Origin and Evolution of Deep-Seated K-Rich Brine in Paleogene of Qianjiang Depression, Hubei Province
-
摘要:
地下深层富钾卤水是非常重要的钾盐资源,目前很少从区域尺度系统研究沉积盆地中富钾卤水水化学特征及成因. 对潜江凹陷深层富钾卤水进行了主、微量元素分析. 研究区卤水矿化度为125.70~347.00 g/L,K含量为0.32~6.83 g/L;富集Li、B、I、Na、Cl,亏损Mg、Br,Ca、SO4有富集也有亏损. 储层岩石矿物学特征、Nadeficit与Caexcess值以及Na/Cl摩尔比(0.83~1.32)和Cl/Br质量比(212~2 017),表明了多种水岩反应过程. 盆地卤水主要经历两个阶段的演化:盐湖含盐系地层沉积期,石膏、钙芒硝、含钾或镁硫酸盐等盐类矿物沉淀后,卤水中K初步富集,储层中硬石膏、方解石胶结作用和白云石化等成岩作用改变了卤水的成分;构造变形和剥蚀期,石盐及含钾盐类矿物被溶滤,导致卤水中K进一步富集.
Abstract:Deep-seated K-rich brine is a very important potash resource. However, there are few systematic studies on the chemical characteristics and genesis of K-rich brine in sedimentary basins on a regional scale. The major and trace element analyses of the deep-seated K-rich brine in Qianjiang Depression were carried out. The brine salinity in the study area is 125.70-347.00 g/L, and the K content is 0.32-6.83 g/L; Li, B, I, Na, Cl are enriched, Mg and Br are depleted, and Ca and SO4 are either enriched or depleted. Mineralogical features of reservoir rocks, the Nadeficit and Caexcess values as well as the molar ratio of Na/Cl (0.83-1.32) and the mass ratio of Cl/Br (212-2 017) indicate multiple water-rock reaction processes. The brine in the basin has undergone two main stages of evolution: during the depositional period of the salt-bearing strata in the salt lake, the precipitation of salt minerals such as gypsum, glauberite, potassium- and magnesium-bearing sulfate led to the initial enrichment of K, and the diagenesis processes such as anhydrite and calcite cementation and dolomitization in the reservoir caused a change in the composition of the brine; during the tectonic deformation and erosion period, the halite and potassium-containing salt minerals were dissolved by shallow or surface waters, leading to the further enrichment of K.
-
Key words:
- K-rich brine /
- water-rock interaction /
- water chemistry /
- genetic model /
- Qianjiang Depression /
- mineral deposit
-
图 1 潜江凹陷潜江组砂岩等厚图(据胡辉,2005)
Fig. 1. Contour map of sandstone thickness of the Qianjiang Formation in Qianijang Depression (from Hu, 2005)
图 2 潜江凹陷白垩系至古近系地层柱状图(据张永生等,2003)
Fig. 2. Stratigraphic column of the Cretaceous to Paleogene in Qianjiang Depression (from Zhang et al., 2003)
图 4 卤水样品离子浓度与蒸发海水对应离子浓度对比
蒸发海水Cl、Na、SO4、Mg和K的变化轨迹来自Carpenter(1978),其他离子轨迹来自周训和李慈君(1995)
Fig. 4. Comparison of ion concentrations of the brine samples with the evaporated seawater
图 5 卤水样品与蒸发海水对应离子比值的对比(据Zhou and Li,1992)
Fig. 5. Comparison of ion ratios of the brine samples with the evaporated seawater (from Zhou and Li, 1992)
图 6 潜江凹陷潜江组卤水Nadeficit和Caexcess的关系
据Lee Davisson and Criss(1996)
Fig. 6. Nadeficit and Caexcess plot of brine in the Qianjiang Formation of Qianjiang Depression
图 7 潜江凹陷潜江组储层砂岩矿物学特征
