Petrogenesis and Tectonic Implications of Late Paleozoic Granite-Diorite from the Southern Beishan Orogen
-
摘要: 北山造山带位于中亚造山带南部,是中亚造山带的重要组成部分.为了进一步深入认识北山造山带晚古生代的构造‒岩浆演化过程,选择北山造山带南部石板墩‒白墩子地区的晚古生代花岗岩‒闪长岩开展了岩石学、锆石U-Pb定年、Hf同位素、微量元素及岩石地球化学研究.LA-ICP-MS锆石U-Pb年代学研究限定了石板墩花岗岩形成于~304~ 302 Ma,石板墩闪长岩形成于~291 Ma,白墩子石英闪长岩形成于~270 Ma.它们的锆石Hf同位素均呈现较亏损的特征(εHf(t)=-2.0~+15.7),且由老到新,亏损程度依次增加.岩石学和地球化学特征暗示了亏损地幔来源岩浆在北山造山带晚古生代岩浆活动中的主导作用,亏损地幔来源岩浆与古老地壳部分熔融形成的岩浆以不同比例混合,形成了复杂的岩石组合.因此,晚石炭世‒早二叠世花岗岩‒闪长岩可能形成于后撤式增生造山作用导致的弧后伸展构造环境.Abstract: The Beishan orogen occupies the southernmost part of the Central Asian Orogenic Belt (CAOB) and it is an important part of the CAOB. In this paper, we presents petrographical, zircon U-Pb, Hf isotopic, and trace element and whole rock geochemical studies on a late Paleozoic granite-diorite association from the Shibandun-Baidunzi area of the southern Beishan, in order to better constrain the late Paleozoic tectono-magmatic evolution of the Beishan orogen. LA-ICP-MS zircon U-Pb dating yields crystallization ages of ~304-302 Ma for the Shibandun granite, ~291 Ma for the Shibandun diorite, and ~270 Ma for the Baidunzi diorite. These rocks are characterized by variable radiogenic zircon Hf isotopic compositions with εHf(t) values of -2.0-+15.7. Furthermore, they show a more depleted trend with decreasing ages. The petrographical and geochemical features indicate that the Late Paleozoic magmatisms in the southern Beishan was dominated by depleted mantle-derived magmas, and the complex Late Paleozoic rock assemblages of southern Beishan were likely produced by mixing of different proportions of juvenile mantle-derived magma with the ancient crust-derived magma. We further suggest that the Late Carboniferous-Early Permian granite-diorite were formed in a back-arc extension setting related to the retreating accretionary orogeny.
-
图 1 北山造山带地质简图(a)和中亚造山带构造简图(b)(修改自Xiao et al., 2010;He et al., 2018)
Fig. 1. Simplified geological map of the Beishan orogen (a) and sketched tectonic map of the CAOB (b) (modified after Xiao et al., 2010; He et al., 2018)
图 11 花岗岩分类图解
a. A/NK-A/CNK图解,引自Maniar and Piccoli(1989);b. SiO2‒FeOT/(FeOT+MgO),引自Frost et al.(2001);c. SiO2‒(Na2O+ K2O‒CaO)图解,引自Frost et al.(2001). 北山晚古生代花岗岩‒闪长岩数据引自赵泽辉等(2007)、张文等(2010,2011)、Zhang et al.(2012)、冯继承等(2012)、Li et al.(2013)、李敏等(2018)、Zheng et al.(2020)
Fig. 11. Geochemical classification diagrams for granitic rocks
图 12 稀土配分曲线(a)和微量元素蛛网图(b)
球粒陨石标准值引自Taylor and McLennan(1985);原始地幔标准值引自Sun and McDonough(1989). 北山晚古生代花岗岩‒闪长岩数据引自赵泽辉等(2007)、张文等(2010,2011)、Zhang et al.(2012)、冯继承等(2012)、Li et al.(2013)、李敏等(2018)、Zheng et al.(2020)
Fig. 12. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spidergram (b)
图 13 北山造山带晚古生代构造‒岩浆演化模式(据He et al., 2018)
Fig. 13. Schematic model illustrating the Late Paleozoic tectonomagmatic evolution of the southern Beishan orogenic belt (after He et al., 2018)
表 1 年代学研究样品的GPS位置及年龄和Hf同位素分析结果汇总
Table 1. GPS position, mineral assemblage, zircon U-Pb age and Hf isotope of analyzed samples
岩石 样品 矿物组合 年龄 εHf(t) GPS坐标 石板墩花岗岩 X12-10-2 Pl+Q+Kfs+Bt 303±1 Ma 0.6~6.1 N40°56.786′;E95°50.460′ X12-10-3 Pl+Kfs+Q+Bt 304±2 Ma 1.3~9.4 N40°56.786′;E95°50.460′ X12-11-3 Pl+Kfs+Q+Bt 302±2 Ma -2.0~10.2 N40°56.749′;E95°50.354′ 石板墩闪长岩 X12-12-3 Pl+Q+Amp 291±1 Ma 5.0~11.1 N40°57.196′;E95°53.955′ 白墩子石英闪长岩 X12-7-1 Pl+Q+Bt+Amp 270±1 Ma 9.6~15.7 N40°46.859′;E95°37.592′ -
