Genesis of Polyhalite and Its Significance of Jialingjiang Formation in Dianjiang Salt Basin, Eastern Sichuan Basin
-
摘要:
四川盆地三叠纪是主要的成钾期,目前发现的主要含钾矿物为杂卤石,有关早三叠世嘉陵江组四段石盐岩中杂卤石成因一直存在争议. 采用薄片鉴定、扫描电镜、稀土元素和锶同位素等手段,分析了四川盆地东部垫江盐盆长寿地区嘉陵江组四段石盐岩中杂卤石矿物形态特征,初步探讨了该杂卤石成因及对寻找海相钾盐的指示意义. 扫描电镜下与石盐岩共生的杂卤石主要为针状和长柱状,自形程度较高;含杂卤石盐岩相对富集轻稀土,亏损重稀土,无明显的Eu和Ce异常,表现出与海水稀土元素配分模式一致的特征,表明其具有海水来源. 长平3井石盐岩样品87Sr/86Sr值为0.708 151~0.708 286,变化较小,与三叠纪海水值基本一致,说明杂卤石是海水高度浓缩的产物. 垫江盐盆嘉陵江组四段石盐岩中杂卤石主要为原生杂卤石,表明该地区石盐岩沉积时古卤水已经接近或达到钾盐析出阶段,原生杂卤石接近了盐湖的浓缩中心,因此垫江盐盆是有利的找钾区.
Abstract:The Triassic witnessed the significant potash formation in Sichuan Basin. So far, the main potash mineral reported is mostly polyhalite, while the origin of polyhalite in the fourth member of Jialingjiang Formation in eastern Sichuan Basin still remains controversial. In this paper, it employs the thin section identification, scanning electron microscope (SEM) and geochemical measurements (including rare earth element and strontium isotope), analyzing the polyhalite samples from the fourth member of Jialingjiang Formation, eastern Sichuan Basin in detail. The microscope and SEM photographs show that the polyhalite which is in intergrowth with halite has well euhedral and few structural defects. The characteristics of rare earth element are relatively enriched in LREE and depleted in HREE, with weak negative Eu and Ce abnormities, which are similar to those of the seawater. In addition, strontium isotopic values of the halite samples (Changping 3 Well) are between 0.708 151 and 0.708 286, which are basically consistent with the seawater values in the Triassic. All these evidences indicate that the source of halite and polyhalite was the products of highly concentrated seawater. In this paper, it holds that the polyhalites in the fourth member of Jialingjiang Formation in eastern Sichuan Basin were mainly primary polyhalites, and the seawater was highly concentrated and had approached or reached the critical point of potassium and magnesium salts precipitation. It infers that Changping 3 Well is close to the concentration center of Dianjiang Salt Basin, and the nearby area is the suitable place for the formation and preservation of potash deposit.
-
图 8 四川盆地东部嘉陵江组石盐岩样品锶同位素组成与全球其他地区对比
Fig. 8. Comparison of Sr isotopic values among halite samples in eastern Sichuan Basin and other samples in the world
表 1 石盐岩样品稀土元素含量(10-6)分析结果
Table 1. The contents of rare earth elements (10-6) of halite samples
样品号 CP3-1 CP3-2 CP3-3 CP3-4 CP3-5 CP3-6 CP3-7 CP3-8 CP3-9 La 10.96 31.63 11.54 8.46 7.21 1.04 42.93 0.27 1.03 Ce 28.20 67.24 22.38 15.33 15.69 3.37 108.23 0.89 1.99 Pr 4.00 7.88 2.71 2.26 2.67 1.41 13.19 1.25 1.38 Nd 17.62 27.83 9.82 6.00 8.23 3.90 46.38 2.23 1.41 Sm 3.95 4.77 2.65 1.27 1.37 1.68 7.19 1.72 0.19 Eu 0.62 0.89 0.40 0.24 0.36 0.44 1.19 0.31 0.05 Gd 2.06 2.87 2.07 1.44 1.64 2.22 3.64 1.81 0.34 Tb 0.24 0.40 0.35 0.39 0.46 0.51 0.64 0.47 0.25 Dy 0.62 0.83 0.86 