• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川藏铁路廊道泸定段地质灾害孕育过程及成灾机制

    王运生 程万强 刘江伟

    王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2021.179
    引用本文: 王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2021.179
    Wang Yunsheng, Cheng Wanqiang, Liu Jiangwei, 2022. Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway. Earth Science, 47(3): 950-958. doi: 10.3799/dqkx.2021.179
    Citation: Wang Yunsheng, Cheng Wanqiang, Liu Jiangwei, 2022. Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway. Earth Science, 47(3): 950-958. doi: 10.3799/dqkx.2021.179

    川藏铁路廊道泸定段地质灾害孕育过程及成灾机制

    doi: 10.3799/dqkx.2021.179
    基金项目: 

    国家自然科学基金项目 41877235

    国家创新研究群体科学基金 41521002

    详细信息
      作者简介:

      王运生(1960-),男,教授,主要从事工程地质和地质灾害方面的教学及科研工作.ORCID: 0000-0002-1774-9494. E-mail: wangys60@163com

    • 中图分类号: P642.27

    Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway

    • 摘要:

      川藏铁路建设面临脆弱地质环境的约束,沿线重大地质灾害的孕灾过程及成灾机理研究能为有效防灾提供技术支撑.基于详细的现场调查,揭示川藏铁路廊道泸定段发育3处大型滑坡及4条泥石流沟.区内大型滑坡的孕灾因素主要有以下3点: (1)康滇古隆起多期强烈东西向挤压,致使近南北向长大结构面发育且与河谷岸坡大致平行; (2)河谷走向与最大主应力方向垂直,谷坡岩体强烈卸荷; (3)鲜水河断裂活动产生震动作用,在三面临空的突出地形、坡折微地貌处地震波放大效应叠加背坡效应,导致地震波被放大3至6倍,使得顺坡向陡缓结构面控制的高位岩体发生大规模失稳,从而导致大型滑坡发生.区内构造破碎,且受强震震裂作用影响,支沟沟谷物源丰富,沟域形态利于汇水及物源启动,受汛期7~9月集中降雨影响,易激发群发性泥石流.泥石流活动影响施工营地安全,边坡地震动放大效应影响桥位区仰坡岩体稳定性.

       

    • 图  1  研究区地质环境简图

      F1. 鲜水河断裂; F2. 大渡河断裂; F3. 龙门山中央断裂; F4. 龙门山后山断裂; F5. 金坪断裂

      Fig.  1.  Sketch map of the geological environment of the study area

      图  2  研究区地质灾害分布

      F1. 大渡河断裂; F2. 龙门山后山断裂; ①咱里滑坡; ②四湾里滑坡; ③甘草村滑坡; ④咱里泥石流沟; ⑤孙家沟泥石流沟; ⑥牧场沟泥石流沟; ⑦羊圈沟泥石流沟

      Fig.  2.  Distribution of geological disasters in the study area

      图  3  历史滑坡原始地形地貌复原

      Fig.  3.  The original topography of historical landslides is roughly restored

      图  4  岩体单元受力示意

      Fig.  4.  Schematic diagram of the force of the rock mass unit

      图  5  斜坡地震波传播示意

      Fig.  5.  Schematic diagram of seismic wave propagation on slope

      图  6  地震作用下斜坡失稳模式

      Fig.  6.  Slope instability mode under earthquake action

      图  7  泸定大桥隧道处高陡斜坡

      a. 全图; b. 右岸; c. 左岸

      Fig.  7.  High and steep slope at Luding bridge tunnel

      图  8  咱里滑坡堆积体遥感影像

      Fig.  8.  Remote sensing image of Zanli landslide accumulation body

      表  1  研究区滑坡要素信息统计

      Table  1.   Statistics of landslide element information in the study area

      滑坡名称 经度E 纬度N 高差(m) 纵长(m) 面积(km2) 方量(104m3)
      咱里滑坡 102°12'5.78" 29°58'30.16" 463 1 307 0.64 5 400
      四湾里滑坡 102°14'28.25" 29°56'28.11" 514 1 404 1.42 15 600
      甘草村滑坡 102°11'18.29" 29°53'38.49" 948 2 919 2.61 27 000
      下载: 导出CSV