a. 硬石膏和方解石胶结,正交偏光显微镜照片,Z76井,3 356.8 m;b. 硬石膏胶结,正交偏光显微镜下照片,G70井,3 094.5 m;c. 石英晶间碳酸盐岩胶结,扫描电子显微镜照片,Z76井,3 360.2 m;d. 长石晶间充填白云石,扫描电子显微镜照片,G70井,3 103.2 m. Qtz.石英;Pl.斜长石;Anh.硬石膏;Cal.方解石;Dol.白云石
Fig. 7. Mineralogical features of reservoir sandstone in the Qianjiang Formation of Qianijang Depression
图 9 潜江凹陷潜江组富钾卤水成因模式简图(改自卢林,2005)
Fig. 9. Schematic diagrams illustrating the hypothesis for the evolution of the K-rich brines in the Qianjiang Formation of Qianjiang Depression (modified from Lu, 2005)
表 1 潜江凹陷潜江组卤水化学成分
Table 1. Chemical compositions of brine in the Qianjiang Formation of Qianjiang Depression
井号 K Na Mg Ca SO4 Cl HCO3 矿化度 I Br B Li g/L mg/L 浩5 3.50 124.73 0.05 0.33 13.15 186.40 0.47 328.70 8.08 602.55 300.17 26.67 浩28 1.12 118.02 0.07 0.38 9.98 177.44 0.40 308.00 ‒ ‒ ‒ ‒ 王45 1.60 129.87 0.05 0.14 22.48 185.18 0.57 339.30 ‒ ‒ ‒ ‒ 王1‒34‒11 0.75 113.15 0.08 0.10 28.48 153.97 0.68 297.10 ‒ ‒ ‒ ‒ 王30‒5 0.78 107.22 0.02 0.20 30.43 143.60 0.67 282.00 ‒ ‒ ‒ ‒ 钟27 0.72 102.98 0.09 0.48 8.77 154.93 0.43 269.00 10.90 463.40 73.80 55.00 钟20 1.00 109.00 0.05 0.12 14.63 158.31 0.89 284.00 10.38 268.74 85.00 60.00 钟19 1.08 110.83 0.05 0.39 9.71 165.22 0.53 288.00 9.58 242.96 127.00 55.50 钟17 0.98 106.29 0.11 1.28 9.17 158.74 0.34 276.40 9.92 290.84 175.20 60.00 钟22 0.85 124.01 0.22 0.85 1.78 193.34 0.44 321.60 ‒ ‒ ‒ ‒ 钟22 1.75 126.35 0.23 1.27 1.75 197.80 0.40 330.00 12.24 539.36 170.00 80.00 钟21 0.84 98.66 0.26 0.13 9.37 147.86 0.67 259.00 6.46 73.29 78.00 40.00 潭22 0.52 87.32 0.02 0.45 6.98 128.60 2.84 226.30 ‒ ‒ ‒ ‒ 潭22 1.06 123.80 0.09 0.61 5.36 189.00 0.41 320.50 12.90 375.50 208.00 75.00 潭7 0.65 103.17 0.13 0.01 7.65 155.00 0.65 267.50 14.80 308.20 123.00 68.00 潭7 0.88 106.92 0.13 0.37 6.18 162.00 0.27 277.00 11.57 340.67 164.00 55.00 潭2 0.44 61.93 0.01 0.18 10.40 83.40 4.94 158.80 6.47 127.00 100.36 30.30 潭132 0.75 95.60 0.11 0.18 7.17 142.60 1.41 247.50 ‒ ‒ ‒ ‒ 王22 1.85 128.21 0.02 0.21 20.80 184.00 0.77 336.00 8.70 280.00 171.82 50.60 广7 2.13 120.47 0.35 1.24 5.29 186.76 0.43 315.80 12.60 509.00 165.00 47.50 广15 3.70 126.06 0.06 0.29 10.08 190.46 0.94 330.10 9.98 369.65 124.31 25.53 广3 2.49 125.42 0.05 0.26 13.02 186.09 1.04 327.40 ‒ ‒ ‒ ‒ 王37 1.15 113.75 0.15 0.15 19.34 162.60 0.56 297.30 ‒ ‒ ‒ ‒ 丫4 0.38 62.88 0.22 0.86 3.79 96.15 0.90 165.80 ‒ ‒ ‒ ‒ 丫4 0.51 79.72 0.54 2.19 3.37 125.88 0.81 213.00 ‒ ‒ ‒ ‒ 丫14 0.39 73.02 0.40 1.67 3.34 114.00 1.02 193.80 ‒ ‒ ‒ ‒ 丫14 0.58 94.56 0.26 0.69 4.16 145.00 0.43 245.80 14.20 402.00 64.20 81.00 丫10 0.48 63.36 0.10 0.19 3.37 95.98 0.51 163.80 12.00 282.00 28.00 50.00 潜深6 1.22 70.02 0.82 1.80 17.10 100.40 2.83 194.20 ‒ ‒ ‒ ‒ 潜6 1.66 120.33 0.08 0.45 7.35 181.52 1.96 321.70 ‒ ‒ ‒ ‒ 熊2 1.09 132.90 0.04 0.18 21.08 190.25 0.96 347.00 16.04 701.70 102.00 60.00 张23 0.32 75.27 0.03 0.16 36.72 87.98 2.91 203.40 ‒ ‒ ‒ ‒ 浩10 1.05 118.09 0.04 0.29 14.03 174.51 0.37 309.10 11.30 492.00 108.00 71.00 浩29 1.15 117.10 0.12 0.38 7.34 176.89 0.58 303.10 10.60 379.40 