High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin
-
摘要: 莺歌海盆地LD10区中深层黄流组‒梅山组重力流水道、海底扇储层已被证实具有重大的天然气资源潜力.但是前期测试结果显示气藏中混有高含量CO2气体.因此,精细厘定天然气充注期次,明确CH4、CO2等时空分布规律对规避高CO2风险至关重要.本研究在对不同产状流体包裹体岩相学特征精细观察的基础上,综合激光拉曼光谱分析和包裹体显微测温技术识别出3幕不同成分天然气充注,时间分别为:4.0~2.9 Ma、2.0~1.2 Ma和0.8~0.3 Ma.其中,第一幕充注以烃类气为主,伴有少量有机CO2和N2;第二幕和第三幕充注以大量无机CO2、烃类气为主,伴有少量N2.结合天然气及烃源岩地化特征、天然气组分分析及输导体系识别,总结了LD10区的成藏模式,以期为研究区下一步天然气勘探开发和规避高含量CO2风险提供依据.Abstract: The gravity flow channel and subsea fan reservoirs of the middle and deep Huangliu Formation-Meishan Formation in Ledong 10 area of Yinggehai basin have been proved to have great natural gas resource potential. However, the preliminary test results show that the gas reservoir was mixed with high content of CO2 gas. Therefore, fine determination of natural gas charging periods and clear spatial and temporal distribution rules such as CH4 and CO2 are crucial to avoid high CO2 risks. In this study, based on the detailed observation of the petrographic characteristics of fluid inclusions with different occurrences, combined with laser Raman spectroscopy analysis and inclusions microscopic temperature measurement technology, three stages of natural gas charging with different components were identified at 4.0-2.9 Ma, 2.0-1.2 Ma and 0.8-0.3 Ma, respectively. Among them, the first stage of charging is mainly hydrocarbon gas, accompanied by a small amount of organic CO2 and N2. The second and third acts of charging were dominated by a large amount of inorganic CO2 and hydrocarbon gas, accompanied by a small amount of N2. Combined with the geochemical characteristics of natural gas and source rock, natural gas component analysis and transportation system identification, the accumulation model of Ledong 10 area is summarized, in order to provide a basis for the next gas exploration and development in the study area and to avoid the risk of high CO2 content.
-
图 1 莺歌海盆地构造单元划分及研究区位置(据Cao et al., 2015)
Fig. 1. Tectonic units and location of the study area in Yinggehai basin(modified from Cao et al., 2015)
图 3 LD10区流体包裹体类型
a.LD10-1-A井,4 166.38 m,石英次生加大边中的椭圆状富气相盐水包裹体和纯气相包裹体;b.LD10-1-A井,4 165.52 m,石英内成岩裂纹中的长条状富气相盐水包裹体和近圆状纯气相包裹体;c.LD10-1-B井,4 091 m,石英内成岩裂纹中的油包裹体的蓝色荧光显示;d.LD10-1-B井,3 868 m,穿石英裂纹中的椭圆状纯气相包裹体和气液两相盐水包裹体;e.LD10-1-B井,4 091 m,石英内成岩裂纹中的发蓝色荧光的不规则气液两相油包裹体;f.LD10-1-B井,方解石胶结物中的不规则状纯气相包裹体
Fig. 3. Fluid inclusion types in LD10 area
图 5 第二幕热流体充注时期捕获的包裹体拉曼光谱图
a.LD10-1-A井,4 165.52 m,石英内成岩裂纹中的含CO2气相盐水包裹体(161.7 ℃);b.LD10-1-A井,4 169.16 m,石英内成岩裂纹中的含甲烷气相盐水包裹体(160.5 ℃);c.LD10-2-A井,4 110.8 m,石英内成岩裂纹中的含CO2气相包裹体(169.6 ℃);d.LD10-1-A井,4 171.21 m,石英内成岩裂纹中的含甲烷气相包裹体(158 ℃)
Fig. 5. Raman spectra of inclusions captured during the second act of thermal fluid charging
表 1 LD10区天然气稀有气体同位素分析结果
Table 1. Rare gas isotope analysis results in LD10 area
