In-Situ Trace Element and Sulfur Isotope of Pyrite Constrain Ore Genesis in Shulouqiu Uranium Deposit, North Guangdong
-
摘要:
书楼丘铀矿床作为长江铀矿田重要的组成部分之一,其成矿流体特征、来源及成矿环境研究相对较少. 依据黄铁矿晶型特征及其与其他矿物共生组合特征,将书楼丘铀矿床中脉石矿物黄铁矿的形成划分为成矿前期(Py Ⅰ)、成矿期(Py Ⅱ)及成矿晚期(Py Ⅲ)三个时期,成矿期又被划分为成矿早阶段(Py Ⅱa)和主成矿阶段(Py Ⅱb). 采用激光剥蚀多接收电感耦合等离子质谱仪(LA-MC-ICP-MS)对成矿前期、成矿期形成的黄铁矿进行微量元素及硫同位素分析. 结果表明,书楼丘铀矿床Py Ⅰ中Co、Ni含量大部分低于检出限,Py Ⅱa和Py Ⅱb中Co/Ni比值主要介于1~5之间,为热液成因. Py Ⅰ δ34S值为0.41‰~2.02‰,显示了地幔硫特征;Py Ⅱa δ34S值为-9.15‰~-11.3‰,与贵东复式花岗岩体黄铁矿(-10.9‰~-7.10‰)基本一致,贵东复式花岗岩体与诸广复式花岗岩体毗邻且成因相同,由此推测Py Ⅱa的硫来自诸广山复式花岗岩体;由成矿早阶段到主成矿阶段,黄铁矿δ34S值明显升高(-9.15‰~-11.3‰增加到-4.58‰~-8.48‰),表明成矿流体氧逸度降低,成矿早阶段氧化性流体淋滤赋矿围岩中的铀形成富铀流体运移,主成矿阶段富铀流体转变为还原环境,导致铀沉淀. 结合黄铁矿微量元素特征可知,书楼丘铀矿床成矿前期热液流体为高温碱交代热液,成矿期热液流体为中低温大气降水演化热液.
Abstract:The Shulouqiu uranium deposit is an important part of Changjiang uranium ore field. However, there are relatively fewer studies on its ore-forming fluid properties, source and metallogenic environment. Based on the characteristics of pyrite and other mineral paragenesis, the formation of pyrite in the Shulouqiu uranium deposit is divided into three stages: pre-metallogenic period (Py Ⅰ), syn-metallogenic period (Py Ⅱ) and late-metallogenic period (Py Ⅲ). Meanwhile, the syn-metallogenic period (Py Ⅱ) is divided into early metallogenic stage (Py Ⅱa) and main metallogenic stage (Py Ⅱb). The trace elements and sulfur isotopes of pyrite formed in different periods were analyzed by inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The results show that the content of Co and Ni of Py Ⅰ is mostly lower than that of the test line, and the ratios of Co/ Ni of Py Ⅱa and Py Ⅱb are mainly 1-5, suggesting that it is the cause of hydrothermal. The δ34S value of Py Ⅰ ranges from +0.41‰ to +2.02‰, which is mantle sulfur. The δ34S value of Py Ⅱa ranges from -9.15‰ to -11.3‰, which is similar to that of the Py Ⅱa (-10.9‰ to -7.10‰) in the Guidong compound granite. Meanwhile, it has the same origin as the Zhuguang compound granite, indicating that the sulfur of Py Ⅱa comes from the Zhuguang compound granite. From the early metallogenic stage to the main metallogenic stage, the δ34S values of pyrite increase from (-9.15‰ to -11.3‰) to (-4.58‰ to -8.48‰), indicating that the oxygen fugacity of ore-forming fluid decreases. Uranium-rich fluid migration was formed in the oxidized fluid leaching of ore-bearing rocks in the early stage of mineralization, and uranium-rich fluid was changed into reducing environment in the main metallogenic period, which resulted in uranium precipitation. Combined with the characteristics of pyrite trace elements, the fluid in the early stage of uranium deposit in Shulouqiu is a high temperature magmatic hydrothermal, and the fluid in the metallogenic period is a medium-low temperature meteoric water.
