• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义

    李冬雪 郑常青 梁琛岳 周枭 杨岩 宋志伟 陈龙 耿志忠 赵英利

    李冬雪, 郑常青, 梁琛岳, 周枭, 杨岩, 宋志伟, 陈龙, 耿志忠, 赵英利, 2022. 大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义. 地球科学, 47(9): 3354-3370. doi: 10.3799/dqkx.2021.189
    引用本文: 李冬雪, 郑常青, 梁琛岳, 周枭, 杨岩, 宋志伟, 陈龙, 耿志忠, 赵英利, 2022. 大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义. 地球科学, 47(9): 3354-3370. doi: 10.3799/dqkx.2021.189
    Li Dongxue, Zheng Changqing, Liang Chenyue, Zhou Xiao, Yang Yan, Song Zhiwei, Chen Long, Geng Zhizhong, Zhao Yingli, 2022. Genesis and Geological Significance of Granitic Mylonites in Southern Zhalantun, Central Xing'an Range. Earth Science, 47(9): 3354-3370. doi: 10.3799/dqkx.2021.189
    Citation: Li Dongxue, Zheng Changqing, Liang Chenyue, Zhou Xiao, Yang Yan, Song Zhiwei, Chen Long, Geng Zhizhong, Zhao Yingli, 2022. Genesis and Geological Significance of Granitic Mylonites in Southern Zhalantun, Central Xing'an Range. Earth Science, 47(9): 3354-3370. doi: 10.3799/dqkx.2021.189

    大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义

    doi: 10.3799/dqkx.2021.189
    基金项目: 

    国家基金项目 42130305

    国家基金项目 41872192

    中国地质调查局区调修测项目 1212011120654

    自然资源部公益性行业科研专项经费项目 201011083

    详细信息
      作者简介:

      李冬雪(1997-),女,硕士研究生,主要研究方向为岩石学. ORCID:0000-0003-1323-3674. E-mail:dxli19@mails.jlu.edu.cn

      通讯作者:

      郑常青, ORCID: 0000-0002-9622-6922. E-mail: zhengchangqing@jlu.edu.cn

    • 中图分类号: P581

    Genesis and Geological Significance of Granitic Mylonites in Southern Zhalantun, Central Xing'an Range

    • 摘要: 大兴安岭扎兰屯南部位于中亚造山带东段,兴安地块(XB)与松嫩地块(SB)之间,是探究兴安地块与松嫩地块构造演化过程,乃至中亚造山带东段微地块聚合过程的关键地区. 对该地区出露的花岗质糜棱岩进行地质学、地球化学、锆石U-Pb测年分析,以期查明板块俯冲过程中的岩浆作用特征,并尝试限定兴安地块与松嫩地块碰撞拼合时间.LA-ICP-MS锆石U-Pb测年结果表明,花岗质糜棱岩分为两期:Ⅰ期为早泥盆世(~398.8 Ma),Ⅱ期为晚泥盆世末‒早石炭世(351.6~365.7 Ma). 两期岩石均具有高SiO2(68.20%~77.90%),富碱(K2O+Na2O=6.32%~9.67%),贫镁(MgO=0.22%~0.97%),偏铝质,高钾钙碱性系列的特征. 稀土元素分布模式均为右倾[(La/Yb)N=4.33~10.77],Eu负异常(δEu=0.03~0.13),富集LILE,亏损HFSE,具有Ⅰ型花岗岩的特征. 两期花岗质糜棱岩可能为俯冲背景下岛弧岩浆活动形成的Ⅰ型‒分异Ⅰ型花岗岩. 结合区域构造演化和岩石地球化学研究,大兴安岭北段晚古生代早期花岗质岩浆作用与兴安地块与松嫩地块的碰撞拼合作用有关,扎兰屯地区早泥盆世‒早石炭世处于古亚洲洋向兴安地块和松嫩地块俯冲的构造背景下,两个地块的最终碰撞拼合时限可能为晚石炭世.

