Metallogenic Age and Setting of Boka Gold Deposit Dongchuan: Evidence from Re-Os Isotope of Sulfide and Trace Element of Carbonaceous Slate
-
摘要: 播卡金矿床位于扬子西缘“康滇地轴”中南段,其与东川因民-汤丹地区元古代“东川式”铜矿成矿作用具有显著差别而备受人们关注.该矿床富矿围岩为东川群黑色碳酸盐岩-碎屑岩地层,Au产出于石英-白云石硫化物脉中,具有明显辉绿岩岩浆萃取型Au矿蚀变特征,有别于韧性剪切带型Au矿.选取新山-马家沟矿段含金黄铁矿和围岩炭质板岩分别进行Re-Os同位素和微量元素研究.结果显示,黄铁矿Re-Os等时线年龄为779±14 Ma(MSWD=11.1),说明播卡金矿床成矿时代为新元古代.黄铁矿的Os初始比值为3.03±0.42,说明播卡金矿床金属成矿物质主要来源于地壳(围岩地层)而非辉绿岩岩浆,黄铁矿和炭质板岩微量中Au(平均为402.5.00×10-9和44.98×10-9)和Cu(平均为1 733.00×10-6和46.07×10-6)的含量远远大于克拉克值(约4×10-9和60×10-6),进一步证实成矿物质来源于围岩地层炭质板岩本身.东川播卡金矿成岩时代与该区新元古代岩浆岩相关的热液改造事件基本一致,表明成矿背景为该区新元古代岩浆/热液改造的成矿响应,该时期岩浆岩与富矿围岩热接触,同时萃取围岩地层中沉积预富聚的有利成矿元素,在良好的成矿空间内富集形成东川播卡金矿床.Abstract: The Boka gold deposit is located in the middle-south section of "Kangdian axis" in the western margin of Yangtze River. It is quite different from the "Dongchuan type" copper mineralization in the Yinmin-Tangdan area of Dongchuan. The rich wall rock of the deposit is black carbonate clastic rock stratum of Dongchuan group. Au occurs in quartz dolomite sulfide vein. It has obvious alteration characteristics of diabase magma extraction type Au deposit, which is different from ductile shear zone type Au deposit.In this paper, the Au-bearing pyrite and the wall rock carbonaceous slate in the Xinshan-Majiagou ore block were selected for Re-Os isotopic and trace element studies respectively. The results show that the Re-Os isochron age of pyrite is 779±14 Ma (MSWD=11.1), indicating that the Boka gold deposit was formed in Neoproterozoic. The initial Os ratio of pyrite is 3.03±0.42, indicating that the ore-forming materials of Boka gold deposit were mainly derived from the crust (wall rock strata) rather than diabase magma. The contents of Au (402.50×10-9and 44.98×10-9on average) and Cu (1 733.00×10-6 and 46.07×10-6 on average) in pyrite and carbonaceous slate are much higher than Clark values (about 4×10-9 and 60×10-6), which further confirms that the ore-forming materials were derived from the carbonaceous slate of the surrounding rock strata. The diagenetic age of Boka gold deposit in Dongchuan is basically consistent with the Neoproterozoic magmatic rock related hydrothermal transformation events, which indicates that the metallogenic background is the ore-forming response of Neoproterozoic magmatic/hydrothermal transformation in the area. During this period, the magmatic rock is in thermal contact with the ore rich wall rock, and the favorable ore-forming elements were extracted from the wall rock strata, The Boka gold deposit in Dongchuan was formed in a good metallogenic space.