126.00 59.20 浩29 1.93 125.13 0.06 0.29 6.84 190.05 0.58 324.30 13.60 585.80 158.00 54.50 浩29 1.89 118.76 0.15 0.92 4.38 183.19 0.82 309.40 ‒ ‒ ‒ ‒ 浩6 2.99 122.79 0.16 0.71 3.08 191.27 0.38 320.20 16.93 607.17 238.00 60.00 浩6 2.92 123.25 0.24 0.73 3.94 191.55 0.40 321.90 14.10 650.48 220.00 57.00 浩252 1.93 121.02 0.23 0.72 6.31 185.11 1.02 315.60 15.00 437.20 142.00 57.50 浩52 0.93 118.66 0.10 0.37 7.17 179.08 0.69 306.70 10.80 396.80 144.00 65.00 明4 1.91 123.56 0.09 1.52 1.79 193.70 0.36 322.70 20.70 913.00 100.00 51.00 高1 1.58 125.40 0.05 0.51 10.00 188.00 0.77 326.00 13.75 484.68 144.00 55.00 浩23 2.62 124.08 0.09 0.66 4.30 191.74 0.40 323.50 9.63 582.75 295.00 150.00 浩26 2.83 117.57 0.37 1.96 3.49 185.00 1.42 312.00 ‒ ‒ ‒ ‒ 浩92 2.41 94.11 2.33 13.55 1.53 175.51 2.43 290.90 ‒ ‒ ‒ ‒ 浩9‒1 5.50 119.46 0.07 0.43 6.14 185.49 0.22 314.70 13.76 541.24 253.48 49.00 浩17 2.77 121.84 0.38 2.61 1.90 194.16 0.94 323.50 16.00 354.80 390.00 66.70 浩17 5.09 116.62 0.20 2.32 1.08 188.12 0.36 313.79 16.00 354.80 390.00 66.70 钟38 1.72 117.09 0.14 0.91 2.46 182.00 0.52 305.00 16.50 435.50 272.00 97.00 王23 2.20 116.63 0.12 0.15 28.76 158.63 4.49 310.20 ‒ ‒ ‒ ‒ 王北13‒6 2.25 123.60 0.34 1.52 2.98 193.16 1.62 324.60 ‒ ‒ ‒ ‒ 王8 2.31 124.93 0.07 0.52 4.82 192.00 0.51 325.00 12.70 489.70 176.00 108.00 王8 6.83 70.36 0.73 6.83 1.27 127.00 1.65 211.00 ‒ ‒ ‒ ‒ 钟57 1.78 117.87 0.22 1.57 2.13 184.81 0.58 308.30 ‒ ‒ ‒ ‒ 广4 0.93 47.67 0.02 0.79 1.61 74.56 0.19 125.70 ‒ ‒ ‒ ‒ 丫2 0.63 87.06 0.51 1.89 3.83 136.31 0.89 230.90 ‒ ‒ ‒ ‒ 丫41 1.18 84.62 0.13 0.70 4.34 129.87 0.15 220.70 10.11 347.57 140.35 106.25 丫47 1.44 85.80 0.24 1.24 4.62 132.91 0.31 226.30 11.35 371.43 136.15 118.75 黄12 0.79 121.21 0.02 0.16 28.34 166.70 0.62 318.00 9.50 276.70 114.00 59.00 黄30 1.58 71.33 0.95 1.25 2.82 113.81 0.87 192.00 ‒ ‒ ‒ ‒ 浩192 3.59 126.33 0.10 0.53 7.24 193.97 0.75 332.60 ‒ ‒ ‒ ‒ 王46 3.67 121.05 0.17 1.55 1.31 192.08 0.26 320.00 ‒ ‒ ‒ ‒ 王36 3.36 125.36 0.07 0.34 9.19 190.00 0.65 333.00 11.40 322.70 238.00 65.00 王16 3.39 119.05 0.18 1.42 2.03 188.00 0.31 315.00 ‒ ‒ ‒ ‒ 王北10‒6 3.18 110.37 0.15 1.34 1.15 174.96 0.13 290.10 ‒ ‒ ‒ ‒ 潭17 0.51 82.26 0.07 0.22 10.40 120.00 0.54 214.00 8.50 201.50 47.70 81.00 潭10 0.37 62.84 0.21 0.47 4.80 94.89 0.42 163.90 7.60 162.00 28.00 40.00 广6 4.48 124.58 0.11 0.69 4.70 194.00 0.43 328.00 ‒ ‒ ‒ ‒ 广14 5.93 120.43 0.45 4.09 0.79 198.83 0.36 328.50 27.00 508.70 395.00 45.00 王新四3‒11 3.58 119.71 0.25 3.40 1.57 193.16 0.45 324.10 15.29 503.80 415.31 182.00 王49 3.68 79.14 1.05 0.78 1.76 128.44 0.12 215.00 ‒ ‒ ‒ ‒ 高8 3.11 123.26 0.13 0.66 4.21 191.14 0.48 322.90 ‒ ‒ ‒ ‒ 表 2 潜江凹陷卤水元素含量相关系数
Table 2. Correlation coefficient of element concentration of brine in Qianjiang Depression