       

    • 图  1  中亚造山带及其周边构造单元划分简图(a), 中国东北地区构造划分(b)

      图a据周建波等(2012);图b据Liu et al.(2017)

      Fig.  1.  Simplifed tectonic framework of the CAOB and surrounding areas (a), tectonic division of the NE China (b)

      图  2  扎兰屯南部地质简图(a)成吉思汗幅(b)东巴彦乌旗幅

      Fig.  2.  Geological map of southern Zhalantun area (a) Genghis Khan (b) Dongbayanwu Banner

      图  3  扎兰屯南部糜棱岩的野外露头照片和显微照片

      a,b. Z10-15,糜棱岩化二长花岗岩;c,d. Z10-35,二长花岗质糜棱岩;e,f. Z11-56,细粒黑云二长花岗质糜棱岩;g~j. Z11-57,细粒黑云二长花岗质糜棱岩;k,l. Z12-95,眼球状长英质糜棱岩. Af. 碱性长石;Bi. 黑云母;Mt. 磁铁矿;Pet. 条纹长石;Pl. 斜长石;Q. 石英;Zo. 黝帘石

      Fig.  3.  Field outcrops and micrographs of mylonites in southern Zhalantun area

      图  4  扎兰屯南部地区糜棱岩典型锆石CL图

      图中白色圆圈代表U-Pb年代学测试激光剥蚀点位,对应白色年龄数字代表锆石206Pb/238U年龄

      Fig.  4.  Representative CL images of zircons of mylonite in southern Zhalantun area

      图  5  扎兰屯南部地区糜棱岩锆石U-Pb定年结果

      Fig.  5.  Zircon U-Pb dating of mylonite in southern Zhalantun area

      a, b. Z10-15; c. Z10-35; d. Z11-56; e. Z11-57; f. Z12-95

      图  6  扎兰屯南部花岗质糜棱岩SiO2-(K2O+Na2O)图解(a), SiO2-K2O图解(b), SiO2-TFeO/(MgO+TFeO)图解(c)及A/CNK-A/NK图解(d)

      图a底图据Middlemost(1994),图b底图据Collins et al.(1982),图c底图据Frost et al.(2001),图d底图据Frost et al.(2001);数据来源:花岗岩和花岗质糜棱岩据Ma et al.(2019),扎兰屯地区糜棱岩化花岗岩据钱程等(2018),包格德花岗岩及石英二长岩据李猛兴(2021)

      Fig.  6.  SiO2-(K2O+Na2O) (a), SiO2-K2O (b), SiO2-TFeO/(MgO+TFeO) (c) and A/CNK-A/NK (d) diagrams for granitic myolites from southern Zhalantun area

      图  7  扎兰屯南部花岗质糜棱岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      原始地幔标准化数据引自Boynton(1984),球粒陨石标准化数据引自Sun and McDonough(1989);数据来源同图 6

      Fig.  7.  Chondrite normalized distribution map of rare earth elements (a) and primitive mantle normalized web map of trace elements (b) for granitic myronites from southern Zhalantun area

      图  8  扎兰屯南部花岗质糜棱岩岩石类地球化学判别图解:Zr+Nb+Ce+Y‒(K2O+Na2O)/CaO图(a),Zr+Nb+Ce+Y‒(TFeO/MgO)图(b)和Ta/Yb‒Th/Yb图(c)

      a,b底图据Whalen et al.(1987);c底图据Pearce et al.(1984);FG. 分异的花岗岩分布区;OGT. 未见分异的I+S+M型花岗岩

      Fig.  8.  Zr+Nb+Ce+Y‒(K2O+Na2O)/CaO (a), Zr+Nb+Ce+Y‒(TFeO/MgO) (b), and Ta/Yb‒Th/Yb (c) discrimination diagrams of rock type for granitic mylonite in southern Zhalantun area

      图  9  扎兰屯南部花岗质糜棱岩构造环境判别图解

      Syn-COLG. 同碰撞花岗岩;WPG. 板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩;底图据Pearce et al.(1984);数据来源同图 6