-
Key words:
- Boka gold deposit in Dongchuan /
- Re-Os isotope /
- metallogenic age /
- metallogenic dynamics /
- geochemistry
-
图 1 华南新元古代岩浆岩分布图
据刘桂春等(2020)修改; 年龄数据引用Wang et al.(2016); Yang et al.(2016); Chen et al.(2017); “红框”为研究区
Fig. 1. Distribution of Neoproterozoic magmatic rocks in the South China block
图 2 中国西南康滇成矿带地质略图及Cu-Fe矿床分布(a, 据Chen and Zhou, 2012)和播卡Au矿新山-马家沟矿段地质图(b)
Fig. 2. Simiplified geological maps and the distributions of major Fe-Cu deposits of the Kangdian Fe-Cu province (a, modified after Chen and Zhou, 2012) and the geological map of Xinshan-Majiagou ore block from the Boka gold deposit(b)
图 5 东川播卡Au矿床矿体构造-蚀变特征
a.灰白-灰色钠长岩旁侧或上部发育石英+白云石+黄铁+黄铜矿脉(1685中段2#穿脉); b, g.石英脉型黄铁矿+黄铜矿及镜下特征; c.块状黄铁矿+黄铜硫化物切穿围岩地层(1700中段北沿脉17356井口); d, h.块状黄铁矿+黄铜硫化物及镜下特征; e.黄铁矿化灰白-浅肉红色蚀变钠长岩与围岩地层接触(1700中段北沿脉17356井口); f.黄铁矿化灰白-浅肉红色蚀变钠长岩, 发育星点状黄铁+黄铜矿; Ccp.黄铜矿; Py.黄铁矿; Q.石英; S0.围岩地层产状
Fig. 5. The structural-alteration characteristics of ore body from the Boka gold deposit, Dongchuan
表 1 东川播卡Au矿床硫化物Re-Os同位素和微量样品特征
Table 1. The characteristics of Re-Os isotopie and trace elements of sulfide from the Boka gold deposit, Dongchuan
序号 样品编号 岩石名称 采样点 单矿物 测试和分析 1 180522-6 块状黄铁-黄铜矿 1700中段2#穿脉 细粒黄铁矿、黄铁矿 Re-Os同位素、微量 2 180522-5 块状黄铁-黄铜矿 1700中段北沿脉17356井口 细粒黄铁矿、黄铁矿 Re-Os同位素、微量 3 180522-7 石英脉型黄铁-黄铜矿 1685中段2#穿脉 细粒黄铁矿、黄铁矿 Re-Os同位素、微量 4 180522-12 块状黄铁-黄铜矿 1700中段北沿脉17356井口 细粒黄铁矿、黄铁矿 Re-Os同位素、微量 5 180522-13 黄铁矿化灰白-浅肉红色蚀变钠长岩 1700中段北沿脉17356井口 星点状黄铁矿、黄铁矿 Re-Os同位素、微量 表 2 东川播卡Au矿床炭质板岩Re-Os同位素和微量样品特征
Table 2. The characteristics of Re-Os isotopie and trace elements of carbonaceous slate from the Boka gold deposit, Dongchuan
序号 样品编号 岩石名称 采样点 样品类型 测试和分析 1 19HS-C-1 黑色炭质板岩 汤因线036县道公路旁, E102°57′23″ N26°16′27″ 全岩粉末样 微量 2 19HS-D-1 深黑色炭质页岩 汤因线036县道公路旁, E102°58′19″ N26°14′58″ 全岩粉末样 微量 3 19HS-G-1 深黑色炭质板岩 汤因线036县道公路旁的小道, E102°58′40″ N26°14′54″ 全岩粉末样 Re-Os同位素、微量 4 19HS2-A-1 黑色炭质千枚岩 大岩洞-岩坝塘沿江公路E102°58′46″ N26°28′52″ 全岩粉末样 Re-Os同位素、微量 5 XS-1655-1 黑色炭质板岩 播卡新山金矿1655中段(远离矿体) 全岩粉末样 Re-Os同位素、微量 6 XS-1670-1 黑色炭质板岩 播卡新山金矿1655中段(远离矿体) 全岩粉末样 Re-Os同位素、微量 7 XS-1655-KT01 黑色炭质板岩 播卡新山金矿1655中段(靠近矿体) 全岩粉末样 微量 8 XS-1655-KT02 黑色炭质板岩 播卡新山金矿1655中段(靠近矿体) 全岩粉末样 微量 表 3 东川播卡Au矿床黄铁矿和炭质板岩Re-Os同位素数据
Table 3. The Re-Os isotopic data of pyrite and carbonaceous slate from the Boka gold deposit, Dongchuan
样品号 样重(g) Re(ng/g) 普Os(ng/g) 187Re (ng/g) 187Os (ng/g) 187Re/188Os 187Os/188Os Rho 测定值 不确定值 测定值 不确定值 测定值 不确定值 测定值 不确定值 测定值 不确定值 测定值 不确定值 计算值 180522-6 0.650 7 0.562 0.004 0.000 7 0.000 0 0.353 0.003 0.004 9 0.000 0 3 671 42 51.04 0.29 0.434 180522-5 0.650 8 0.904 0.007 0.001 4 0.000 0 0.568 0.004 0.008 0 0.000 1 3 064 31 43.20 0.08 0.108 180522-7 0.650 4 0.283 0.002 0.008 6 0.000 1 0.178 0.001 0.005 9 0.000 0 1 58.5 1.6 5.250 0.010 0.066 180522-12 0.650 4 0.906 0.007 0.001 8 0.000 0 0.569 0.004 0.008 1 0.000 1 2 411 25 34.34 0.10 0.198 180522-13 0.650 0 0.237 0.002 0.001 7 0.000 0 0.149 0.001 0.002 6 0.000 0 673.2 6.9 11.64 0.03 0.224 19HS-G-1 0.500 3 2.732 0.020 0.137 2 0.001 1 1.717 0.013 0.048 7 0.000 4 96.20 1.0 2.732 0.005 0.118 19HS2-A-1 0.500 3 0.237 0.002 0.029 3 0.000 2 0.149 0.001 0.006 1 0.000 1 39.00 0.4 1.584 0.013 0.067 XS-1655-1 0.500 8 2.416 0.018 0.088 0 0.000 7 1.519 0.011 0.038 0 0.000 3 132.6 1.4 3.319 0.009 0.236 XS-1670-1 0.500 2 3.080 0.023 0.1610 0.001 2 1.936 0.014 0.037 3 0.000 3 92.40 0.9 1.781 0.003 0.168 表 4 东川播卡Au矿床黄铁矿、炭质板岩Au含量数据