0.60 0.74 1.08 0.99 0.74 0.18 Ho 0.06 0.11 0.08 0.05 0.07 0.11 0.10 0.07 0.01 Er 0.09 0.15 0.10 0.07 0.08 0.19 0.12 0.08 0.03 Tm 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.00 0.01 Yb 0.04 0.03 0.05 0.06 0.02 0.03 0.08 0.02 0.02 Lu 0.01 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.01 Y 1.75 3.64 3.06 2.03 2.34 4.36 3.24 1.91 0.39 ΣREE 68.48 144.64 53.04 36.19 38.59 16.01 224.72 9.86 6.89 LREE/HREE 20.92 31.87 13.98 12.77 11.67 2.84 39.11 2.09 7.29 δEu 0.66 0.73 0.52 0.54 0.74 0.70 0.71 0.53 0.64 δCe 1.03 1.03 0.97 0.85 0.86 0.67 1.10 0.37 0.40 样品号 CP3-10 CP3-11 CP3-12 CP3-13 CP3-14 CP3-15 CP3-16 CP3-17 CP3-18 La 0.29 2.81 5.96 0.55 0.18 0.09 0.17 0.20 0.21 Ce 1.00 4.97 12.35 1.63 0.70 0.88 0.62 1.48 1.22 Pr 1.07 1.62 2.74 0.76 1.03 0.96 1.10 1.25 1.07 Nd 1.26 2.38 9.72 0.91 0.99 0.44 0.67 2.26 1.10 Sm 0.61 0.69 4.62 0.63 0.75 0.18 0.39 0.60 0.38 Eu 0.16 0.15 1.12 0.15 0.25 0.07 0.11 0.17 0.10 Gd 0.80 0.78 5.46 0.41 1.38 0.31 0.50 0.65 0.37 Tb 0.26 0.32 0.91 0.11 0.26 0.12 0.15 0.13 0.10 Dy 0.33 0.57 2.15 0.16 0.58 0.17 0.29 0.29 0.18 Ho 0.03 0.06 0.22 0.03 0.08 0.02 0.03 0.04 0.03 Er 0.04 0.05 0.23 0.09 0.11 0.05 0.07 0.07 0.06 Tm 0.01 0.01 0.02 0.00 0.02 0.01 0.01 0.01 0.00 Yb 0.02 0.05 0.02 0.07 0.06 0.03 0.04 0.02 0.03 Lu 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 Y 1.09 2.35 6.20 0.89 2.67 0.60 1.05 1.24 0.76 ΣREE 5.88 14.45 45.52 5.52 6.40 3.33 4.15 7.18 4.84 LREE/HREE 2.94 6.84 4.05 5.23 1.56 3.74 2.80 4.94 5.27 δEu 0.70 0.63 0.68 0.90 0.74 0.93 0.79 0.82 0.80 δCe 0.44 0.56 0.74 0.61 0.39 0.70 0.34 0.72 0.63 表 2 石盐岩样品锶同位素分析结果
Table 2. Sr isotopic values of halite samples
样品号 CP3-1 CP3-2 CP3-3 CP3-4 CP3-5 CP3-6 CP3-7 CP3-8 CP3-9 87Sr/86Sr 0.708 234 0.708 166 0.708 151 0.708 194 0.708 185 0.708 204 0.708 207 0.708 257 0.708 226 2σ 0.000 008 0.000 009 0.000 009 0.000 009 0.000 008 0.000 007 0.000 007 0.000 033 0.000 008 样品号 CP3-10 CP3-11 CP3-12 CP3-13 CP3-14 CP3-15 CP3-16 CP3-17 CP3-18 87Sr/86Sr 0.708 208 0.708 190 0.708 220 0.708 200 0.708 218 0.708 286 0.708 173 0.708 176 0.708 171 2σ 0.000 009 0.000 009 0.000 011 0.000 010 0.000 010 0.000 010 0.000 010 0.000 008 0.000 008 -
[1] Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium Isotopes as Tracers of Ecosystem Processes: Theory and Methods. Geoderma, 82(1-3): 197-225. https://doi.org/10.1016/s0016-7061(97)00102-x [2] Cai, K.Q., Zhao, D.J., Liao, L.Z., et al., 1985. Mineralogical Study of Gorgeyite. Earth Science, 10(4): 21-28, 189 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198504004.htm [3] Chen, X., 2014. Characteristics of Salt-Bearing Series in Eastern Sichuan Basin and Research on Homogenization Temperature of the Fluid Inclusions in Salt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [4] Freyer, D., Voigt, W., 2003. Crystallization and Phase Stability of CaSO4 and CaSO4 - Based Salts. Monatshefte für Chemie/Chemical Monthly, 134(5): 693-719. https://doi.org/10.1007/s00706-003-0590-3 [5] Harvie, C. E., Weare, J. H., 1980. The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-Cl-SO4-H2O System from Zero to High Concentration at 25 ℃. Geochimica et Cosmochimica Acta, 44(7): 981-997. https://doi.org/10.1016/0016-7037(80)90287-2 [6] Hou, X.W., Gong, D.X., Wen, H.G., et al., 2020. Study on the Temporal and Spatial Distribution, Microscopic Characteristics and Genesis of Triassic Polyhalite in Sichuan Basin. Geological Review, 66(6): 1555-1571 (in Chinese with English abstract). [7] Hu, Z.W., Huang, S.J., Huang, K.K., et al., 2010. Preservative Evaluation of Coeval Seawater Information for the Triassic Marine Carbonate Rocks in the Huaying Mountain, Eastern Sichuan. Geology in China, 37(5): 1374-1382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201005015.htm [8] Lin, Y.T., Yin, S.M., 1998. Distribution, Genesis and Significance of Shallow-Seated Polyhalite Ore in Quxian, Sichuan. Acta Geologica Sichuan, 18(2): 121-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB802.007.htm [9] Liu, C. L., Jiao, P. C., Lü, F.L., et al., 2015. The Impact of the Linked Factors of Provenance, Tectonics and Climate on Potash Formation: An Example from the Potash Deposits of Lop Nur Depression in Tarim Basin, Xinjiang, Western China. Acta Geologica Sinica (English Edition), 89(6): 2030-2047. https://doi.org/10.1111/1755-6724.12615 [10] Liu, C. L., Wang, L. C., Yan, M. D., et al., 2018. The Mesozoic-Cenozoic Tectonic Settings, Paleogeography and Evaporitic Sedimentation of Tethyan Blocks within China: Implications for Potash Formation. Ore Geology Reviews, 102: 406-425. https://doi.org/10.1016/j.oregeorev.2018.09.002 [11] Liu, Z.B., Xing, F.C., Hu, H.R., et al., 2021. Multi- Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599 (in Chinese with English abstract). [12] Palmer, M. R., Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters, 92(1): 11-26. https://doi.org/10.1016/0012-821x(89)90017-4 [13] Peryt, T.M., Pierre, C., Gryniv, S.P., 1998. Origin of Polyhalite Deposits in the Zechstein (Upper Permian) Zdrada Platform (Northern Poland). Sedimentology, 45(3): 565-578. https://doi.org/10.1046/j.1365-3091.1998.00156.x [14] Peryt, T. M., Tomassi-Morawiec, H., Czapowski, G., et al., 2005. Polyhalite Occurrence in the Werra (Zechstein, Upper Permian) Peribaltic Basin of Poland and Russia: Evaporite Facies Constraints. Carbonates and Evaporites, 20(2): 182-194. https://doi.org/10.1007/bf03175461 [15] Qi, Z.Y., Qu, X.R., Ma, S.L., et al., 2019. Operational Report of China's Potassium Fertilizer Industry in 2018 and Its Development Prediction. Phosphate & Compound Fertilizer, 34(2): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-LFYF201902003.htm [16] Schorn, A., Neubauer, F., Bernroider, M., 2013. Polyhalite Microfabrics in an Alpine Evaporite Mélange: Hallstatt, Eastern Alps. Journal of Structural Geology, 46: 57-75. https://doi.org/10.1016/j.jsg.2012.10.006 [17] Shen, T., Meng, L.F., Chen, W., et al., 2021. Tectonic Activities in Middle and North Sections of Longmenshan Thrust Belt during Late Indosinian: Evidence from Structural Analysis and Detrital Zircon Geochronology. Earth Science, 46(5): 1728-1736 (in Chinese with English abstract). [18] Song, H. J., Wignall, P. B., Tong, J. N., et al., 2015. Integrated Sr Isotope Variations and Global Environmental Changes through the Late Permian to Early Late Triassic. Earth and Planetary Science Letters, 424: 140-147. https://doi.org/10.1016/j.epsl.2015.05.035 [19] Sun, X.H., Hu, Y.F., Liu, C.L., et al., 2016. Argument That Brine of Salty Lake in Sichuan Basin had Reached Crystallizing Point of Potash Minerals during Triassic: Evidence from Chemical Composition of Fluid Inclusions in Halite. Mineral Deposits, 35(6): 1157-1168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201606003.htm [20] Wan, T.F., Zhu, H., 2007. Positions and Kinematics of Chinese Continental Blocks in Reconstruction of Global Paleo-Continents for Paleozoic and Triassic. Geoscience, 21(1): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200701000.htm [21] Wang, M.Q., Zhao, Y.J., Liu, C.L., et al., 2015. Paleotemperature and Significance of the Evaporated Seawater in Salt-Forming Process of the Forth Member of Jialingjiang Formation in the Eastern Sichuan Basin. Acta Petrologica Sinica, 31(9): 2745-2750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201509021.htm [22] Warren, J. K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Springer, Heidelberg. https://doi.org/10.1007/3-540-32344-9 [23] Zhang, X., Zhu, Z.J., Wei, Y.Y., et al., 2019. Research on the Effect of Tectonism on the Form and Preservation of Marine Potash in Triassic Jialingjiang Formation in Dianjiang Salt Basin, Eastern Sichuan Basin. Journal of Geomechanics, 25(S1): 72-77 (in Chinese with English abstract). [24] Zhang, X., Zhu, Z.J., Zhao, Y.J., et al., 2018. Prospect Analysis of Potash Forming of the Triassic Jialingjiang Formation in the Dianjiang Salt Basin in Eastern Sichuan. Acta Geologica Sinica, 92(8): 1661-1670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201808009.htm [25] Zhao, D.J., Han, W.T., Cai, K.Q., et al., 1987. The Study of Polyhalite Genesis and Its Significance of Potash-Finding in Dawenkou Depression, Shandong Province. Earth Science, 12(4): 349-356 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198704003.htm [26] Zhao, Y.J., Liu, C.L., Gong, D.X., et al., 2015. The Luzhou-Kaijiang Paleouplift Control on the Formation Environments of Triassic Salt and Potassium of Deposits in Eastern Sichuan. Acta Geologica Sinica, 89(11): 1983-1989 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201511010&dbcode=CJFD&year=2015&dflag=pdfdown [27] Zhao, Y.Y., Li, S.Z., Li, D., et al., 2019. Rare Earth Element Geochemistry of Carbonate and Its Paleoenvironmental Implications. Geotectonica et Metallogenia, 43(1): 