K Na Mg Ca SO4 Cl HCO3 I Br B Li K 1.00 Na 0.35 1.00 Mg 0.18 ‒0.30 1.00 Ca 0.36 ‒0.14 0.84 1.00 SO4 ‒0.33 0.09 ‒0.29 ‒0.34 1.00 Cl 0.48 0.96 ‒0.13 0.05 ‒0.15 1.00 HCO3 ‒0.15 ‒0.28 0.18 0.16 0.35 ‒0.35 1.00 I 0.53 0.39 0.49 0.68 ‒0.44 0.51 ‒0.26 1.00 Br 0.40 0.61 0.05 0.25 ‒0.22 0.65 ‒0.32 0.60 1.00 B 0.79 0.50 0.41 0.73 ‒0.38 0.61 ‒0.15 0.49 0.30 1.00 Li 0.04 0.06 0.13 0.33 ‒0.30 0.13 ‒0.26 0.09 0.15 0.34 1.00 -
[1] Bagheri, R., Nadri, A., Raeisi, E., et al., 2014. Hydrochemical and Isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) Evidence for the Origin of Saline Formation Water in a Gas Reservoir. Chemical Geology, 384: 62-75. https://doi: 10.1016/j.chemgeo.2014.06.017 [2] Bein, A., Dutton, A. R., 1993. Origin, Distribution, and Movement of Brine in the Permian Basin (USA): A Model for Displacement of Connate Brine. Geological Society of America Bulletin, 105(6): 695-707. https://doi:10.1130/0016-7606(1993)1050695: odamob>2.3.co;2 [3] Birkle, P., García, B. M., Milland Padrón, C. M., 2009. Origin and Evolution of Formation Water at the Jujo-Tecominoacán Oil Reservoir, Gulf of Mexico. Part 1: Chemical Evolution and Water-Rock Interaction. Applied Geochemistry, 24(4): 543-554. https://doi: 10.1016/j.apgeochem.2008.12.009 [4] BАЯШКОMΓ, 1965. The Geochemical Law of Potash Deposit Formation. Translated by Fan, L., et al. . China Industry Press, Beijing (in Chinese). [5] Carpenter, A. B., 1978. Origin and Chemical Evolution of Brines in Sedimentary Basins. In: SPE Annual Fall Technical Conference and Exhibition. SPE, Texas. https://doi:10.2118/7504-ms [6] Chumakov, N. M., Zharkov, M. A., Herman, A. B., et al., 1995. Climatic Belts of the Mid-Cretaceous Time. Stratigraphy and Geological Correlation, 3: 241-260. [7] Fang, Z.X., 2002. Hydrocarbon Exploration Signification of Intersalt Sediments in Qianjiang Saline Lake Basin. Acta Sedimentologica Sinica, 20(4): 608-613, 620 (in Chinese with English abstract). [8] Fontes, J. C., Matray, J. M., 1993. Geochemistry and Origin of Formation Brines from the Paris Basin, France: 2. Saline Solutions Associated with Oil Fields. Chemical Geology, 109(1-4): 177-200. https://doi: 10.1016/0009-2541(93)90069-u [9] Fu, L.L., Liu, C.L., Wang, Q.C., et al., 2018. Deposit Characteristics and Origin of Paleogene Brine in the Qianjiang Formation of Qianjiang Depression. Journal of Salt Lake Research, 26(1): 15-24 (in Chinese with English abstract). [10] Gilder, S. A., Keller, G. R., Luo, M., et al., 1991. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China. Tectonophysics, 197(2-4): 225-243. https://doi: 10.1016/0040-1951(91)90043-r [11] Haluszczak, L. O., Rose, A. W., Kump, L. R., 2013. Geochemical Evaluation of Flowback Brine from Marcellus Gas Wells in Pennsylvania, USA. Applied Geochemistry, 28: 55-61. https://doi: 10.1016/j.apgeochem.2012.10.002 [12] Hardie, L. A., 1991. On the Significance of Evaporites. Annual Review of Earth and Planetary Sciences, 19(1): 131-168. https://doi: 10.1146/annurev.ea.19.050191.001023 [13] Hu, H., 2005. Formation Conditions and Distribution characteristics of Lithological Reservoirs in the Qianjiang Subbasin. Journal of Geomechanics, 11(1): 67-73 (in Chinese with English abstract). [14] Huang, H., Zhang, S.W., Zhang, L.Y., 2015. Mineral Characteristics and Resources Assessment of the Deep Brine in Qianjiang Formation, Jianghan Depression. Journal of Salt Lake Research, 23(2): 34-43 (in Chinese with English abstract). [15] Huang, H., Zhang, S.W., Zhang, L.Y., et al., 2013. Logging Identification of Brine Mineral Bed in the Sandstone of Qianjiang Formation, Qianjiang Depression. Geology of Chemical Minerals, 35(2): 65-71 (in Chinese with English abstract). [16] Jiao, P.C., Liu, C.L., Zhang, H., et al., 2018. New Progression Potash Exploration of Deep Brine in Lop Nur Salt Lake. Mineral Deposits, 37(1): 191-194 (in Chinese). [17] Khaska, M., le Gal la Salle, C., Videau, G., et al., 2015. Deep Water Circulation at the Northern Pyrenean Thrust: Implication of High Temperature Water-Rock Interaction Process on the Mineralization of Major Spring Water in an Overthrust Area. Chemical Geology, 419: 114-131. https://doi: 10.1016/j.chemgeo.2015.10.028 [18] Land, L. S., Prezbindowski, D. R., 1981. The Origin and Evolution of Saline Formation Water, Lower Cretaceous Carbonates, South-Central Texas, USA. Journal of Hydrology, 54(1-3): 51-74. https://doi: 10.1016/0022-1694(81)90152-9 [19] Lee Davisson, M., Criss, R. E., 1996. Na-Ca-Cl Relations in Basinal Fluids. Geochimica et Cosmochimica Acta, 60(15): 2743-2752. https://doi: 10.1016/0016-7037(96)00143-3 [20] Li, H. X., Cai, C. F., 2017. Origin and Evolution of Formation Water from the Ordovician Carbonate Reservoir in the Tazhong Area, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 148: 103-114. https://doi: 10.1016/j.petrol.2016.10.016 [21] Li, L., Liu, A.W., Qi, Z.X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract). [22] Li, L., Wang, Z.X., Zheng, Y.H., et al., 2019. Mechanism of Shale Oil Enrichment from the Salt Cyclotherm in Qian 3 Member of Qianjiang Sag, Jianghan Basin. Earth Science, 44(3): 1012-1023 (in Chinese with English abstract). [23] Li, T.W., Tan, H.B., Fan, Q.S., 2006. Hydrochemical Characteristics and Origin Analysis of the Underground Brines in West Qaidam Basin. Journal of Salt Lake Research, 14(4): 26-32 (in Chinese with English abstract). [24] Lin, Y.T., 1999. Storage Characteristics of the Ground Brine of Triassic Sichuan Basin and the Determination Factors of Its Enrichment. Journal of Salt Lake Research, 7(3): 1-7 (in Chinese with English abstract). [25] Lin, Y.T., Tang, Q., Xiong, S.J., et al., 1997. Geochemical Characteristics and Genetic Classification of Hydrogen-Oxygen Isotopes in Brines in Sichuan Basin. Geology-Geochemistry, 25(4): 20-26 (in Chinese with English abstract). [26] Liu, C.L., 2013. Characteristics