Table 4. The Au content data of pyrite and carbonaceous slate from the Boka gold deposit, Dongchuan
序号 样品号 矿物、岩石 Au(10-9) Cu
(10-6)1 180522-6 黄铁矿 8.87 1 499.00 2 180522-5 黄铁矿 167.50 2 991.00 3 180522-7 黄铁矿 1 245.00 524.60 4 180522-12 黄铁矿 449.00 2 188.00 5 180522-13 黄铁矿 142.00 1 462.00 6 19HS-C-1 黑色炭质板岩(灰岩) 41.20 68.47 7 19HS-D-1 深黑色炭质页岩(板岩) 14.01 25.06 8 19HS-G-1 深黑色炭质板岩 39.82 8.79 9 19HS2-A-1 黑色炭质千枚岩 71.18 13.97 10 XS-1655-KT01 黑色炭质板岩 38.20 171.00 11 XS-1655-KT02 黑色炭质板岩 45.94 9.40 12 XS-1655-DK-1 黑色炭质板岩 56.10 20.88 13 XS-1670-1 黑色炭质板岩 53.42 50.96 克拉
克值- - 4.00 60.00 -
[1] Arne, D.C., Bierlein, F.P., Morgan, J.W., et al., 2001. Re-Os Dating of Sulfides Associated with Gold Mineralization in Central Victoria. Economic Geology, 96(6): 1455-1459. https://doi.org/10.2113/gsecongeo.96.6.1455 [2] Chen, W., Zhao, X.F., Li, X.C., et al., 2019. An Overview on the Characteristics and Origin of Iron-Oxide Copper Gold (IOCG) Deposits in China. Acta Petrologica Sinica, 35(1): 99-118(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.07 [3] Chen, W.T., Zhou, M.F., 2012. Paragenesis, Stable Isotopes, and Molybdenite Re-Os Isotope Age of the Lala Iron-Copper Deposit, Southwest China. Economic Geology, 107(3): 459-480. https://doi.org/10.2113/econgeo.107.3.459 [4] Chen, X.Y., Liu, J.L., Fan, W.K., et al., 2017. Neoproterozoic Granitoids along the Ailao Shan-Red River Belt: Zircon U-Pb Geochronology, Hf Isotope Analysis and Tectonic Implications. Precambrian Research, 299: 244-263. https://doi.org/10.1016/j.precamres.2017.06.024 [5] Creaser, R.A., Papanastassiou, D.A., Wasserburg, G. J, 1991. Negative Thermal Ion Mass Spectrometry of Osmium, Rhenium and Iridium. Geochimica et Cosmochimica Acta, 55(1): 397-401. https://doi.org/10.1016/0016-7037(91)90427-7 [6] Dong, C.C., Shu, L.S., Gu, L.X., 2014. On Diabase (Gabbro)-Albite Rock Petrography and Genetic Significance in Au (Cu) Mine in Boka of Dongchuan in Yunnan. Journal of Geology, 38(4): 583-593(in Chinese with English abstract). [7] Du, A.D., Qu, W.J., Li, C., et al., 2009. A Review on the Development of Re-Os Isotopic Dating Methods and Techniques. Rock and Mineral Analysis, 28(3): 288-304(in Chinese with English abstract). [8] Du, A.D., Qu, W.J., Wang, D.H., et al., 2012. Rhenium-Osmium Method and Its Application in the Study of the AI Deposit. Geological Publishing House, Beijing, 2-4(in Chinese). [9] Hu, J., Cheng, Z.Y., 2015. Study on the Geochornology of the Holyokeites in Boka Ore Field, Dongchuan, Yunnan Province. In: Geological Society of Jiangxi Province., ed., New Progress in Geoscience, Collection of the 13th Geoscience Science and Technology Forum of Six Provinces and One City in East China. Science and Technology Press of Jiangxi, Nanchang, 85-90(in Chinese). [10] Huang, L.G., Luo, S.W., 2005. New Understanding of Diabase Type Gold Deposits in Western Guangxi. Nan Fang Guotu Ziyuan, (2): 35-37(in Chinese). [11] Jiang, X.J., Yan, Q.G., Li, W.C., et al., 2018. The Metallogenic