      Fig.  9.  Tectonic discrimination diagrams for the for granitic mylonite in southern Zhalantun area

      图  10  大兴安岭北段早泥盆世‒晚石炭世构造演化模式

      EB. 额尔古纳地块;XB. 兴安地块;SB. 松嫩地块;JB. 佳木斯地块;HHS. 黑河‒贺根山缝合带;底图据Liu et al.(2017)

      Fig.  10.  Early Devonian to Late Carboniferous tectonic evolution model map of the northern Great Xing'an Range

    • [1] Boynton, W. L., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, New York.
      [2] Cann, J. R., 1970. New Model for the Structure of the Ocean Crust. Nature, 226(5249): 928-930. https://doi.org/10.1038/226928a0
      [3] Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253-266. https://doi.org/10.1007/ s12583-021-1404-4 doi: 10.1007/s12583-021-1404-4
      [4] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895
      [5] Feng, Z. Q., Jia, J., Liu, Y. J., et al., 2015. Geochronology and Geochemistry of the Carboniferous Magmatism in the Northern Great Xing'an Range, NE China: Constraints on the Timing of Amalgamation of Xing'an and Songnen Blocks. Journal of Asian Earth Sciences, 113: 411-426. https://doi.org/10.1016/j.jseaes.2014.12.017
      [6] Feng, Z. Q., Liu, Y. J., Liu, B. Q., et al., 2016. Timing and Nature of the Xinlin-Xiguitu Ocean: Constraints from Ophiolitic Gabbros in the Northern Great Xing'an Range, Eastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(2): 491-505. https://doi.org/10.1007/s00531-015-1185-z
      [7] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [8] Fu, J. Y., Wang, Y., Na, F. C., et al., 2015. Zircon U-Pb Geochronology and Geochemistry of the Hadayang Maficultramafic Rocks in Inner Mongolia: Constraints on the Late Devonian Subduction of Nenjiang-Heihe Area, Northeast China. Geology in China, 42(6): 1740-1753 (in Chinese with English abstract).
      [9] Gao, F., Zheng, C. Q., Yao, W. G., et al., 2013. Geohronology and Geochemistry Characteristics of the Granitic Mylonitic Gneiss in the Zhalantun Haduohe Area of the Northern Great Xing'an Range. Acta Geologica Sinica, 87(9): 1277-1292 (in Chinese with English abstract).
      [10] Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105. https://doi.org/10.1007/BF03322807
      [11] Ge, W. C., Sui, Z. M., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China. Acta Petrologica Sinica, 23(2): 423-440 (in Chinese with English abstract).
      [12] Han, G. Q., Liu, Y. J., Neubauer, F., et al., 2012. Characteristics, Timing, and Offsets of the Middle-Southern Segment of the Western Boundary Strike-Slip Fault of the Songliao Basin in Northeast China. Science China Earth Sciences, 55(3): 464-475. https://doi.org/10.1007/s11430-012-4362-y
      [13] Heilongjiang Bureau of Geology and Mineral Resources, 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing (in Chinese).
      [14] Hong, D. W., Huang, H. Z., Xiao, Y. J., et al., 1994. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica, 68(3): 219-230 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1994.03.001
      [15] Jahn, B. M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/s1367-9120(03)00124-x
      [16] Kerr, A. C., White, R. V., Saunders, A. D., 2000. LIP Reading: Recognizing Oceanic Plateaux in the Geological Record. Journal of Petrology, 41(7): 1041-1056. https://doi.org/10.1093/petrology/41.7.1041
      [17] Li, D. X., Zheng, C. Q., Liang, C. Y., et al., 2021. Formation Age, Geochemical Characteristics and Petrogenesis of Syenogranite in Chaihe Area, Central Daxingan Mountains: Constraints on Late Carboniferous Evolution of the Xing'an and Songnen Blocks. Turkish Journal of Earth Sciences, 30(4): 489-515. https://doi.org/10.3906/yer-2103-4
      [18] Li, J. Y., Zhang, J., Yang, T. N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract).