井号 深度(m) 4He(v/v) 3He/4He 40Ar(v/v) 40Ar/36Ar 38Ar/36Ar R/Ra LD10-1-C 4 022.7~4 062.5 6.92E-06 5.10E-08 7.78E-05 3.08E+02 1.88E-01 0.04 4 022.7~4 062.5 8.63E-06 4.91E-08 5.52E-05 3.16E+02 1.86E-01 0.04 4 022.7~4 062.5 5.36E-06 1.01E-07 1.45E-04 3.09E+02 1.90E-01 0.07 LD10-3-A 4 151 2.61E-03 7.78E-08 1.83E-05 5.28E+02 1.83E-01 0.06 表 2 LD10区天然气组分分布
Table 2. Distribution of natural gas components in LD10 area
构造 井号 层位 深度(m) 非烃气(%) CO2(%) 烃类气(%) LD10-1 LD10-1-6 H2Ⅳ 4 215.5 5.41 48.79 45.81 LD10-1-10 H2Ⅳ 4 022.7~4 061.5 4.35 69.86 25.78 LD10-1-12 H2Ⅴ 4 321.5~4 393.5 1.31 43.76 54.93 LD10-1-13 H2Ⅲ 4 095.0~4 115.0 2.45 15.26 82.29 H2Ⅴ 4 209 2.20 63.29 34.51 LD10-2 LD10-1-5 H2Ⅱ 4 040.4 0.00 19.23 80.77 H2Ⅲ 3 995.2 0.00 54.20 45.80 LD10-2-1 H2Ⅰ 3 856.4 0.00 0.81 99.19 3 867.4 0.00 14.88 85.12 M1Ⅱ上 3 711 0.00 18.17 81.83 4 062.1 2.20 65.23 32.50 M1Ⅱ下 4 158.3 2.07 64.34 33.59 4 113 0.00 74.15 25.85 LD10-3 LD10-3-1 M2Ⅱ 4 106 0.00 46.25 53.75 M2Ⅲ 4 151 0.00 50.89 49.11 -
[1] Cao, L., Jiang, T., Wang, Z., et al., 2015. Provenance of Upper Miocene Sediments in the Yinggehai and Qiongdongnan Basins, Northwestern South China Sea: Evidence from REE, Heavy Minerals and Zircon U-Pb Ages. Marine Geology, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007 [2] Cathles, L. M., Schoell, M., 2007. Modeling CO2 Generation, Migration, and Titration in Sedimentary Basins. Geofluids, 7(4): 441-450. doi: 10.1111/j.1468-8123.2007.00198.x [3] Chen, Y., Zhang, D. J., Zhang, J. X., et al., 2020. Sedimentary Characteristics and Controlling Factors of the Axial Gravity Channel in Huangliu Formation of the Yingdong Slope Area in Yinggehai Basin. Journal of Northeast Petroleum University, 44(2): 91-102, 11 (in Chinese with English abstract). [4] Dai, J. X., 1996. Carbon Dioxide Gas Reservoirs and Their Gas Types in Eastern China and Continental Shelf. Exploration of Nature, (4): 20-22 (in Chinese with English abstract). [5] Dai, J. X., Song, Y., Hong, F., et al., 1994. Inorganic Genetic Carbon Dioxide Gas Accumulations and Their Characteristics in East Part of China. China Offshore Oil and Gas (Geology), 6(4): 215-222 (in Chinese with English abstract). [6] Dai, J. X., Zou, C. N., Li, J., et al., 2014. Giant Coal-Derived Gas Fields and Their Gas Sources in China. Science and Technology Press, Beijing, 249-260 (in Chinese). [7] Ding, W. W., Pang, Y. M., Hu, A. P., 2005. Natural Gas Accumulation and Geochemical Characteristics in Yinggehai-Qiongdongnan Basin, South China Sea. Petroleum Exploration & Development, 32(4): 97-102 (in Chinese with English abstract). [8] Guo, X. X., Xu, X. D., Xiong, X. F., et al., 2017. Gas Accumulation Characteristics and Favorable Exploration Directions in Mid-Deep Strata of the Yinggehai Basin. Natural Gas Geoscience, 28(12): 1864-1872 (in Chinese with English abstract). [9] Hao, F., Zou, H. Y., Huang, B. J., 2002. Gas Generation Model and Reservoir Fluid Response in Yinggehai Basin. Science in China (Series D: Earth Sciences), 32(11) : 889-895 (in Chinese). [10] He, J. X., 1995. Preliminary Study on CO2 Natural Gas in Yinggehai Basin. Natural Gas Geoscience, 6(3): 