Age and Geodynamic Setting of the Laojiezi Pb-Ag Polymetallic Deposit, Central Yunnan Province: Evidence from Re-Os Isotope of Sulfides. Acta Geologica Sinica, 92(6): 1280-1296(in Chinese with English abstract). [12] Li, C., Pei, H.X., Wang, D.H., et al., 2016. Age and Source Constraints for Kongxintou Copper-Molybdenum Deposit in Shandong from Re-Os Isotope in Molybdenite and Chalcopyrite. Acta Geologica Sinica, 90(2): 240-249(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201602004&dbcode=CJFD&year=2016&dflag=pdfdown [13] Li, C., Qu, W.J., Du, A.D., et al., 2009. Comprehensive Study on Extraction of Rhenium with Acetone in Re-Os Isotopic Dating. Rock and Mineral Analysis, 28(3): 233-238(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=30506242 [14] Li, C., Qu, W.J., Zhou, L.M., et al., 2010. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14-16(in Chinese with English abstract). [15] Li, C., Wang, D. H, Qu, W.J., et al., 2020. A Review and Perspective on Analytical Methods of Critical Metal Elements. Rock and Mineral Analysis, 39(5): 655-666(in Chinese with English abstract). [16] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/s0301-9268(02)00207-3 [17] Li, Z.W., Tian, M., Liu, H.L., et al., 2003. The Geology of Tuobuka Gold Deposit in Dongchuan and Its Metallogenetic Chronology. Yunnan Geology, 22(4): 371-381(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD200304002.htm [18] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Research, 122(1-4): 85 -109. https://doi.org/10.1016/s0301-9268(02)00208-5 [19] Liu, C.B., Zhang, S.G., Huang, C.W., et al., 2016. Genetic Mineralogical Characteristics of Pyrite in Boka Gold Deposit from Dongchuan Area, Yunnan Province. Gold Science and Technology, 24(5): 40-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKJ201605007.htm [20] Liu, G.C., Chen, G.Y., Li, J., et al., 2020. Petrogenesis of Xiangshui Granite from Xiangyun, in the West Margin of Yangtze Block: Zircon U-Pb Geochronology, Geochemical and Sr-Nd Isotope Constraints. Earth Science, 45(7): 2426-2440(in Chinese with English abstract). [21] Liu, S., 2014. Study on Geological Characterisitics and Genesis of Boke Gold Deposit, Dongchuan District, Yunnan Province (Dissertation). Chengdu University of Technology, Chengdu, 37-40(in Chinese with English abstract). [22] Meisel, T., Walker, R.J., Morgan, J.W., 1996. The Osmium Isotopic Composition of the Earth's Primitive Upper Mantle. Nature, 383: 517-520. https://doi.org/10.1038/383517a0 [23] Nier, A.O., 1940. A Mass Spectrometer for Routine Isotope Abundance Measurements. Review of Scientific Instruments, 11(7): 212-216. https://doi.org/10.1063/1.1751688 [24] Palmer, M.R., Turekian, K.K., 1986. 187Os/186Os in Marine Manganese Nodules and the Constraints on the Crustal Geochemistries of Rhenium and Osmium. Nature, 319: 216-220. https://doi.org/10.1038/319216a0 [25] Qiu, H.N., Sun, D.Z., Zhu, B.Q., et al., 1998. 