and Formation of Potash Deposits in Continental Rift Basins: A Review. Acta Geoscientica Sinica, 34(5): 515-527 (in Chinese with English abstract). [27] Lu, L., 2005. The Development and Evolution of the Paleogene Synsedimentary Structure in Qianjiang Depression and Its Control on the Sedimentary System in Qianjiang Period (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [28] Ma, L.C., Huang, H., Zhang, L.Y., et al., 2015. Characteristics of Paleogene Deep Potassium-Rich Brines in the Qianjiang Depression, Hubei Province. Acta Geologica Sinica, 89(11): 2114-2121 (in Chinese with English abstract). [29] Matray, J. M., Fontes, J. C., 1990. Origin of the Oil-Field Brines in the Paris Basin. Geology, 18(6): 501. https://doi:10.1130/0091-7613(1990)0180501: ootofb>2.3.co;2 [30] Pan, Y.D., Liu, C.L., Xu, H.M., 2011. Characteristics and Formation of Potassium-Bearing Brine in the Deeper Strata in Depression in Hubei Jiangling Province. Geology of Chemical Minerals, 33(2): 65-72 (in Chinese with English abstract). [31] Sanjuan, B., Millot, R., Innocent, C., et al., 2016. Major Geochemical Characteristics of Geothermal Brines from the Upper Rhine Graben Granitic Basement with Constraints on Temperature and Circulation. Chemical Geology, 428: 27-47. https://doi: 10.1016/j.chemgeo.2016.02.021 [32] Song, H. B., Song, Z. P., Xiao, Z. Q., 1988. Stable Isotope Geochemical Characteristics of K-Rich Brines in C25 Well in the Xuanhan Area of Northeast Sichuan and Significance of Potash Exploration. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (21): 641 (in Chinese). [33] Tan, H. B., Rao, W. B., Ma, H. Z., et al., 2011. Hydrogen, Oxygen, Helium and Strontium Isotopic Constraints on the Formation of Oilfield Waters in the Western Qaidam Basin, China. Journal of Asian Earth Sciences, 40(2): 651-660. https://doi: 10.1016/j.jseaes.2010.10.018 [34] Wang, B.J., Lin, C.S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230 (in Chinese with English abstract). [35] Wilson, T. P., Long, D. T., 1993. Geochemistry and Isotope Chemistry of Ca-Na-Cl Brines in Silurian Strata, Michigan Basin, U.S.A. . Applied Geochemistry, 8(5): 507-524. https://doi: 10.1016/0883-2927(93)90079-v [36] Wu, B.H., Qu, J.Y., Wang, M.L., et al., 1983. Geochemistry of Br, Rb, B and Li in the Tertiary Saline Formation of Basin Q, Hubei Province. Mineral Deposits, 2(1): 76-86 (in Chinese with English abstract). [37] Yu, S.S., 1994. The Hydrochemcal Charactteristics of the Deep Brines in Basin Q, Hubei Province. Journal of Salt Lake Research, 2(1): 6-17 (in Chinese with English abstract). [38] Yu, X. C., Liu, C. L., Wang, C. L., et al., 2021. Origin of Geothermal Waters from the Upper Cretaceous to Lower Eocene Strata of the Jiangling Basin, South China: Constraints by Multi-Isotopic Tracers and Water-Rock Interactions. Applied Geochemistry, 