the Lacustrine Sediments of Lop-Nur Lake, Northwest China for the Younger Dryas Event. Earth Science, 33(2): 190-196 (in Chinese with English abstract).
      [13] Ma, L.C., Liu, C.L., Jiao, P.C., et al., 2010. A Preliminary Discussion on Geological Conditions and Indicator Pattern of Potash Deposits in Typical Playas of Xinjiang. Mineral Deposits, 29(4): 593-601 (in Chinese with English abstract).
      [14] Ma, L. C., Lowenstein, T. K., Li, B. G., et al., 2010. Hydrochemical Characteristics and Brine Evolution Paths of Lop Nor Basin, Xinjiang Province, Western China. Applied Geochemistry, 25(11): 1770-1782. https://doi.org/10.1016/j.apgeochem.2010.09.005
      [15] Ma, L.C., Wang, K., Zhang, Y., et al., 2021. Dynamic Variations in Salinity and Potassium Grade of a Potassium-Rich Brine Deposit in Lop Nor Basin, China. Scientific Reports, 11(1): 3351. https://doi.org/10.1038/s41598-021-82958-y
      [16] Risacher, F., Clement, A., 2001. A Computer Program for the Simulation of Evaporation of Natural Waters to High Concentration. Computers & Geosciences, 27(2): 191-201. https://doi.org/10.1016/s0098-3004(00)00100-x
      [17] Sun, J.M., Liu, W.G., Liu, Z.H., et al., 2017. Effects of the Uplift of the Tibetan Plateau and Retreat of Neotethys Ocean on the Stepwise Aridification of Mid-Latitude Asian Interior. Bulletin of Chinese Academy of Sciences, 32(9): 951-958 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYX201709010.htm
      [18] Sun, M. G., Ma, L. C., 2018. Potassium-Rich Brine Deposit in Lop Nor Basin, Xinjiang, China. Scientific Reports, 8: 7676. https://doi.org/10.1038/s41598-018-25993-6
      [19] Sun, X.H., Liu, C.L., Jiao, P.C., et al., 2016. A Further Discussion on Genesis of Potassium-Rich Brine in Lop Nur: Evaporating Experiments for Brine in Gypsum-Bearing Clastic Strata. Mineral Deposits, 35(6): 1190-1204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201606005.htm
      [20] Wang, K., Sun, M.G., Ma, L.C., et al., 2020. Spatial Variability in the Geochemical Characteristics of the K-Rich Brines in the Lop Nor. Acta Geologica Sinica, 94(4): 1183-1191 (in Chinese with English abstract).
      [21] Wang, M.L., Liu, C.L., Jiao, P.C., et al., 2001. Potash Resources in Lop Nor Salt Lake. Geological Publishing House, Beijing (in Chinese).
      [22] Wang, M. L., Liu, C. L., Jiao, P. C., et al., 2005. Minerogenic Theory of the Superlarge Lop Nur Potash Deposit, Xinjiang, China. Acta Geologica Sinica (English Edition), 79(1): 53-65. https://doi.org/10.1111/j.1755-6724.2005.tb00867.x
      [23] Xia, X.C., 2017. Lop Nur in China. Science Press, Beijing (in Chinese).
      [24] Xu, Z.Q., Li, S.T., Zhang, J.X., et al., 2011. Paleo-Asian and Tethyan Tectonic Systems with Docking the Tarim Block. Acta Petrologica Sinica, 27(1): 1-22 (in Chinese with English abstract). https://www.researchgate.net/publication/298499409_Paleo-Asian_and_Tethyan_tectonic_systems_with_docking_the_Tarim_block
      [25] Zhao, Z.H., Hou, G.C., Qi, W.Q., et al., 2001. Discussion of the Lower Limit of Quaternary in Lop Nur, Xinjiang. Arid Land Geography, 24(2): 130-135 (in Chinese with English abstract).