40Ar-39Ar Dating for a Quartz Sample From the Tangdan Copper Deposit, Dongchuan, Yunnan, by Crushing in Vacuum and by Incremental Heating on Its Powder. Geochimica, 27(4): 335-343(in Chinese with English abstract). [26] Qiu, H.N., Wijbrans, J.R., Li, X.H., et al., 2002. New 40Ar-39Ar Evidence for Ore-Forming Process during Jinning-Chengjiang Period in Dongchuan Type Copper Deposits, Yunnan. Mineral Deposits, 21(2): 129-136(in Chinese with English abstract). [27] Stein, H.J., Morgan, J.W., Schersten, A., 2000. Re-Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides: The Harnas Gold Deposit, Southwest Sweden, Records Continental-Scale Tectonic Events. Economic Geology, 95(8): 1657-1671. https://doi.org/10.2113/gsecongeo.95.8.1657 [28] Wang, Y.J., Zhou, Y.Z., Cai, Y.F., et al., 2016. Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction along the SW Yangtze Block. Precambrian Research, 283: 106-124. https://doi.org/10.1016/j.precamres.2016.07.017 [29] Wu, F.Q., Liang, S.Y., 2011. Research on Metallogenic Regularity of Boka Gold Deposit in Yunnan Province. Gold Science and Technology, 19(1): 1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTYG201102026.htm [30] Xiao, X.N., Yu, X.M., Xiao, E., et al., 2017a. Geochemical Characteristics and Geological Significance of the Albitite in the Boka Gold Ore District, Yunnan Province. Geological Bulletin of China, 36(8): 1417-1427(in Chinese with English abstract). [31] Xiao, X. N, Yu, X.M., Zhang, X.K., et al., 2017b. Study on Fluid Inclusions of Boka Gold Deposit in Central Yunnan. Earth Science Frontiers, 24(3): 309-318(in Chinese with English abstract). [32] Yang, Y.N., Wang, X.C., Li, Q.L., et al., 2016. Integrated In Situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze: New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273: 151-164. https://doi.org/10.1016/j.precamres.2015.12.008 [33] Ye, L., Liu, Y.P., Li, C.Y., et al., 2004. The Ar-Ar Isotopic Age in Dongchuan Taoyuan Type Copper Deposit, Yunnan Province and Ite Significance. Journal of Mineralogy and Petrology, (2): 57-60(in Chinese with English abstract). [34] Zhang, J.B., Xiao, H., 2011. Genesis of Boka Gold Deposit, Yunnan Province. Contributions to Geology and Mineral Resources Research, 26(4): 399-405(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201104008.htm [35] Zhang, S.B., Wu, P., Zheng, Y.F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Earth Science, 44(12): 4157-4166(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912026.htm [36] Zhang, W., Hu, Z.C., Liu, Y.S., et al., 2012. Reassessment of HF/HNO3 Decomposition Capability in the High-Pressure Digestion of Felsic Rocks for Multi-Element Determination by ICP-MS. Geostandards and Geoanalytical Research, 36(3): 271-289. doi: 10.1111/j.1751-908X.2012.0156.x [37] Zhao, X.F., Zhou, M.F., Su, Z.K., et al., 2017. Geology, Geochronology, and Geochemistry of the Dahongshan Fe-Cu-(Au-Ag) Deposit, Southwest China: Implications for the Formation of Iron Oxide Copper-Gold Deposits in Intracratonic Rift Settings. Economic Geology, 112(3): 603-628. https://doi.org/10.2113/econgeo.112.3.603 [38] Zhou, M.F., Zhao, X.F., Chen, W.T., et al., 2014. Proterozoic Fe-Cu Metallogeny and Supercontinental Cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam. Earth-Science Reviews, 139: 59-82. https://doi.org/10.1016/j.earscirev.2014.08.013 [39] Zhu, Z.M., Tan, H.Q., Liu, Y.D., et al., 2018. Multiple Episodes of Mineralization Revealed by Re-Os Molybdenite Geochronology in the Lala Fe-Cu Deposit, SW China. Mineralium Deposita, 53(3): 311-322. https://doi.org/10.1007/s00126-017-0740-x [40] 陈伟, 赵新福, 李晓春, 等, 2019. 