      [19] Li, M. X., 2021. The Determination of Late Devonian Baogede Granite in the Southern Part of the Xing'an Block and Its Significance. Acta Petrologica et Mineralogica, 40(3): 484-500 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2021.03.002
      [20] Li, R. S., 1991. Xinlin Ophiolite. Heilongjiang Geology, 2: 19-32 (in Chinese).
      [21] Li, S., Wilde, S. A., Wang, T., et al., 2016. Latest Early Permian Granitic Magmatism in Southern Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 29(1): 168-180. https://doi.org/10.1016/j.gr.2014.11.006
      [22] Li, W. G., 1996. Petrostratigraphy of Inner Mongolia Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese).
      [23] Li, Y., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing'an and Songnen-Zhangguangcai Range Massifs. Lithos, 205: 394-410. https://doi.org/10.1016/j.lithos.2014.07.008
      [24] Liu, B. Q., 2016. A Preliminary Study on the Palezoic Evolution of the Nenjiang-Heihe Tectonic Belt in the Northern Part of Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [25] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      [26] Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808
      [27] Liu, Y. J., Zhang, X. Z., Chi, X. G., et al., 2011. Deformation and Tectonic Layer Division of the Upper Paleozoic in Daxing'anling Area. Journal of Jilin University (Earth Science Edition), 41(5): 1304-1313 (in Chinese with English abstract).
      [28] Liu, Y. J., Zhang, X. Z., Jin, W., et al., 2010. Late Paleozoic Tectonic Evolution in Northeast China. Geology in China, 37(4): 943-951 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.04.010
      [29] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [30] Ludwig, K. R., 2003. ISOPLOT 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [31] Ma, Y. F., Liu, Y. J., Wang, Y., et al., 2019. Geochronology and Geochemistry of the Carboniferous Felsic Rocks in the Central Great Xing'an Range, NE China: Implications for the Amalgamation History of Xing'an and Songliao-Xilinhot Blocks. Geological Journal, 54(1): 482-513. https://doi.org/10.1002/gj.3198
      [32] Ma, Y. F., Liu, Y. J., Wang, Y., et al., 2020. Late Carboniferous Mafic to Felsic Intrusive Rocks in the Central Great Xing'an Range NE China: Petrogenesis and Tectonic Implications. International Journal of Earth Sciences, 109(3): 761-783. https://doi: 10.1007/s00531- 020-01828-6
      [33] Mao, C., Lü, X., Chen, C., 2019. Geochemical Characteristics of A-Type Granite near the Hongyan Cu-Polymetallic Deposit in the Eastern Hegenshan-Heihe Suture Zone, NE China: Implications for Petrogenesis, Mineralization and Tectonic Setting. Minerals, 9(5): 309. https://doi.org/10.3390/min9050309
      [34] Miao, L. C., Fan, W. M., Zhang, F. Q., et al., 2004. Zircon SHRIMP Geochronology of the Xinkailing-Kele Complex in the Northwestern Lesser Xing'an Range, and Its Geological Implications. Chinese Science Bulletin, 49(2): 201-209. https://doi.org/10.1360/03wd0316
      [35] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [36] Na, F. C., Fu, J. Y., Wang, Y., et al., 2014. LA-ICP-MS Zircon U-Pb Age of the Chlorite-Muscovite Tectonic Schist in Hadayang, Morin Dawa Banner, Inner Mongolia, and Its Tectonic Significance. Geological Bulletin of China, 33(9): 1326-1332 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2014.09.007
      [37] Nozaka, T., Liu, Y., 2002. Petrology of the Hegenshan Ophiolite and Its Implication for the Tectonic Evolution of Northern China. Earth and Planetary Science Letters, 202(1): 89-104. https://doi.org/10.1016/S0012-821X(02)00774-4