      表  2  研究区泥石流要素信息统计

      Table  2.   Debris flow element information statistics in the study area

      泥石流名称 经度E 纬度N 高差(m) 主沟长(km) 流域面积(km2) 纵比降(‰) 长宽比
      咱里泥石流沟 102°10'35.89" 29°57'29.68″ 1 036 3.42 7.93 302 1.3
      孙家沟泥石流沟 102°14'49.39" 29°55'48.98" 1 400 3.08 2.44 454 1.4
      牧场沟泥石流沟 102°14'36.56" 29°54'59.89" 1 236 1.98 1.39 624 1.2
      羊圈沟泥石流沟 102°15'6.35" 29°54'12.69" 2 021 4.50 8.97 482 1.3
      下载: 导出CSV
    • [1] Cao, P., Li, Y.S., Li, Z.L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409 (in Chinese with English abstract).
      [2] Chen, F. B., Fan, W. J., 1982. Some Problems of the New Structure in the Gongga Mountain Area. Journal of Sichuan Geology, 3(2): 62-63 (in Chinese with English abstract).
      [3] Dai, F. C., Lee, C., Deng, J., et al., 2005. The 1786 Earthquake-Triggered Landslide Dam and Subsequent Dam-Break Flood on the Dadu River, Southwestern China. Geomorphology, 73(3): 277-278. https://doi.org/10.1016/j.geomorph.2004.08.011
      [4] Fan, W. J., 1982. The Geological Tectonic Foundation of Minya Gongkar and Its Characteristic Clacial Landforms Journal of Chengdu University of Science and Technology, 14(3): 19-33 (in Chinese with English abstract).
      [5] Ge, Y. F., Tang, H. M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592 (in Chinese with English abstract).
      [6] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract).
      [7] Gu, J., Wang, Y. S., Cao, W. Z., et al., 2016. Formation Mechanism and Motion Process of Lantianwan Landslide Triggered by the 1786 Moxi Earthquake. Mountain Research, 34(5): 520-529 (in Chinese with English abstract).
      [8] Guo, C. B., Wu, R. A., Jiang, L. W., et al., 2021. Typical Geohazards and Engineering Geological Problems along the Ya'an-Linzhi Section of the Sichuan-Tibet Railway, China. Geoscience, 35(1): 1-17 (in Chinese with English abstract).
      [9] He, J. X., Wang, Y. S., Cao, S. H., et al., 2016. Analysis of Seismic Monitoring Data at Mogangling Slope during the Kangding Ms6.3 and Ms5.8 Earthquakes. Journal of Yangtze River Scientific Research Institute, 33(6): 47-52 (in Chinese with English abstract).
      [10] Huang, R. Q., Pei, X. J., Li, T. B., 2008. Basic Characteristics and Formation Mechanism of the Largest Scale Landslide at Dagungbao Occurred during the Wenchuan Earthquake. Journal of Engineering Geology, 16(6): 730-741 (in Chinese with English abstract).
      [11] Ni, H. Y., 2009. Debris Flow Hazards Behind Luding County Seat, Sichuan Province, and the Corresponding Risk Countermeasures. Geology in China, 36(1): 229-237 (in Chinese with English abstract).
      [12] Ni, H. Y., Li, Z. L., Ba, R. J., et al., 2010. Formation, Characteristics and Prevention on Debris Flow Hazards in Luding County, Sichuan. Journal of Engineering Geology, 18(1): 91-99 (in Chinese with English abstract).
      [13] Quan, X. R., Huang, Y. H., Liu, C., et al., 2021. Numerical Simulation of Seismic Amplification Effect of V-shaped Deep Valley Topography on Sichuan-Tibet Railway Line. Geoscience, 35(1): 38-46 (in Chinese with English abstract).