141-167 (in Chinese with English abstract). http://www.researchgate.net/publication/332093043_Rare_Earth_Element_Geochemistry_of_Carbonate_and_its_Paleoenvironmental_Implications [28] Zheng, M.P., Zhang, Y.S., Shang, W.J., et al., 2018. Discovery of a New Type of Polyhalite Potassium Ore in Puguang Region, Northeastern Sichuan. Geology in China, 45(5): 1074-1075 (in Chinese with English abstract). [29] Zhou, J.Y., Gong, D.X., Li, M., 2015. The Characteristic of Evaporite, Migration of Salt Basins and Its Tectonic Control in Triassic Sichuan Basin. Acta Geologica Sinica, 89(11): 1945-1952 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201511006&dbcode=CJFD&year=2015&dflag=pdfdown [30] 蔡克勤, 赵德钧, 廖林志, 等, 1985. 多钙钾石膏的矿物学研究. 地球科学, 10(4): 21-28, 189. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198504004.htm [31] 陈旭, 2014. 川东地区长平三井含盐系特征及石盐流体包裹体的研究(硕士学位论文). 北京: 中国地质科学院. [32] 侯学文, 龚大兴, 文华国, 等, 2020. 四川盆地三叠系杂卤石的时空分布、显微特征及成因研究. 地质论评, 66(6): 1555-1571. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202006008.htm [33] 胡作维, 黄思静, 黄可可, 等, 2010. 四川东部华蓥山三叠系海相碳酸盐岩对海水信息的保存性评估. 中国地质, 37(5): 1374-1382. doi: 10.3969/j.issn.1000-3657.2010.05.012 [34] 林耀庭, 尹世明, 1998. 四川渠县浅层杂卤石矿分布特征及其成因和意义. 四川地质学报, 18(2): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB802.007.htm [35] 刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026 [36] 亓昭英, 屈小荣, 马锁立, 等, 2019.2018年我国钾肥行业运行报告及发展预测. 磷肥与复肥, 34(2): 1-4. doi: 10.3969/j.issn.1007-6220.2019.02.002 [37] 沈桐, 孟立丰, 陈伟, 等, 2021. 龙门山中北段印支晚期构造活动: 来自构造解析及碎屑锆石年代学的证据. 地球科学, 46(5): 1728-1736. doi: 10.3799/dqkx.2020.017 [38] 孙小虹, 胡宇飞, 刘成林, 等, 2016. 四川盆地三叠纪古盐湖已达钾石盐析出阶段——来自石盐流体包裹体化学组成的约束. 矿床地质, 35(6): 1157-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201606003.htm [39] 万天丰, 朱鸿, 2007. 古生代与三叠纪中国各陆块在全球古大陆再造中的位置与运动学特征. 现代地质, 21(1): 1-13. doi: 10.3969/j.issn.1000-8527.2007.01.001 [40] 汪明泉, 赵艳军, 刘成林, 等, 2015. 四川盆地东部三叠系嘉陵江组成盐期浓缩海水古温度及其意义. 岩石学报, 31(9): 2745-2750. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509021.htm [41] 张雄, 朱正杰, 魏玉燕, 等, 2019. 构造作用对四川盆地东部垫江盐盆三叠系嘉陵江组海相钾盐成矿——保存条件的影响. 地质力学学报, 25(S1): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX2019S1013.htm [42] 张雄, 朱正杰, 赵艳军, 等, 2018. 四川盆地东部垫江盐盆三叠系嘉陵江组成钾远景分析. 地质学报, 92(8): 1661-1670. doi: 10.3969/j.issn.0001-5717.2018.08.008 [43] 赵德钧, 韩蔚田, 蔡克勤, 等, 1987. 大汶口凹陷下第三系含盐段杂卤石的成因及其找钾意义. 地球科学, 12(4): 349-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198704003.htm [44] 赵艳军, 刘成林, 龚大兴, 等, 2015. 泸州‒开江古隆起对川东三叠纪成盐成钾环境的控制作用. 地质学报, 89(11): 1983-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511010.htm [45] 赵彦彦, 李三忠, 李达, 等, 2019. 碳酸盐(岩)的稀土元素特征及其古环境指示意义. 大地构造与成矿学, 43(1): 141-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901012.htm [46] 郑绵平, 张永生, 商雯君, 等, 2018. 川东北普光地区发现新型杂卤石钾盐矿. 中国地质, 45(5): 1074-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805015.htm [47] 周家云, 龚大兴, 李萌, 2015. 四川盆地三叠纪蒸发岩特征、盐盆迁移及其构造控制. 地质学报, 89(11): 1945-1952. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511006.htm