-
Key words:
- LA-MC-ICP-MS /
- trace element /
- sulfur isotope /
- ore-forming fluid /
- Shulouqiu uranium deposit /
- mineral deposit
-
图 3 书楼丘铀矿床黄铁矿镜下特征
a. 自形黄铁矿(Py Ⅰ)与石英共生;b. 黑云母蚀变为绿泥石,自形黄铁矿(Py Ⅰ)呈脉状集合体分布其中;c. 自形-半自形黄铁矿(Py Ⅱa)呈脉状分布于微晶石英脉中;d. 自形-半自形黄铁矿(Py Ⅱa)与沥青铀矿分布于微晶石英脉中;e~g. 半自形-他形黄铁矿(Py Ⅱb)呈脉状与沥青铀矿平直接触共生;h. 细粒自形-半自形黄铁矿(Py Ⅲ)分布于灰白色梳状石英脉中. 图a、b、c、h为透射光照片,图d~g为反射光照片;Py.黄铁矿,Pit.沥青铀矿,Q.石英
Fig. 3. Microscopic characteristics of pyrite in the Shulouqiu uranium deposit
表 1 书楼丘铀矿床黄铁矿LA-MC-ICP-MS微量元素特征(10-6)
Table 1. Characteristics of trace elements in pyrite in the Shulouqiu uranium deposit by LA-MC-ICP-MS (10-6)
形成时期 样品号 Si Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Co/Ni Py Ⅰ CJ-6-1-01 1 730 0.020 0.900 0.110 71.1 4.00 0.040 0.080 0.100 2.31 0.210 1.37 0.440 10.3 0.500 CJ-6-1-02 293 - 0.440 - 1.19 0.440 - 0.170 0.030 0.130 - 0.980 0.100 6.13 CJ-6-1-03 352 - 0.610 0.010 0.300 1.87 0.010 - 0.060 0.100 0.020 1.09 0.060 6.88 CJ-6-1-04 280 - 0.820 0.020 0.760 1.72 0.010 - 0.050 0.460 0.010 1.24 0.180 6.09 CJ-6-1-05 272 - 0.620 - 0.400 0.870 0.010 - - 0.360 0.010 1.26 0.310 - CJ-6-1-06 254 - 0.640 - 0.860 0.460 0.020 - 0.030 0.340 0.010 1.30 0.200 2.67 CJ-6-1-07 235 0.010 0.750 0.010 0.660 0.550 0.010 0.020 0.010 0.070 0.020 1.23 0.060 7.78 0.500 CJ-6-1-08 260 0.010 0.360 0.020 2.76 0.510 - - 0.060 0.240 0.020 1.52 0.160 10.6 CJ-6-1-09 199 - 0.390 0.040 0.350 1.67 - - 0.010 0.390 0.030 1.22 0.170 1.80 CJ-6-1-10 343 0.020 0.360 - 0.290 2.08 0.010 0.010 0.900 0.210 0.010 1.76 0.090 7.44 1.00 CJ-6-1-11 280 - 0.430 - 0.580 1.43 - - 0.070 0.400 0.030 1.54 0.070 4.28 CJ-6-1-12 188 - 0.490 - 1.38 2.29 0.010 - 0.080 0.440 0.030 1.41 - - Py Ⅱa CJ-5-2-01 3 332 0.020 0.530 0.040 0.740 1.97 1.49 0.270 48.8 0.420 - 1.21 2 311 48.0 5.40 CJ-5-2-02 435 0.030 0.860 0.150 1.37 1.04 0.820 0.320 41.3 0.400 0.300 1.48 3 625 53.4 2.60 CJ-5-2-03 318 0.030 0.620 0.480 2.43 1.79 1.40 0.310 77.3 0.150 0.040 1.13 2 985 52.2 4.40 CJ-5-2-04 245 0.010 0.530 0.010 0.580 0.390 0.730 0.230 38.9 0.060 0.010 1.13 3 151 56.2 3.20 CJ-5-2-05 1 564 0.010 2.71 0.810 3.46 38.4 2.35 2.93 54.2 5.98 - 1.09 3 940 315 0.800 CJ-5-2-06 219 0.030 0.450 0.160 43.0 116 6.46 11.0 142 19.5 0.010 1.42 2 874 1 121 0.600 CJ-5-2-07 3 125 0.020 0.460 0.040 2.63 0.060 0.960 0.130 46.4 0.090 - 1.33 2 886 87.9 7.30 CJ-5-2-08 212 0.020 0.420 0.010 0.330 1.04 0.170 0.130 618 0.260 - 1.06 110 212 1.30 CJ-5-2-09 98.6 - 0.610 - 0.440 0.520 0.140 0.060 209 0.110 - 1.23 264 55.2 2.40 Py Ⅱb CJ-2-01 1 087 - 0.370 0.200 0.420 4.46 0.710 0.500 7.82 0.850 0.190 1.31 3 289 19.4 1.40 CJ-2-02 1 405 0.010 0.440 0.250 2.24 10.4 1.12 0.650 20.8 0.660 0.100 1.47 1 685 36.9 1.70 CJ-2-03 1 140 - 0.690 0.140 2.08 1.25 3.60 0.890 10.9 0.560 0.340 1.55 39.1 71.4 4.00 CJ-2-04 792 0.020 0.690 0.310 1.10 1.04 7.84 1.29 36.7 0.790 0.120 1.28 51.3 70.3 6.10 CJ-2-05 3 752 0.060 0.370 0.550 55.0 2.63 1.90 1.23 44.8 0.690 0.300 1.59 491 69.3 1.50 CJ-2-06 529 0.010 0.620 0.160 1.95 7.26 0.680 0.490 5.56 1.32 0.040 1.27 10 065 21.7 1.40 CJ-2-07 1 405 - 0.580 0.110 1.07 6.82 2.96 1.74 47.3 0.520 0.080 1.38 5 152 21.8 1.70 CJ-2-08 172 0.010 0.470 - - 1.82 0.280 0.050 2.34 0.170 - 1.38 3 257 19.8 5.40 CJ-2-09 1 187 0.040 1.08 1.12 115 2.23 4.37 0.560 61.2 5.92 0.260 1.36 372 60.2 7.80 CJ-2-10 5 299 0.040 0.030 1.67 48.2 7.51 