1-12 (in Chinese with English abstract). [11] He, J. X., Xia, B., Liu, B. M., et al., 2004. Analysis on the Upintrusion of Thermal Fluid and the Migration and Accumulation Rules of Natural Gas and CO2 in the Mud Diapirs of the Yinggehai Basin. Petroleum Geology & Expeximent, 26(4): 349-358 (in Chinese with English abstract). [12] Huang, B. J., 2002. Genetic Types and Migration- Accumulation Dynamics of Natural Gases in the Ying-Qiong Basins, the South China Sea (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [13] Huang, B. J., Li, X. S., Yi, P., et al., 2005. Geochemical Behaviors and Reservoiring History of Natural Gas in Ledong Gas Field in Yinggehai Basin. Oil & Gas Geology, 26(4): 524-529 (in Chinese with English abstract). [14] Huang, B. J., Xiao, X. M., Hu, Z. L., 2005. Geochemistry and Episodic Accumulation of Natural Gases from the Ledong Gas Field in the Yinggehai Basin, Offshore South China Sea. Organic Geochemistry, 36(12): 1689-1702. doi: 10.1016/j.orggeochem.2005.08.011 [15] Li, X. S., Pei, J. X., Li, Y. L., 2013. Gas Play Conditions and Accumulation Patterns of the Ledong Gas Fields, Yinggehai Basin. Natural Gas Industry, 33(11): 16-21 (in Chinese with English abstract). [16] Lin, J. Y., Jiang, T., Song, L. B., et al., 2010. The Origin and Gas Vertical Distribution of the Harjin Mixed-Gas Reservoir. Acta Petrolei Sinica, 31(6): 927-932 (in Chinese with English abstract). [17] Liu, D. H., Lu, H. Z., Xiao, X. M., 2007. Oil and Gas Inclusions and Their Applications in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guangzhou, 9-19 (in Chinese). [18] Liu, N., Wu, K. Q., Liu, L., et al., 2019. Dawsonite Characteristics and Its Implications on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2695-2703 (in Chinese with English abstract). [19] Liu, W. H., Xu, Y. C., 1990. Research Status of Argon Isotope in Natural Gas. Natural Gas Geoscience, 1(2): 7-11 (in Chinese with English abstract). [20] Liu, Z. Q., Yu, Y., Xu, Y. L., et al., 2019. The Development and Application of High Performance Water Base Muds for HTHP Wells in Yingqiong Basin. Earth Science, 44(8): 2729-2735 (in Chinese with English abstract). [21] Pei, J. X., Chen, Y., Hao, D. F., et al., 2016. Identification and Controlling Factors of Submarine Fan in Miocene in Central Depression Zone in Yinggehai Basin. Journal of Northeast Petroleum University, 40(5): 46-54, 7 (in Chinese with English abstract). [22] Shui, L. l., Liang, R., Meng, X. H., et al., 2020. Characteristics of Fluid Inclusions in Quartz Fractures in Ledong Area of Yinggehai Basin and Its Constraints on Gas Accumulation. Sedimentary Geology and Tethyan Geology, 40(1): 45-52 (in Chinese with English abstract). [23] Sun, M., Wang, H., Liao, J. H., et al., 2014. Sedimentary Characteristics and Model of Gravity Flow Depositional System for the First Member of Upper Miocene Huangliu Formation in Dongfang Area, Yinggehai Basin, Northwestern South China Sea. Journal of Earth Science, 25(3): 506-518. https://doi.org/10.1007/s12583-014-0451-5 [24] Wakita, H., Sano, Y., 1983. 