[1] Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525-541. https://doi.org/10.1093/petrology/35.2.525 [2] Annen, C., Blundy, J. D., Sparks, R. S. J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505-539. https://doi.org/10.1093/petrology/egi084 [3] Ao, S. J., Xiao, W. J., Windley, B. F., et al., 2016. Paleozoic Accretionary Orogenesis in the Eastern Beishan Orogen: Constraints from Zircon U-Pb and 40Ar/39Ar Geochronology. Gondwana Research, 30: 224-235. https://doi.org/10.1016/j.gr.2015.03.004 [4] Bachmann, O., Huber, C., 2016. Silicic Magma Reservoirs in the Earth's Crust. American Mineralogist, 101(11): 2377-2404. https://doi.org/10.2138/am-2016-5675 [5] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [6] Cai, Z. H., Xu, Z. Q., He, B. Z., et al., 2012. Age and Tectonic Evolution of Ductile Shear Zones in the Eastern Tianshan Beishan Orogenic Belt. Acta Petrologica Sinica, 28(6): 1875-1895 (in Chinese with English abstract). [7] Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1 [8] Chen, B. L., Wu, G. G., Yang, N., et al., 2007. baidunzi-Xiaoxugong Ductile Shear Zone and Its ore-Controlling Effect in the Southern Beishan Area, Gansu. Journal of Geomechanics, 13(2): 99-109 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2007.02.003 [9] Feng, J. C., Zhang, W., Wu, T. R., et al., 2012. Geochronology and Geochemistry of Granite Pluton in the North of Qiaowan, Beishan Mountain, Gansu Province, China, and Its Geological Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(1): 61-70 (in Chinese with English abstract). [10] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [11] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9 [12] Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5-6): 1-26. https://doi.org/10.1007/s00410-015-1199-3 [13] He, Z. Y., Klemd, R., Yan, L. L., et al., 2018. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14. https://doi.org/10.1016/j.earscirev.2018.05.012 [14] He, Z. Y., Sun, L. X., Mao, L. J., et al., 2015. Zircon U-Pb and Hf Isotopic Study of Gneiss and Granodiorite from the Southern Beishan Orogenic Collage: Mesoproterozoic Magmatism and Crustal Growth. Chinese Science Bulletin, 60(4): 389-399 (in Chinese with English abstract). doi: 10.1360/N972014-00898 [15] He, Z. Y., Yan, L. L., 2021. Zircon Trace Element Geochemistry Constrains on the Silicic Volcanic System. Acta Petrologica et Mineralogica, 40(5): 939-951 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2021.05.006 [16] Huang, B. T., Wang, G. Q., Bu, T., et al., 2021. Petrogenesis and Tectonic Significance of the Silurian Granites in Yemadaquan Area, Beishan, Gansu Province. Earth Science, 46(11): 3993-4005 (in Chinese with English abstract). [17] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. https://doi.org/10.1017/s0263593300007367 [18] Jiang, H. Y., He, Z. Y., Zong, K. Q., et al., 2013. Zircon U-Pb Dating and Hf Isotopic Studies on the Beishan Complex in the Southern Beishan Orogenic Belt. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract). [19] Li, J. C., Zhao, A. S., Cui, H. W., 1996. The Characteristics of Geological Tectonic in the North Belt of Beishan. Journal of Precious Metallic Geology, 5(1): 59-68 (in Chinese with English abstract). [20] Li, M., Ren, B. F., Teng, X. J., 2018. Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt. Earth Science, 43(12): 4586-4605 (in Chinese with English abstract). [21] Li, M., Xin, H. T., Tian, J., et al., 2020. Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen. Earth Science, 45(7): 2393-2412 (in Chinese with English abstract). [22] Li, S., Wilde, S. A., Wang, T., 2013. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 179: 99-119. https://doi.org/10.1016/j.lithos.2013.08.002 [23] Li, W. K., Cheng, Y. Q., Yang, Z. M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542-2555. https://doi.org/10.1029/2019GC008273 [24] Liu, Q., Zhao, G. C., Sun, M., et al., 2015. Ages and Tectonic Implications of Neoproterozoic Ortho- and Paragneisses in the Beishan Orogenic Belt, China. Precambrian Research, 266: 551-578. https://doi.org/10.1016/j.precamres.2015.05.022 [25] Liu, X. Y., Wang, Q., 1995. Tectonics of Orogenic Belts in Beishan MTS., Western China and Their Evolution. Dixue Yanjiu, (28): 7-48 (in Chinese with English abstract). [26] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [27] Ludwig, K. R., 2001. Users Manual for Isoplot/Ex Rev. 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [28] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 [29] Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012. The Liuyuan Complex in the Beishan, NW China: a Carboniferous-Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483-506. https://doi.org/10.1017/s0016756811000811 [30] Mei, H. L., Li, H. M., Lu, S. N., et al., 1999. The Age and Origin of the Liuyuan Granitoid, Northwestern Gansu. Acta Petrologica et Mineralogica, 18(1): 14-17 (in Chinese with English abstract). [31] Niu, W. C., Ren, B. F., Ren, Y. W., et al., 2019. Neoproterozoic Magmatic Records in the North Beishan Orogenic Belt: Evidence of the Gneissic Granites from the Hazhu Area, Inner Mongolia. Earth Science, 44(1): 284-297 (in Chinese with English abstract). [32] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [33] Shau, Y. H., Yang, H. Y., Peacor, D. R., 1991. On Oriented Titanite and Rutile Inclusions in Sagenitic Biotite. American Mineralogist, 76: 1205-1217. https://doi.org/10.1346/ccmn.1991.0390413 [34] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/S0012-821X(04)00012-3 [35] Song, D. F., Xiao, W. J., Han, C. M., et al., 2013. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368-388. https://doi.org/10.1016/j.precamres.2012.06.011 [36] Song, D. F., Xiao, W. J., Windley, B. F., et al., 2015. A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224-225: 195-213. https://doi.org/10.1016/j.lithos.2015.03.005 [37] Song, D. F., Xiao, W. J., Windley, B. F., et al., 2016. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147. https://doi.org/10.1016/j.tecto.2016.09.012 [38] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [39] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. The Journal of Geology, 94(4): 57-72. https://doi.org/10.1086/629067 [40] Tian, Z. H., Xiao, W. J., 2020. An Andean-Type Arc Transferred into a Japanese-Type Arc at Final Closure Stage of the Palaeo-Asian Ocean in the Southernmost of Altaïds. Geological Journal, 55(3): 2023-2043. https://doi.org/10.1002/gj.3700 [41] Tian, Z. H., Xiao, W. J., Windley, B. F., et al., 2017. Carboniferous Rifted Arcs Leading to an Archipelago of Multiple Arcs in the Beishan-Tianshan Orogenic Collages (NW China). International Journal of Earth Sciences, 106(7): 