中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展. 岩石学报, 35(1): 99-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901008.htm [41] 董长春, 舒良树, 顾连兴, 2014. 云南东川播卡金(铜)矿区辉绿(辉长)-钠长岩系岩相学及其成矿意义. 地质学刊, 38(4): 583-593. doi: 10.3969/j.issn.1674-3636.2014.04.583 [42] 杜安道, 屈文俊, 李超, 等, 2009. 铼-锇同位素定年方法及分析测试技术的进展. 岩矿测试, 28(3): 288-304. doi: 10.3969/j.issn.0254-5357.2009.03.019 [43] 杜安道, 屈文俊, 王登红, 等, 2012. 铼-锇法及其在矿床学中的应用. 北京: 地质出版社, 2-4. [44] 胡建, 程知言, 2015. 云南东川播卡矿田辉长辉绿岩年代学研究. 见: 江西省地质学会编, 2015地学新进展: 第十三届华东六省一市地学科技论坛文集. 南昌: 江西科学技术出版社, 85-90. [45] 黄立刚, 罗寿文, 2005. 桂西辉绿岩型金矿的新认识. 南方国土资源, (2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ20050200C.htm [46] 江小均, 严清高, 李文昌, 等, 2018. 滇中老街子Pb-Ag多金属矿床的成矿时代及成矿动力学背景探讨: 来自硫化物Re-Os同位素证据. 地质学报, 92(6): 1280-1296. doi: 10.3969/j.issn.0001-5717.2018.06.012 [47] 李超, 裴浩翔, 王登红, 等, 2016. 山东孔辛头铜钼矿成矿时代及物质来源: 来自黄铜矿、辉钼矿Re-Os同位素证据. 地质学报, 90(2): 240-249. doi: 10.3969/j.issn.0001-5717.2016.02.004 [48] 李超, 屈文俊, 杜安道, 等, 2009. 铼-锇同位素定年法中丙酮萃取铼的系统研究. 岩矿测试, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008 [49] 李超, 屈文俊, 周利敏, 等, 2010. Carius管直接蒸馏快速分离锇方法研究. 岩矿测试, 29(1): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203007.htm [50] 李超, 王登红, 屈文俊, 等, 2020. 关键金属元素分析测试技术方法应用进展. 岩矿测试, 39(5): 655-666. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202005003.htm [51] 李志伟, 田敏, 刘和林, 等, 2003. 东川拖布卡金矿地质及成矿年代学. 云南地质, 22(4): 371-381. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200304002.htm [52] 刘纯波, 张术根, 黄超文, 等, 2016. 云南东川播卡金矿床黄铁矿成因矿物学特征研究. 黄金科学技术, 24(5): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201605007.htm [53] 刘桂春, 陈光艳, 李静, 等, 2020. 扬子西缘祥云响水花岗岩体的成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素制约. 地球科学, 45(7): 2426-2440. doi: 10.3799/dqkx.2020.041 [54] 刘松, 2014. 云南东川播卡金矿床地质特征及矿床成因研究(硕士学位论文). 成都: 成都理工大学, 37-40. [55] 邱华宁, 孙大中, 朱炳泉, 等, 1998. 东川汤丹铜矿床石英真空击碎及其粉末阶段加热40Ar-39Ar年龄谱的含义. 地球化学, 27(4): 335-343. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199804003.htm [56] 邱华宁, Wijbrans, J.R., 李献华, 等, 2002. 东川式层状铜矿40Ar-39Ar成矿年龄研究: 华南地区晋宁-澄江期成矿作用新证据. 矿床地质, 21(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200202004.htm [57] 吴富强, 梁胜跃, 2011. 云南东川地区播卡金矿成矿规律研究. 黄金科学技术, 19(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201101002.htm [58] 肖晓牛, 余新明, 肖娥, 等, 2017a. 云南播卡金矿区钠长岩地球化学特征及其地质意义. 地质通报, 36(8): 1417-1427. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201708011.htm [59] 肖晓牛, 余新明, 张晓坤, 等, 2017b. 滇中播卡金矿床流体包裹体研究. 地学前缘, 24(3): 309-318. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703034.htm [60] 叶霖, 刘玉平, 李朝阳, 等, 2004. 东川桃园式铜矿Ar-Ar同位素年龄及意义. 矿物岩石, (2): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200402012.htm [61] 张建斌, 肖红, 2011. 云南播卡金矿成因分析. 地质找矿论丛, 26(4): 399-405. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201104008.htm [62] 张少兵, 吴鹏, 郑永飞, 2019. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录. 地球科学, 44(12): 4157-4166. doi: 10.3799/dqkx.2019.252