8.38 1.80 96.7 2.60 0.680 1.29 1 240 108 4.70 CJ-2-11 2 367 - 0.560 1.17 9.86 6.40 9.10 2.01 94.1 3.75 0.960 1.44 1 077 199 4.50 CJ-2-12 2 007 0.010 0.330 1.37 6.52 5.16 1.85 0.170 63.1 1.71 0.180 1.32 357 95.7 10.8 CJ-2-13 272 - 0.560 0.200 3.38 0.860 0.490 0.110 23.3 64.3 0.020 1.42 836 21.1 4.50 检出限 122 0.04 0.24 0.04 0.55 0.68 0.03 0.20 0.22 0.12 0.01 0.24 0.65 12.50 形成时期 样品号 Rb Sr Y Mo Ag Cd Sn Sb W Au Tl Pb Bi Th U Py Ⅰ CJ-6-1-01 0.140 1.67 1.80 201 0.590 0.050 0.570 0.080 2.30 - 0.880 6.10 2.75 0.020 5.13 CJ-6-1-02 0.010 0.030 1.05 145 0.310 0.030 - 0.010 3.62 - 0.330 0.220 0.230 0.010 0.090 CJ-6-1-03 - 0.020 0.780 258 0.050 0.020 - 0.020 1.63 - 0.030 0.320 0.730 - 0.040 CJ-6-1-04 0.010 0.030 1.13 369 0.060 0.060 0.070 0.050 3.21 - 0.070 35.2 1.97 - 0.240 CJ-6-1-05 - 0.020 1.20 635 0.030 0.130 0.180 0.050 2.99 0.010 0.170 45.5 1.11 - 0.530 CJ-6-1-06 0.040 0.020 0.800 449 0.030 0.110 0.180 0.090 1.96 - 0.640 50.9 1.07 - 0.430 CJ-6-1-07 0.030 0.030 0.400 756 0.110 0.020 - 0.050 0.59 0.020 0.150 0.460 0.140 - 0.760 CJ-6-1-08 - 0.040 0.690 171 0.110 0.010 0.010 0.020 1.18 - 0.200 4.76 1.01 - 0.100 CJ-6-1-09 - 0.020 0.990 198 0.020 0.040 0.040 0.010 6.35 - 0.030 43.2 0.840 - 0.130 CJ-6-1-10 0.040 0.020 1.20 279 0.370 0.100 - 0.210 2.74 0.010 0.040 24.7 823 - 0.100 CJ-6-1-11 - 0.030 1.00 186 0.250 0.070 0.080 0.040 2.25 0.020 0.180 21.0 2.25 - 0.450 CJ-6-1-12 0.030 0.020 1.46 211 0.240 0.010 - 0.020 3.24 0.010 0.030 4.00 2.89 0.010 0.510 Py Ⅱa CJ-5-2-01 - 0.040 - 1.47 1.59 0.140 0.020 3.33 0.010 0.790 0.260 220 39.8 - 0.130 CJ-5-2-02 0.100 0.060 0.010 0.150 1.83 0.360 0.050 12.6 0.080 0.940 0.420 583 55.3 - 0.160 CJ-5-2-03 0.010 0.010 - 0.430 2.16 0.170 - 7.70 - 1.53 0.330 306 36.4 - 0.010 CJ-5-2-04 - 0.130 0.020 33.3 15.3 2.34 0.140 65.7 0.300 0.810 53.3 189 14.2 0.010 5.41 CJ-5-2-05 0.010 0.320 0.290 43.9 13.5 2.50 0.020 22.5 0.040 3.29 34.8 563 38.8 0.390 21.5 CJ-5-2-06 0.040 0.070 - 7.26 0.900 0.100 - 1.41 0.030 1.75 0.240 96.9 15.7 - 2.02 CJ-5-2-07 0.030 0.010 - 0.670 0.880 0.110 - 4.46 - 1.13 0.190 207 27.9 - 0.170 CJ-5-2-08 - 0.020 - 0.100 5.98 4.13 0.050 1.64 0.020 0.290 7.43 488 118 - 0.210 CJ-5-2-09 - 0.010 - 2.80 0.610 0.770 0.010 0.740 - 0.110 2.17 102 13.0 - 0.080 Py Ⅱb CJ-2-01 0.250 3.06 4.86 3.39 0.400 0.670 0.020 7.96 0.070 0.050 0.860 599 64.7 - 345 CJ-2-02 0.060 16.6 11.0 30.1 0.980 1.32 - 5.99 1.06 0.140 1.18 2 094 157 - 2 289 CJ-2-03 1.38 1.09 0.470 2.90 4.69 3.56 0.190 0.720 0.120 0.050 1.21 1 037 343 - 118 CJ-2-04 1.45 0.090 0.040 0.190 2.92 2.34 0.030 2.56 0.040 0.190 1.97 1124 210 0.010 9.53 CJ-2-05 2.04 0.280 0.630 0.160 10.5 4.30 0.070 2.78 4.62 0.230 3.23 11 248 381 1.19 771 CJ-2-06 0.080 1.18 8.21 4.52 0.140 0.340 - 1.96 0.390 0.110 0.540 452 27.5 - 985 CJ-2-07 0.110 27.2 9.54 9.86 0.880 1.06 - 10.1 0.090 0.300 1.11 1 405 189 - 697 CJ-2-08 0.040 0.460 0.280 1.38 0.150 0.730 0.030 1.09 0.040 0.030 0.260 275 16.4 - 48.9 CJ-2-09 4.94 0.810 0.730 1.90 4.44 2.93 0.010 3.36 0.770 0.220 3.15 1 424 290 0.010 49.1 CJ-2-10 0.350 63.0 1.62 26.1 8.44 3.98 0.300 4.49 1.08 0.230 1.62 6 335 596 - 546 CJ-2-11 0.470 52.0 1.19 16.4 15.2 9.15 0.120 3.17 0.360 0.940 4.44 14 306 839 - 391 CJ-2-12 2.51 0.410 0.030 0.800 6.93 4.29 0.070 5.10 0.130 0.200 3.31 3 362 370 - 11.1 CJ-2-13 - 7.79 0.590 10.1 1.00 1.97 0.090 2.07 0.180 0.100 0.660 1 066 200 - 50.9 检出限 0.060 0.010 0.010 0.010 0.010 0.020 0.130 0.010 0.010 0.020 0.010 0.050 0.020 0.010 0.010 注:“-”为低于检出限. 表 2 书楼丘铀矿床黄铁矿LA-MC-ICP-MS硫同位素组成(‰)