      [26] Zheng, M.P., Qi, W., Wu, Y.S., et al., 1991. A Preliminary Study on the Sedimentary Environment and Prospect of Potassium Exploration in Lop Nur Salt Lake since the Late Pleistocene. Chinese Science Bulletin, 36(23): 1810-1813(in Chinese). doi: 10.1360/csb1991-36-23-1810
      [27] 陈永志, 王弭力, 杨志琛, 等, 2001. 罗布泊硫酸镁亚型卤水制取钾混盐工艺试验研究. 地球学报, 22(5): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200105015.htm
      [28] 邓振球, 1987. 塔里木盆地东部(罗布泊)区域重磁场特征及对区域地质构造的意义. 新疆地质, 5(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198701009.htm
      [29] 顾新鲁, 赵振宏, 李清海, 等, 2003. 罗布泊地区罗北凹地潜卤水钾矿床成因与开发前景. 水文地质工程地质, 30(2): 32-36, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200302008.htm
      [30] 郭召杰, 张志诚, 1995. 罗布泊形成及演化的地质新说. 高校地质学报, 1(2): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.009.htm
      [31] 胡东生, 张华京, 2004. 罗布泊荒漠地区湖泊蒸发盐资源的形成及环境演化. 冰川冻土, 26(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200402017.htm
      [32] 林景星, 张静, 剧远景, 等, 2005. 罗布泊地区第四纪岩石地层、磁性地层和气候地层. 地层学杂志, 29(4): 317-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200504001.htm
      [33] 刘成林, 焦鹏程, 王弭力, 等, 2003. 新疆罗布泊第四纪盐湖上升卤水流体及其成钾意义. 矿床地质, 22(4): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200304008.htm
      [34] 刘成林, 王弭力, 焦鹏程, 等, 2002. 罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究. 地质论评, 48(4): 437-443, 450. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200204015.htm
      [35] 刘德民, 李德威, 杨巍然, 等, 2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据. 地球科学, 30(2): 147-152. http://www.earth-science.net/article/id/1431
      [36] 罗超, 彭子成, 刘卫国, 等, 2008. 新仙女木事件在罗布泊湖相沉积物中的记录. 地球科学, 33(2): 190-196. http://www.earth-science.net/article/id/1750
      [37] 马黎春, 刘成林, 焦鹏程, 等, 2010. 新疆典型干盐湖成钾条件对比与指标模型初探. 矿床地质, 29(4): 593-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201004003.htm
      [38] 孙继敏, 刘卫国, 柳中晖, 等, 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响. 中国科学院院刊, 32(9): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709010.htm
      [39] 孙小虹, 刘成林, 焦鹏程, 等, 2016. 罗布泊盐湖富钾卤水成因再探讨——碎屑层卤水蒸发实验分析. 矿床地质, 35(6): 1190-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201606005.htm
      [40] 王凯, 孙明光, 马黎春, 等, 2020. 罗布泊富钾卤水矿床地球化学空间分布特征. 地质学报, 94(4): 1183-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202004011.htm
      [41] 王弭力, 刘成林, 焦鹏程, 等, 2001. 罗布泊盐湖钾盐资源. 北京: 地质出版社.
      [42] 夏训诚, 2017. 中国罗布泊. 北京: 科学出版社.
      [43] 许志琴, 李思田, 张建新, 等, 2011. 塔里木地块与古亚洲/特提斯构造体系的对接. 岩石学报, 27(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101002.htm
      [44] 赵振宏, 侯光才, 齐万秋, 等, 2001. 浅谈新疆罗布泊地区第四纪下限. 干旱区地理, 24(2): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200102006.htm
      [45] 郑绵平, 齐文, 吴玉书, 等, 1991. 晚更新世以来罗布泊盐湖的沉积环境和找钾前景初析. 科学通报, 36(23): 1810-1813. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199123015.htm
    • 加载中
    图(6) / 表(4)
    计量
    • 文章访问数:  537
    • HTML全文浏览量:  85
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-15
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回