2319-2342. https://doi.org/10.1007/s00531-016-1428-7 [42] Wang, Y., Luo, Z. H., Santosh, M., et al., 2017. The Liuyuan Volcanic Belt in NW China Revisited: Evidence for Permian Rifting Associated with the Assembly of Continental Blocks in the Central Asian Orogenic Belt. Geological Magazine, 154(2): 265-285. https://doi.org/10.1017/s0016756815001077 [43] Wei, X. P., Gong, Q. S., Liang, M. H., et al., 2000. Metamorphic-Deformational and Evolutionary Characteristics of Pre-Changcheng Dunhuang Terrain Occuring on Mazongshan Upwelling Area. Acta Geologica Gansu, 9(1): 36-43 (in Chinese with English abstract). [44] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765. (in Chinese with English abstract). [45] Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 [46] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12 [47] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 [48] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [49] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). [50] Xu, W., Xu, X. Y., Niu, Y. Z., et al., 2019. Geochronology and Petrogenesis of the Permian Marine Basalt in the Southern Beishan Region and Their Tectonic Implications. Acta Geologica Sinica, 93(8): 1928-1953 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.08.008 [51] Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2015. Geochemical and Geochronological Evidence for a Former Early Neoproterozoic Microcontinent in the South Beishan Orogenic Belt, Southernmost Central Asian Orogenic Belt. Precambrian Research, 266: 409-424. https://doi.org/10.1016/j.precamres.2015.05.034 [52] Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2018. Geochemical Evidence for Paleozoic Crustal Growth and Tectonic Conversion in the Northern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Lithos, 302-303: 189-202. https://doi.org/10.1016/j.lithos.2017.12.026 [53] Yui, T. F., Shen, P. Y., Liu, H. H., 2001. Titanite Inclusions in Altered Biotite from Granitoids of Taiwan: Microstructures and Origins. Journal of Asian Earth Sciences, 19(1-2): 165-175. https://doi.org/10.1016/S1367-9120(00)00025-0 [54] Zhang, W., Feng, J. C., Zheng, R. G., et al., 2011. LA-ICP MS Zircon U-Pb Ages of the Granites from the South of Yin'aoxia and Their Tectonic Significances. Acta Petrologica Sinica, 27(6): 1649-1661 (in Chinese with English abstract). [55] Zhang, W., Wu, T. R., He, Y. K., et al., 2010. LA-ICP-MS Zircon U-Pb Ages of Xijianquanzi Alkali-Rich Potassium-High Granites in Beishan, Gansu Province, and Their Tectonic Significance. Acta Petrologica et Mineralogica, 29(6): 719-731 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2010.06.009 [56] Zhang, W., Wu, T. R., Zheng, R. G., et al., 2012. Post-Collisional Southeastern Beishan Granites: Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 58: 51-63. https://doi.org/10.1016/j.jseaes.2012.07.004 [57] Zhang, Y. Y., Dostal, J., Zhao, Z. H., et al., 2011. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China: Implications for Crust-Mantle Interaction. Gondwana Research, 20(4): 816-830. https://doi.org/10.1016/j.gr.2011.03.008 [58] Zhao, Z. H., Guo, Z. J., Wang, Y., 2007. Geochronology, Geochemical Characteristics and Tectonic Implications of the Granitoids from Liuyuan Area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica, 23(8): 1847-1860 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.007 [59] Zheng, R. G., Li, J. Y., Zhang, J., et al., 2020. Permian Oceanic Slab Subduction in the Southmost of Central Asian Orogenic Belt: Evidence from Adakite and High-Mg Diorite in the Southern Beishan. Lithos, 358-359: 105406. https://doi.org/10.1016/j.lithos.2020.105406 [60] Zheng, R. G., Li, J. Y., Zhang, J., et al., 2021. A Prolonged Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from Anatomy and Tectonic Affinity for the Beishan Complex. Gondwana Research, 95: 88-112. https://doi.org/10.1016/j.gr.2021.02.022 [61] Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1991. Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3-4): 385-392. https://doi.org/10.1016/0040-1951(91)90466-6 [62] 蔡志慧, 许志琴, 何碧竹, 等, 2012. 东天山‒北山造山带中大型韧性剪切带属性及形成演化时限与过程. 岩石学报, 28(6): 1875-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206014.htm [63] 陈柏林, 吴淦国, 杨农, 等, 2007. 甘肃北山白墩子‒小西弓韧性剪切带及其控矿作用. 地质力学学报, 13(2): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200702003.htm [64] 冯继承, 张文, 吴泰然, 等, 2012. 甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义. 北京大学学报(自然科学版), 48(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201201011.htm [65] 贺振宇, 孙立新, 毛玲娟, 等, 2015. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长. 科学通报, 60(4): 389-399. [66] 贺振宇, 颜丽丽, 2021. 锆石微量元素地球化学对硅质火山岩浆系统的制约. 岩石矿物学杂志, 40(5): 939-951. doi: 10.3969/j.issn.1000-6524.2021.05.006 [67] 黄博涛, 王国强, 卜涛, 等, 2021. 甘肃北山野马大泉志留纪花岗岩的成因和构造意义. 地球科学, 46(11): 3993-4005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111014.htm [68] 姜洪颖, 贺振宇, 宗克清, 等, 2013. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究. 岩石学报, 29(11): 3949-3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311025.htm [69] 李景春, 赵安生, 崔惠文, 1996. 北山北带地质构造特征. 贵金属地质, 5(1): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD199601006.htm [70] 李敏, 任邦方, 滕学建, 等, 2018. 内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义. 地球科学, 43(12): 4586-4605. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201812024.htm [71] 李敏, 辛后田, 田健, 等, 2020. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义. 地球科学, 45(7): 2393-2412. [72] 刘雪亚, 王荃, 1995. 中国西部北山造山带的大地构造及其演化. 地学研究, (28): 7-48. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199500001007.htm [73] 梅华林, 李惠民, 陆松年, 等, 1999. 甘肃柳园地区花岗质岩石时代及成因. 岩石矿物学杂志, 18(1): 14-17. [74] 牛文超, 任邦方, 任云伟, 等, 2019. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据. 地球科学, 44(1): 284-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901022.htm [75] 魏学平, 龚全胜, 梁明宏, 等, 2000. 马鬃山隆起区前长城系敦煌岩群变质变形和演化特征. 甘肃地质学报, 9(1): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200001004.htm [76] 吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学(D辑), 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202201006.htm [77] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905019.htm [78] 许伟, 徐学义, 牛亚卓, 等, 2019. 北山南部二叠纪海相玄武岩地球化学特征及其构造意义. 地质学报, 93(8): 1928-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201908008.htm [79] 张文, 冯继承, 郑荣国, 等, 2011. 甘肃北山音凹峡南花岗岩体的锆石LA-ICP MS定年及其构造意义. 岩石学报, 27(6): 1649-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106007.htm [80] 张文, 吴泰然, 贺元凯, 等, 2010. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义. 岩石矿物学杂志, 29(6): 719-731. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006009.htm [81] 赵泽辉, 郭召杰, 王毅, 2007. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义. 岩石学报, 23(8): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708006.htm