      [38] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [39] Qian, C., Lu, L., Qin, T., et al., 2018. The Early Late-Paleozoic Granitic Magmatism in the Zalantun Region, Northern Great Xing'an Range, NE China: Constraints on the Timing of Amalgamation of Erguna-Xing'an and Songnen Blocks. Acta Geologica Sinica, 92(11): 2190-2214 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.11.002
      [40] Şengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., ed., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge.
      [41] Şengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2018. The Tectonics of the Altaids: Crustal Growth during the Construction of the Continental Lithosphere of Central Asia between ∼750 and ∼130 Ma Ago. Annual Review of Earth and Planetary Sciences, 46: 439-494. https://doi.org/10.1146/annurev-earth-060313-054826
      [42] Shi, G. H., Miao, L. C., Zhang, F. Q., et al., 2004. Emplacement Age and Tectonic Implications of the Xilinhot A-Type Granite in Inner Mongolia, China. Chinese Science Bulletin, 49(4): 384-389 (in Chinese with English abstract). doi: 10.1360/csb2004-49-4-384
      [43] Shi, L., Zheng, C. Q., Yao, W. G., et al., 2015. Geochronological Framework and Tectonic Setting of the Granitic Magmatism in the Chaihe-Moguqi Region, Central Great Xing'an Range, China. Journal of Asian Earth Sciences, 113: 443-453. https://doi: 10.1016/j.jseaes.2014.12.013
      [44] Su, Y. Z., 1996. Paleozoic Stratigraphy of Hinggan Stratigraphical Province. Jilin Geology, 15(S1): 23-34 (in Chinese with English abstract).
      [45] Sui, Z. M., Chen, Y. J., 2011. Zircon Saturation Temperatures of Granites in Eastern Great Xing'an Range, and Its Geological Signification. Global Geology, 30(2): 162-172 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2011.02.003
      [46] Sui, Z. M., Ge, W. C., Xu, X. C., et al., 2009. Characteristics and Geological Implications of the Late Paleozoic Post-Orogenic Shierzhan Granite in the Great Xing'an Range. Acta Petrologica Sinica, 25(10): 2679-2686 (in Chinese with English abstract)
      [47] Sun, D. Y., Wu, F. Y., Zhang, Y. B., et al., 2004. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone Evidence from the Dayushan Granitic Pluton, Jilin Province. Journal of Jiling University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract).
      [48] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [49] Tong, Y., Hong, D. W., Wang, T., et al., 2010. Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientica Sinica, 31(3): 395-412 (in Chinese with English abstract).
      [50] Tong, Y., Jahn, B. M., Wang, T., et al., 2015. Permian Alkaline Granites in the Erenhot-Hegenshan Belt, Northern Inner Mongolia, China: Model of Generation, Time of Emplacement and Regional Tectonic Significance. Journal of Asian Earth Sciences, 97: 320-336. https://doi.org/10.1016/j.jseaes.2014.10.011
      [51] Turner, S., Foden, J., George, R., et al., 2003. Rates and Processes of Potassic Magma Evolution Beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. Journal of Petrology, 44(3): 491-515. https://doi.org/10.1093/petrology/44.3.491
      [52] Wang, S. J., Li, S. C., Li, W. J., et al., 2020. Tectonic Evolution of Southeast Central Asian Orogenic Belt: Evidence from Geochronological Data and Paleontology of the Early Paleozoic Deposits in Inner Mongolia. Journal of Earth Science, 31(4): 743-756. https://doi.org/10.1007/s12583-020-1326-6
      [53] Wang, Y., Fu, J. Y., Yang, F., et al., 2015. Contraction and Extension in Nenjiang-Heihe Tectonic Belt: Evidence from the Late Paleozoic Granitoid Geochemistry. Journal of Jilin University (Earth Science Edition), 45(2): 374-388 (in Chinese with English abstract).