3He/4He Ration in CH4-Rich Gases Suggest Magmatic Origin. Nature, 305(5937): 792-794. doi: 10.1038/305792a0 [25] Wang, C. L., Zhou, W., Xie, Y. H., et al., 2015. High-Temperature Thermal Events and Diagenesis of the Reservoir of the Diapiric Structure Zone in Yinggehai Basin. Geological Science and Technology Information, 34(4): 35-42 (in Chinese with English abstract). [26] Wang, Z. F., He, J. X., Xie, X. N., 2004. Heat Flow Action and Its Control on Natural Gas Migration and Accumulation in Mud-Fluid Diapir Areas in Yinggehai Basin. Earth Science, 29(2): 203-210 (in Chinese with English abstract). [27] Wang, Z. F., Pei, J. X., Hao, D. F., et al., 2015. Development Conditions, Sedimentary Characteristics of Miocene Large Gravity Flow Reservoirs and the Favorable Gas Exploration Directions in Ying-Qiong Basin. China Offshore Oil and Gas, 27(4): 13-21 (in Chinese with English abstract). [28] Xie, Y. H., Li, X. S., Tong, C. X., et al., 2015. High Temperature and High Pressure Gas Enrichment Condition, Distribution Law and Accumulation Model in Central Diapir Zone of Yinggehai Basin. China Offshore Oil and Gas, 27(4): 1-12 (in Chinese with English abstract). [29] Xie, Y. H., Li, X. S., Xu, X. D., et al., 2016. As Accumulation and Great Exploration Breakthroughs in HTHP Formations within Yinggehai-Qiongdongnan Basins. China Petroleum Exploration, 21(4): 19-29 (in Chinese with English abstract). [30] Xie, Y. H., Liu, P., Huang, Z. L., 2012. Geological Conditions and Pooling Process of High-Temperature and Overpressure Natural Gas Reservoirs in the Yinggehai Basin. Natural Gas Industry, 32(4): 19-23, 119 (in Chinese with English abstract). [31] Xu, X. D., Zhang, Y. Z., Xiong, X. F., et al., 2017. Genesis, Accumulation and Distribution of CO2 in the Yinggehai-Qiongdongnan Basins, Northern South China Sea. Marine Geology Frontiers, 33(7): 45-54 (in Chinese with English abstract). [32] You, L., Fan, C. W., Wu, S. J., et al., 2021. Genesis of Carbonate Cement and Its Relationship with Fluid Activity in the Ledong Area, Yinggehai Basin. Acta Geologica Sinica, 95(2): 578-587 (in Chinese with English abstract). [33] Zhu, W. L., Zhang, G. C., Yang, S. K., 2007. Natural Gas Geology of the Northern Continental Margin Basin of the South China Sea. Petroleum Industry Press, Beijing (in Chinese). [34] 陈杨, 张道军, 张建新, 等, 2020. 莺歌海盆地莺东斜坡黄流组轴向重力流水道沉积特征及控制因素. 东北石油大学学报, 44(2): 91-102, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202002010.htm [35] 戴金星, 1996. 中国东部和大陆架二氧化碳气田(藏)及其气的类型. 大自然探索, (4): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.006.htm [36] 戴金星, 宋岩, 洪峰, 等, 1994. 中国东部无机成因的二氧化碳气藏及其特征. 中国海上油气地质, 6(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm [37] 戴金星, 邹才能, 李剑, 等, 2014. 中国煤成大气田及气源. 北京: 科学出版社, 249-260. [38] 丁巍伟, 庞彦明, 胡安平, 2005. 莺‒琼盆地天然气成藏条件及地球化学特征. 