Table 2. Sulfur isotope compositions of pyrite from the Shulouqiu uranium deposit (‰)
形成时期 样品号 δ34Sv-CDT(‰) 形成时期 样品号 δ34Sv-CDT(‰) Py Ⅰ CJ-6-01 1.65 Py Ⅱa CJ-5-11 -10.2 CJ-6-02 1.15 CJ-5-12 -10.1 CJ-6-03 1.14 Py Ⅱb CJ-2-01 -7.6 CJ-6-04 1.11 CJ-2-02 -6.07 CJ-6-05 1.20 CJ-2-03 -8.48 CJ-6-06 1.52 CJ-2-04 -4.58 CJ-6-07 0.70 CJ-2-05 -4.26 CJ-6-08 0.41 CJ-2-06 -3.99 CJ-6-09 2.02 CJ-2-07 -7.79 CJ-6-10 1.49 CJ-2-08 -7.82 Py Ⅱa CJ-5-01 -9.15 CJ-2-09 -8.01 CJ-5-02 -9.97 CJ-2-10 -7.04 CJ-5-03 -9.46 CJ-2-12 -5.48 CJ-5-04 -11.0 CJ-2-13 -4.53 CJ-5-05 -10.2 CJ-2-14 -6.01 CJ-5-06 -10.1 CJ-2-15 -7.25 CJ-5-07 -11.3 CJ-2-16 -6.36 CJ-5-08 -11.1 CJ-2-17 -7.21 CJ-5-09 -10.2 CJ-2-18 -7.68 CJ-5-10 -9.55 -
[1] Bi, X.W., Hu, R.Z., Peng, J.T., et al., 2004. REE and HFSE Geochemical Characteristics of Pyrites in Yao'an Gold Deposit: Tracing Ore Forming Fluid Signatures. Bulletin of Mineralogy, Petrology and Geochemistry, 23(1): 1-4 (in Chinese with English abstract). [2] Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010 [3] Bralia, A., Sabatini, G., Troja, F., 1979. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineralium Deposita, 14(3): 353-374. https://doi.org/10.1007/bf00206365 [4] Cao, H.J., Huang, G.L., Xu, L.L., et al., 2013. The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton. Acta Geologica Sinica, 87(7): 957-966 (in Chinese with English abstract). [5] Chen, P. R., Zhang, B. T., Zhang, Z. H., 1992. Speciation and Precipitation of Uranium Complexes in Hydrothermal Solutions Related to Granite-Type Uranium Deposits. Chinese Journal of Geochemistry, 11(3): 252-260. https://doi.org/10.1007/bf02842270 [6] Deng, P., Ren, J.S., Ling, H.F., et al., 2011. Yanshanian Granite Batholiths of Southern Zhuguang Mountian: SHRIMP Zircon U-Pb Dating and Tectonic Implications. Geological Review, 57(6): 881-888 (in Chinese with English abstract). [7] Deng, P., Ren, J.S., Ling, H.F., et al., 2012. SHRIMP Zircon U-Pb Ages and Tectonic Implications for Indosinian Granitoids of Southern Zhuguangshan Granitic Composite, South China. Chinese Science Bulletin, 57(14): 1231-1241 (in Chinese). doi: 10.1360/csb2012-57-14-1231 [8] Deng, P., Shen, W.Z., Ling, H.F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract). [9] Du, L.T., Wang, W.G., 2009. Alkaline Mantle Fluids and Alkali-Rich Hydrothermal Metallogenesis. Mineral Deposits, 28(5): 599-610 (in Chinese with English abstract). [10] Eglizaud, N., Miserque, F., Simoni, E., et al., 2006. Uranium (Ⅵ) Interaction with Pyrite (FeS2): Chemical and Spectroscopic Studies. Radiochimica Acta, 94(9-11): 651-656. https://doi.org/10.1524/ract.2006.94.9-11.651 [11] Fei, T.W., Luo, Y., Sun, X., 2013. Ore-Forming Fluid Features and Metallogenic Model of Uranium Deposits in Zhuguangshan Ore Field. World Nuclear Geoscience, 30(2): 63-69, 78 (in Chinese with English abstract). [12] Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC-ICP-MS. Analytica Chimica Acta, 911: 14-26. https://doi.org/10.1016/j.aca.2016.01.026 [13] Gao, X., Shen, W.Z., Liu, L.L., et al., 2011. Geochemical Characteristics and Causes of Wall Rock Alteration in the No. 302 Uranium