      [54] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      [55] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      [56] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [57] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      [58] Wu, G., Sun, F. Y., Zhao, C. S., et al., 2005. Discovery of the Early Paleozoic Post-Collisional Granites in Northern Margin of the Erguna Massif and Its Geological Significance. Chinese Science Bulletin, 50(20): 2278-2288 (in Chinese). doi: 10.1360/972004-679
      [59] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract).
      [60] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      [61] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015
      [62] Xu, B., Zhao, P., Bao, Q. Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract).
      [63] Yang, W. B., Niu, H. C., Cheng, L. R., et al., 2015. Geochronology, Geochemistry and Geodynamic Implications of the Late Mesozoic Volcanic Rocks in the Southern Great Xing'an Mountains, NE China. Journal of Asian Earth Sciences, 113: 454-470. https://doi.org/10.1016/j.jseaes.2014.12.002
      [64] Zhang, J., Chen, J. S., Li, B. Y., et al., 2011. Zircon U-Pb Ages and Hf Isotopes of Late Paleozoic Granites in Taerqi Area, Inner Mongolia. Global Geology, 30(4): 521-531 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2011.04.003
      [65] Zhang, Y. L., Ge, W. C., Gao, Y., et al., 2010. Zircon U-Pb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications. Acta Petrologica Sinica, 26(4): 1059-1073 (in Chinese with English abstract).
      [66] Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.1016/j.jseaes.2014.06.008
      [67] Zhao, P., Fang, J. Q., Xu, B., et al., 2014. Early Paleozoic Tectonic Evolution of the Xing-Meng Orogenic Belt: Constraints from Detrital Zircon Geochronology of Western Erguna-Xing'an Block, North China. Journal of Asian Earth Sciences, 95: 136-146. https://doi.org/10.1016/j.jseaes.2014.04.011
      [68] Zhao, Y. D., Zhao, J., Wang, K. L., et al., 2013. Characteristics of the Late Carboniferious Post-Orogenic Dayinhe Intrusion in the Northwest of the Xiao Hinggan Mountains and Their Geological Implications. Acta Petrologica et Mineralogica, 32(1): 63-72 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2013.01.005
      [69] Zhao, Y. L., Liu, Y. J., Li, W. M., et al., 2018. Detrital Zircon LA-ICP-MS U-Pb Age of Late Carboniferous to Early Permian Sandstones in Central Great Xing'an Range and Its Geological Significance. Earth Science, 43(6): 2055-2075 (in Chinese with English abstract).
      [70] Zhao, Z., Chi, X. G., Liu, J. F., et al., 2010a. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258 (in Chinese with English abstract).
      [71] Zhao, Z., Chi, X. G., Pan, S. Y., et al., 2010b. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing'an Range. Acta Petrologica Sinica, 26(8): 2452-2464 (in Chinese with English abstract).
      [72] Zhou, J. B., Zeng, W. S., Cao, J. L., et al., 2012. The Tectonic Framework and Evolution of the NE China: From -500 Ma to -180 Ma. Journal of Jilin University (Earth Science Edition), 42(5): 1298-1316 (in Chinese with English abstract).
      [73] 付俊彧, 汪岩, 那福超, 等, 2015. 内蒙古哈达阳镁铁‒超镁铁质岩锆石U-Pb年代学及地球化学特征: 对嫩江‒黑河地区晚泥盆世俯冲背景的制约. 中国地质, 42(6): 1740-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506006.htm
      [74] 高峰, 郑常青, 姚文贵, 等, 2013. 大兴安岭北段扎兰屯哈多河"花岗质糜棱片麻岩"年代学及地球化学特征研究. 地质学报, 87(9): 1277-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309007.htm
      [75] 葛文春, 隋振民, 吴福元, 等, 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm
      [76] 黑龙江省地质矿产局, 1991. 黑龙江区域地质志. 北京: 地质出版社.