      [14] Wang, Y. S., Liu, J. W., Zhao, B., et al., 2019. Response Characteristics of Slope Seismic to Gongxian Ms 5.4 Earthquake in Sichuan, China. Journal of Earth Sciences and Environment, 41(5): 613-622 (in Chinese with English abstract).
      [15] Wang, Y. S., Xu, H. B., Luo, Y. H., et al., 2009. Study of Formation Conditions and Toss Motion Program of High Landslides Induced by Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2360-2368 (in Chinese with English abstract).
      [16] Yang, Z. J., Ding, P. P., Wang, D., et al., 2018. Landslide Risk Analysis on Sichuan-Tibet Railway (Kangding to Nyingchi Section). Journal of the China Railway Society, 40(9): 97-103 (in Chinese with English abstract).
      [17] Zhang, Z. Y., Wang, S. T., Wang, L. S., 1994. Principles of Engineering Geological Analysis (Second Edition). Geological Publishing House, Beijing (in Chinese with English abstract).
      [18] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      [19] 陈富斌, 范文纪, 1982. 贡嘎山地区新构造的若干问题. 四川地质学报, 3(2): 62-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB198202046.htm
      [20] 范文纪, 1982. 贡嘎山的地质构造基础和冰川地貌特征. 成都科技大学学报, 14(3): 19-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198203002.htm
      [21] 葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117
      [22] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      [23] 顾金, 王运生, 曹文正, 等, 2016.1786年磨西地震烂田湾滑坡形成机制及过程. 山地学报, 34(5): 520-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201605003.htm
      [24] 郭长宝, 吴瑞安, 蒋良文, 等, 2021. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题. 现代地质, 35(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101002.htm
      [25] 贺建先, 王运生, 曹水合, 等, 2016. 康定Ms6.3和Ms5.8级地震下摩岗岭震动监测数据研究. 长江科学院院报, 33(6): 47-52.
      [26] 黄润秋, 裴向军, 李天斌, 2008. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析. 工程地质学报, 16(6): 730-741. doi: 10.3969/j.issn.1004-9665.2008.06.002
      [27] 倪化勇, 2009. 四川泸定县城后山泥石流灾害及其风险防御. 中国地质, 36(1): 229-237. doi: 10.3969/j.issn.1000-3657.2009.01.021
      [28] 倪化勇, 李宗亮, 巴仁基, 等, 2010. 四川泸定县泥石流灾害成因、特征与防治建议. 工程地质学报, 18(1): 91-99. doi: 10.3969/j.issn.1004-9665.2010.01.013
      [29] 权雪瑞, 黄靥欢, 刘春, 等, 2021. 川藏铁路线V形深切河谷地形地震放大效应数值模拟. 现代地质, 35(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101005.htm
      [30] 王运生, 刘江伟, 赵波, 等, 2019. 四川珙县Ms 5.4级地震斜坡地震动响应特征. 地球科学与环境学报, 41(5): 613-622. doi: 10.3969/j.issn.1672-6561.2019.05.009
      [31] 王运生, 徐鸿彪, 罗永红, 等, 2009. 地震高位滑坡形成条件及抛射运动程式研究. 岩石力学与工程学报, 28(11): 2360-2368. doi: 10.3321/j.issn:1000-6915.2009.11.027
      [32] 杨宗佶, 丁朋朋, 王栋, 等, 2018. 川藏铁路(康定至林芝段)沿线滑坡风险分析. 铁道学报, 40(9): 97-103. doi: 10.3969/j.issn.1001-8360.2018.09.014
      [33] 张倬元, 王士天, 王兰生, 1994. 工程地质分析原理(第二版). 北京: 地质出版社.
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  592
    • HTML全文浏览量:  183
    • PDF下载量:  101
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-16
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回