Deposit, Northern Guangdong. Acta Petrologica et Mineralogica, 30(1): 71-82 (in Chinese with English abstract). [14] Guo, G.L., Liu, X.D., Pan, J.Y., et al., 2010. Study of Fluid Inclusion from Uranium Deposit No. 302 in North Guangdong. Uranium Geology, 26(6): 350-354, 368 (in Chinese with English abstract). [15] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583 [16] Hu, R. Z., Burnard, P. G., Bi, X. W., et al., 2009. Mantle-Derived Gaseous Components in Ore-Forming Fluids of the Xiangshan Uranium Deposit, Jiangxi Province, China: Evidence from He, Ar and C Isotopes. Chemical Geology, 266(1-2): 86-95. https://doi.org/10.1016/j.chemgeo.2008.07.017 [17] Hu, R.Z., Jin, J.F., 1988. Genesis and Origin of the Guidong Granitic Batholith. Journal of Chengdu College of Geology, 15(3): 20-28 (in Chinese with English abstract). [18] Hu, R.Z., Luo, J.C., Chen, Y.W., et al., 2019. Several Progresses in the Study of Uranium Deposits in South China. Acta Petrologica Sinica, 35(9): 2625-2636 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.01 [19] Hu, Z.C., Zhang, W., Liu, Y.S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k [20] Huang, G.L., Cao, H.J., Ling, H.F., et al., 2012. Zircon SHRIMP U-Pb Age, Geochemistry and Genesis of the Youdong Granite in Northern Guangdong. Acta Geologica Sinica, 86(4): 577-586 (in Chinese with English abstract). [21] Huang, G.L., Liu, X.Y., Sun, L.Q., et al., 2014. Zircon U-Pb Dating, Geochemical Characteristic and Genesis of the Changjiang Granite in Northern Guangdong. Acta Geologica Sinica, 88(5): 836-849 (in Chinese with English abstract). [22] Huang, G.L., Yin, Z.P., Ling, H.F., et al., 2010. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from No. 302 Uranium Deposit in Northern Guangdong. Mineral Deposits, 29(2): 352-360 (in Chinese with English abstract). [23] Ingham, E. S., Cook, N. J., Cliff, J., et al., 2014. A Combined Chemical, Isotopic and Microstructural Study of Pyrite from Roll-Front Uranium Deposits, Lake Eyre Basin, South Australia. Geochimica et Cosmochimica Acta, 125: 440-465. https://doi.org/10.1016/j.gca.2013.10.017 [24] Kostova, B., Pettke, T., Driesner, T., et al., 2004. LA-ICP-MS Study of Fluid Inclusions in Quartz from the Yuzhna Petrovitsa Deposit, Madan Ore Field, Bulgaria. Swiss Bulletin of Mineralogy and Petrology, 84(1): 25-36. https://doi.org/10.1111/j.1751-3928.2004.tb00222.x [25] Langmuir, D., 1978. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569. https://doi.org/10.1016/0016-7037(78)90001-7 [26] Lin, Y., Cook, N. J., Ciobanu, C. L., et al., 2011. Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICPMS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001 [27] Ling, H.F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201102005.htm [28] Liu, G. Q., Zhao, K. D., Jiang, S. Y., et al., 2018. In-Situ Sulfur Isotope and Trace Element Analysis of Pyrite from the Xiwang Uranium Ore Deposit in South China: Implication for Ore Genesis. Journal of Geochemical Exploration, 195: 49-65. https://doi.org/10.1016/j.gexplo.2018.07.012 [29] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [30] Lowers, H. A., Breit, G. N., Foster, A. L., et al., 2007. Arsenic Incorporation into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71(11): 2699-2717. https://doi.org/10.1016/j.gca.2007.03.022 [31] Mango, H., Ryan, P., 2015. Source of Arsenic-Bearing Pyrite in Southwestern Vermont, USA: Sulfur Isotope Evidence. Science of the Total Environment, 505: 1331-1339. https://doi.org/10.1016/j.scitotenv.2014.03.072 [32] Maslennikov, V. V., Maslennikova, S. P., Large, R. R., et al., 2009. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic- Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Economic Geology, 104(8): 1111-1141. https://doi.org/10.2113/gsecongeo.104.8.1111 [33] Niu, S. D., Li, S. R., Santosh, M., et al., 2016. Mineralogical and Isotopic Studies of Base Metal Sulfides from the Jiawula Ag-Pb-Zn Deposit, Inner Mongolia, NE China. Journal of Asian Earth Sciences, 115: 480-491. https://doi.org/10.1016/j.jseaes.2015.10.020 [34] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551 [35] Ohmoto, H., Rye, R.O., 1979. Isotope of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. Holt, Rinehart and Winston, New York. [36] Reich, M., Deditius, A., Chryssoulis, S., et al., 2013. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A SIMS/EMPA Trace Element Study. Geochimica et Cosmochimica Acta, 104: 42-62. https://doi.org/10.1016/j.gca.2012.11.006 [37] Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826-842. https://doi.org/10.2113/gsecongeo.69.6.826 [38] Scott, R. J., Meffre, S., Woodhead, J., et al., 2009. Development of Framboidal Pyrite during Diagenesis, Low-Grade Regional Metamorphism, and Hydrothermal Alteration. Economic Geology, 104(8): 1143-1168. https://doi.org/10.2113/gsecongeo.104.8.1143 [39] Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551 [40] Shen, W.Z., Ling, H.F., Deng, P., et al., 2010. Study on Isotope Geochemistry of Uranium Deposit 302 in Northern Guangdong Province. Uranium Geology, 26(2): 80-87 (in Chinese with English abstract). [41] Shen, W.Z., Zhang, Z.H., Zhang, B.T., 1988. A Study on Isotope Geology of Some Granite Type Uranium Deposits in South China. Acta Geologica Sinica, 62(1): 51-62 (in Chinese with English abstract). [42] Thomas, H. V., Large, R. R., Bull, S. W., et al., 2011. Pyrite and Pyrrhotite Textures and Composition in Sediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia: Insights for Ore Genesis. Economic Geology, 106(1): 1-31. https://doi.org/10.2113/econgeo.106.1.1 [43] Xu, H., Cai, Y.Q., Zhang, C., et al., 2018. Metallogenetic Geological Feature and the Prediction Model for Prospecting Granite Type Uranium Deposit in South China. Uranium Geology, 34(2): 65-72, 89 (in Chinese with English abstract). [44] Yue, L., Jiao, Y. Q., Wu, L. Q., et al., 2019. Selective Crystallization and Precipitation of Authigenic Pyrite during Diagenesis in Uranium Reservoir Sandbodies in Ordos Basin. Ore Geology Reviews, 107: 532-545. https://doi.org/10.1016/j.oregeorev.2019.03.003 [45] Zhang, C., Cai, Y. Q., Dong, Q., et al., 2019. Genesis of the South Zhuguang Uranium Ore Field, South China: Fluid Inclusion and H-C-O-S-Sr Isotopic Constraints. Applied Geochemistry, 100: 104-120. https://doi.org/10.1016/j.apgeochem.2018.11.008 [46] Zhang, C., Cai, Y. Q., Xu, H., et al., 2017. Mechanism of Mineralization in the Changjiang Uranium Ore Field, South China: Evidence from Fluid Inclusions, Hydrothermal Alteration, and H-O Isotopes. Ore Geology Reviews, 86: 