      [77] 洪大卫, 黄怀曾, 肖宜君, 等, 1994. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义. 地质学报, 68(3): 219-230. doi: 10.3321/j.issn:0001-5717.1994.03.001
      [78] 李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
      [79] 李猛兴, 2021. 兴安地块南段晚泥盆世包格德岩体时代的厘定及地质意义. 岩石矿物学杂志, 40(3): 484-500. doi: 10.3969/j.issn.1000-6524.2021.03.002
      [80] 李瑞山, 1991. 新林蛇绿岩. 黑龙江地质, 2: 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX201303042.htm
      [81] 李文国, 1996. 内蒙古自治区岩石地层. 武汉: 中国地质大学出版社.
      [82] 刘宾强, 2016. 大兴安岭北段嫩江‒黑河构造带古生代演化研究(硕士学位论文). 长春: 吉林大学.
      [83] 刘永江, 张兴洲, 迟效国, 等, 2011. 大兴安岭地区上古生界变形特征及构造层划分. 吉林大学学报(地球科学版), 41(5): 1304-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105005.htm
      [84] 刘永江, 张兴洲, 金巍, 等, 2010. 东北地区晚古生代区域构造演化. 中国地质, 37(4): 943-951. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004012.htm
      [85] 那福超, 付俊彧, 汪岩, 等, 2014. 内蒙古莫力达瓦旗哈达阳绿泥石白云母构造片岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 33(9): 1326-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201409007.htm
      [86] 钱程, 陆露, 秦涛, 等, 2018. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用: 对额尔古纳‒兴安地块和松嫩地块拼合时限的制约. 地质学报, 92(11): 2190-2214. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201811002.htm
      [87] 施光海, 苗来成, 张福勤, 等, 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404015.htm
      [88] 苏养正, 1996. 兴安地层区的古生代地层. 吉林地质, 15(S1): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ6Z1.002.htm
      [89] 隋振民, 陈跃军, 2011. 大兴安岭东部花岗岩类锆石饱和温度及其地质意义. 世界地质, 30(2): 162-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201102002.htm
      [90] 隋振民, 葛文春, 徐学纯, 等, 2009. 大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义. 岩石学报, 25(10): 2679-2686.
      [91] 孙德有, 吴福元, 张艳斌, 等, 2004. 西拉木伦河‒长春‒延吉板块缝合带的最后闭合时间: 来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm
      [92] 童英, 洪大卫, 王涛, 等, 2010. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义. 地球学报, 31(3): 395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm
      [93] 汪岩, 付俊彧, 杨帆, 等, 2015. 嫩江‒黑河构造带收缩与伸展: 源自晚古生代花岗岩类的地球化学证据. 吉林大学学报(地球科学版), 45(2): 374-388. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201502004.htm
      [94] 武广, 孙丰月, 赵财胜, 等, 2005. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义. 科学通报, 50(20): 2278-2288. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htm
      [95] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979
      [96] 徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm
      [97] 张健, 陈井胜, 李泊洋, 等, 2011. 内蒙古塔尔气地区晚古生代花岗岩的锆石U-Pb年龄及Hf同位素特征. 世界地质, 30(4): 521-531. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201104004.htm
      [98] 张彦龙, 葛文春, 高妍, 等, 2010. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义. 岩石学报, 26(4): 1059-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004006.htm
      [99] 赵院冬, 赵君, 王奎良, 等, 2013. 小兴安岭西北部晚石炭世造山后达音河岩体的特征及其地质意义. 岩石矿物学杂志, 32(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201301006.htm
      [100] 赵英利, 刘永江, 李伟民, 等, 2018. 大兴安岭中段晚石炭世‒早二叠世砂岩碎屑锆石LA-ICP-MSU-Pb年龄及地质意义. 地球科学, 43(6): 2055-2075. doi: 10.3799/dqkx.2018.613
      [101] 赵芝, 迟效国, 刘建峰, 等, 2010a. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据. 岩石学报, 26(11): 3245-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htm
      [102] 赵芝, 迟效国, 潘世语, 等, 2010b. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义. 岩石学报, 26(8): 2452-2464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008019.htm
      [103] 周建波, 曾维顺, 曹嘉麟, 等, 2012. 中国东北地区的构造格局与演化: 从500 Ma到180 Ma. 吉林大学学报(地球科学版), 42(5): 1298-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205005.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  193
    • HTML全文浏览量:  40
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-25
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回