石油勘探与开发, 32(4): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504018.htm [39] 郭潇潇, 徐新德, 熊小峰, 等, 2017. 莺歌海盆地中深层天然气成藏特征与有利勘探领域. 天然气地球科学, 28(12): 1864-1872. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712010.htm [40] 郝芳, 邹华耀, 黄保家, 2002. 莺歌海盆地天然气生成模式及其成藏流体响应. 中国科学(D辑: 地球科学), 32(11): 889-895. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200211001.htm [41] 何家雄, 1995. 莺歌海盆地的CO2天然气的初步研究. 天然气地球科学, 6(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199503000.htm [42] 何家雄, 夏斌, 刘宝明, 等, 2004. 莺歌海盆地泥底辟热流体上侵活动与天然气及CO2运聚规律剖析. 石油实验地质, 26(4): 349-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200404008.htm [43] 黄保家, 2002. 莺琼盆地天然气成因类型及成藏动力学研究(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所). [44] 黄保家, 李绪深, 易平, 等, 2005. 莺歌海盆地乐东气田天然气地化特征和成藏史. 石油与天然气地质, 26(4): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200504024.htm [45] 李绪深, 裴健翔, 李彦丽, 2013. 莺歌海盆地乐东气田天然气成藏条件及富集模式. 天然气工业, 33(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201311003.htm [46] 林景晔, 姜涛, 宋立斌, 等, 2010. 哈尔金混合气藏成因及气体的垂向分布规律. 石油学报, 31(6): 927-932. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006009.htm [47] 刘德汉, 卢焕章, 肖贤明, 2007. 油气包裹体及其在石油勘探和开发中的应用. 广州: 广东科技出版社, 9-19. [48] 刘娜, 吴克强, 刘立, 等, 2019. 莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示. 地球科学, 44(8): 2695-2703. doi: 10.3799/dqkx.2019.106 [49] 刘文汇, 徐永昌, 1990. 天然气中氩同位素研究现状. 天然气地球科学, 1(2): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199002001.htm [50] 刘智勤, 余意, 徐一龙, 等, 2019. 莺‒琼盆地新型高温高压水基钻井液技术. 地球科学, 44(8): 2729-2735. doi: 10.3799/dqkx.2019.102 [51] 裴健翔, 陈杨, 郝德峰, 等, 2016. 莺歌海盆地中央坳陷中新世海底扇识别及其形成控制因素. 东北石油大学学报, 40(5): 46-54, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201605006.htm [52] 税蕾蕾, 梁茹, 孟祥豪, 等, 2020. 莺歌海盆地乐东地区石英裂隙内流体包裹体特征及其对天然气成藏制约. 沉积与特提斯地质, 40(1): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202001005.htm [53] 王翠丽, 周文, 谢玉洪, 等, 2015. 莺歌海盆地泥底辟带高温热事件与储层成岩作用. 地质科技情报, 34(4): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504006.htm [54] 王振峰, 何家雄, 解习农, 2004. 莺歌海盆地泥‒流体底辟带热流体活动对天然气运聚成藏的控制作用. 地球科学, 29(2): 203-210. http://www.earth-science.net/article/id/1349 [55] 王振峰, 裴健翔, 郝德峰, 等, 2015. 莺‒琼盆地中新统大型重力流储集体发育条件、沉积特征及天然气勘探有利方向. 中国海上油气, 27(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504002.htm [56] 谢玉洪, 李绪深, 童传新, 等, 2015. 莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式. 中国海上油气, 27(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504001.htm [57] 谢玉洪, 李绪深, 徐新德, 等, 2016. 莺‒琼盆地高温高压领域天然气成藏与勘探大突破. 中国石油勘探, 21(4): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201604003.htm [58] 谢玉洪, 刘平, 黄志龙, 2012. 莺歌海盆地高温超压天然气成藏地质条件及成藏过程. 天然气工业, 32(4): 19-23, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204007.htm [59] 徐新德, 张迎朝, 熊小峰, 等, 2017. 南海北部莺—琼盆地CO2成因与成藏特征及其分布规律. 海洋地质前沿, 33(7): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707005.htm [60] 尤丽, 范彩伟, 吴仕玖, 等, 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 578-587. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102020.htm [61] 朱伟林, 张功成, 杨少坤, 2007. 南海北部大陆边缘盆地天然气地质. 北京: 石油工业出版社.