225-253. https://doi.org/10.1016/j.oregeorev.2017.01.013 [47] Zhang, J., Deng, J., Chen, H. Y., et al., 2014. LA-ICP-MS Trace Element Analysis of Pyrite from the Chang'an Gold Deposit, Sanjiang Region, China: Implication for Ore-Forming Process. Gondwana Research, 26(2): 557-575. https://doi.org/10.1016/j.gr.2013.11.003 [48] Zhang, L., Chen, Z.Y., Li, S.R., et al., 2018. Characteristics of Uranium Minerals in Wall-Rock Alteration Zones of the Mianhuakeng (No. 302) Uranium Deposit, Northern Guangdong, South China. Acta Petrologica Sinica, 34(9): 2657-2670 (in Chinese with English abstract). [49] Zhao, F.M., Shen, C.Q., 1986. Experimental Researches on Paragenetic Condition for Pyrite and Pitchblende and Its Role in Pitchblende Formation Process. Uranium Geology, 2(4): 193-199 (in Chinese with English abstract). [50] Zhao, H. X., Frimmel, H. E., Jiang, S. Y., et al., 2011. LA-ICP-MS Trace Element Analysis of Pyrite from the Xiaoqinling Gold District, China: Implications for Ore Genesis. Ore Geology Reviews, 43(1): 142-153. https://doi.org/10.1016/j.oregeorev.2011.07.006 [51] Zhao, K. D., Jiang, S. Y., Chen, W. F., et al., 2014. Mineralogy, Geochemistry and Ore Genesis of the Dawan Uranium Deposit in Southern Hunan Province, South China. Journal of Geochemical Exploration, 138: 59-71. https://doi.org/10.1016/j.gexplo.2013.12.009 [52] Zheng, Y., Zhang, L., Chen, Y. J., et al., 2013. Metamorphosed Pb-Zn-(Ag) Ores of the Keketale VMS Deposit, NW China: Evidence from Ore Textures, Fluid Inclusions, Geochronology and Pyrite Compositions. Ore Geology Reviews, 54: 167-180. https://doi.org/10.1016/j.oregeorev.2013.03.009 [53] Zhong, F.J., Pan, J.Y., Xu, Y., et al., 2017. Mineral Chemistry of Biotites and Chlorites from Huangsha Uranium Mining Area in the Middle Nanling Range: Constraints on Petrogenesis and Uranium Mineralization. Geological Journal of China Universities, 23(4): 575-590 (in Chinese with English abstract). [54] Zhong, F.J., Yan, J., Xia, F., et al., 2019. In-Situ U-Pb Isotope Geochronology of Uraninite for Changjiang Granite-Type Uranium Ore Field in Northern Guangdong, China: Implications for Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2727-2744 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.07 [55] Zhou, H.B., Pan, J.Y., Zhong, F.J., et al., 2018. Genesis of Fine Grained Biotite Granite in the Changjiang Uranium Ore Field, Northren Guangdong of China, and Its Relation with Uranium Mineralization. Journal of Mineralogy and Petrology, 38(1): 10-19 (in Chinese with English abstract). [56] Zhu, B., Ling, H.F., Shen, W.Z., et al., 2006. Isotopic Geochemistry of Shituling Uranium Deposit, Northern Guangdong Province, China. Mineral Deposits, 25(1): 71-82 (in Chinese with English abstract). [57] Zhu, P.F., Cai, Y.Q., Guo, Q.Y., et al., 2018. Metallogenetic and Geological Characterization and Resource Potential Assessment of Uranium Resources in China. Earth Science Frontiers, 25(3): 148-158 (in Chinese with English abstract). [58] Zou, M.L., Huang, H.Y., Liu, X.Y., et al., 2017. Characterization of Arsenic-Bearing Pyrite and the Relationship with Uranium Metallogenic in the Central Zhuguang Pluton, Southern China. Geological Review, 63(4): 1021-1039 (in Chinese with English abstract). [59] 毕献武, 胡瑞忠, 彭建堂, 等, 2004. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示. 矿物岩石地球化学通报, 23(1): 1-4. doi: 10.3969/j.issn.1007-2802.2004.01.001 [60] 曹豪杰, 黄国龙, 许丽丽, 等, 2013. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征. 地质学报, 87(7): 957-966. doi: 10.3969/j.issn.0001-5717.2013.07.005 [61] 邓平, 任纪舜, 凌洪飞, 等, 2011. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质论评, 57(6): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201106011.htm [62] 邓平, 任纪舜, 凌洪飞, 等, 2012. 诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201214008.htm [63] 邓平, 沈渭洲, 凌洪飞, 等, 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 520-528. doi: 10.3321/j.issn:0379-1726.2003.06.002 [64] 杜乐天, 王文广, 2009. 碱型地幔流体与富碱热液成矿. 矿床地质, 28(5): 599-610. doi: 10.3969/j.issn.0258-7106.2009.05.006 [65] 费天伟, 罗毅, 孙祥, 2013. 诸广山成矿区铀矿床成矿流体地球化学特征与成矿模式. 世界核地质科学, 30(2): 63-69, 78. doi: 10.3969/j.issn.1672-0636.2013.02.001 [66] 高翔, 沈渭洲, 刘莉莉, 等, 2011. 粤北302铀矿床围岩蚀变的地球化学特征和成因研究. 岩石矿物学杂志, 30(1): 71-82. doi: 10.3969/j.issn.1000-6524.2011.01.007 [67] 郭国林, 刘晓东, 潘家永, 等, 2010. 粤北302铀矿床流体包裹体研究. 铀矿地质, 26(6): 350-354, 368. doi: 10.3969/j.issn.1000-0658.2010.06.005 [68] 胡瑞忠, 金景福, 1988. 论贵东花岗岩体的成因及其起源. 成都地质学院学报, 15(3): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198803002.htm [69] 胡瑞忠, 骆金诚, 陈佑纬, 等, 2019. 华南铀矿床研究若干进展. 岩石学报, 35(9): 2625-2636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909001.htm [70] 黄国龙, 曹豪杰, 凌洪飞, 等, 2012. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究. 地质学报, 86(4): 577-586. doi: 10.3969/j.issn.0001-5717.2012.04.004 [71] 黄国龙, 刘鑫扬, 孙立强, 等, 2014. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究. 地质学报, 88(5): 836-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201405003.htm [72] 黄国龙, 尹征平, 凌洪飞, 等, 2010. 粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究. 矿床地质, 29(2): 352-360. doi: 10.3969/j.issn.0258-7106.2010.02.017 [73] 凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm [74] 沈渭洲, 凌洪飞, 邓平, 等, 2010. 粤北302铀矿床同位素地球化学研究. 铀矿地质, 26(2): 80-87. doi: 10.3969/j.issn.1000-0658.2010.02.003 [75] 沈渭洲, 张祖还, 章邦桐, 1988. 华南某些花岗岩型铀矿床的同位素地质研究. 地质学报, 62(1): 51-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198801004.htm [76] 徐浩, 蔡煜琦, 张闯, 等, 2018. 华南花岗岩型铀矿成矿地质特征及找矿预测模型. 铀矿地质, 34(2): 65-72, 89. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201802001.htm [77] 张龙, 陈振宇, 李胜荣, 等, 2018. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究. 岩石学报, 34(9): 2657-2670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809010.htm [78] 赵凤民, 沈才卿, 1986. 黄铁矿与沥青铀矿的共生条件及在沥青铀矿形成过程中所起作用的实验研究. 铀矿地质, 2(4): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ198604000.htm [79] 钟福军, 潘家永, 许幼, 等, 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575-590. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201704002.htm [80] 钟福军, 严杰, 夏菲, 等, 2019. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义. 岩石学报, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm [81] 周航兵, 潘家永, 钟福军, 等, 2018. 粤北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系. 矿物岩石, 38(1): 10-19. [82] 朱捌, 凌洪飞, 沈渭洲, 等, 2006. 粤北石土岭铀矿床同位素地球化学研究. 矿床地质, 25(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200601008.htm [83] 朱鹏飞, 蔡煜琦, 郭庆银, 等, 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803015.htm [84] 邹明亮, 黄宏业, 刘鑫扬, 等, 2017. 华南诸广岩体中段含砷黄铁矿特征及其与铀成矿关系. 地质论评, 63(4): 1021-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704016.htm