124: 104810. https://doi: 10.1016/j.apgeochem.2020.104810 [39] Zhang, C.W., Gao, D.L., Ma, H.Z., et al., 2010. A Tentative Discussion on Material Source of Potash Deposit in Lanping-Simao Basin. Journal of Salt Lake Research, 18(4): 12-18 (in Chinese with English abstract). [40] Zhang, X. Y., Tan, H. B., Zhang, W. J., et al., 2014. Stable Isotopic Composition of Hydration Water in Carnallite of Late Cretaceous Potash Deposits on Khorat Plateau. Acta Geologica Sinica (English Edition), 88: 1588-1590. https://doi: 10.1111/1755-6724.12384_19 [41] Zhang, Y.S., Yang, Y.Q., Qi, Z.X., et al., 2003. Sedimentary Characteristics and Environments of the Salt-Bearing Series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin. Journal of Palaeogeography, 5(1): 29-35 (in Chinese with English abstract). [42] Zhou, X., Li, C. J., 1992. Hydrogeochemistry of Deep Formation Brines in the Central Sichuan Basin, China. Journal of Hydrology, 138(1-2): 1-15. https://doi: 10.1016/0022-1694(92)90152-l [43] Zhou, X., Li, C. J., 1995. Seawater Evaporation Trajectories and Their Application. Earth Science, 20(4): 410-414 (in Chinese with English abstract). [44] Zhou, X., Wang, X. C., Han, J. J., et al., 2018. Evolution of the Subsurface K-Rich Brines in the Triassic Carbonates in the Sichuan Basin of China. Groundwater, 56(5): 832-843. https://doi: 10.1111/gwat.12614 [45] 方志雄, 2002. 潜江盐湖盆地盐间沉积的石油地质特征. 沉积学报, 20(4): 608-613, 620. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204011.htm [46] 付路路, 刘成林, 王青春, 等, 2018. 湖北潜江凹陷北部古近系孔隙卤水矿床特征及成因. 盐湖研究, 26(1): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201801004.htm [47] 胡辉, 2005. 江汉盆地潜江凹陷岩性油藏形成条件及分布规律研究. 地质力学学报, 11(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200501009.htm [48] 黄华, 张士万, 张连元, 2015. 潜江凹陷潜江组深层卤水矿产特征与资源评价. 盐湖研究, 23(2): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201502009.htm [49] 黄华, 张士万, 张连元, 等, 2013. 潜江凹陷潜江组砂岩卤水矿床测井识别方法研究. 化工矿产地质, 35(2): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201302001.htm [50] 焦鹏程, 刘成林, 张华, 等, 2018. 罗布泊盐湖深部卤水钾盐找矿取得新进展. 矿床地质, 37(1): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201801014.htm [51] 李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220 [52] 李乐, 王自翔, 郑有恒, 等, 2019. 江汉盆地潜江凹陷潜三段盐韵律层页岩油富集机理. 地球科学, 44(3): 1012-1023. doi: 10.3799/dqkx.2018.389 [53] 李廷伟, 谭红兵, 樊启顺, 2006. 柴达木盆地西部地下卤水水化学特征及成因分析. 盐湖研究, 14(4): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200604004.htm [54] 林耀庭, 1999. 四川盆地三叠系地下卤水储层特征及其富集的控制作用. 盐湖研究, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ199903001.htm [55] 林耀庭, 唐庆, 熊淑君, 等, 1997. 四川盆地卤水的氢、氧同位素地球化学特征及其成因分类研究. 地质地球化学, 25(4): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199704003.htm [56] 刘成林, 2013. 大陆裂谷盆地钾盐矿床特征与成矿作用. 地球学报, 34(5): 515-527. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305002.htm [57] 卢林, 2005. 潜江凹陷古近纪同沉积构造发育演化及其对潜江期沉积体系的控制(硕士学位论文). 北京: 中国地质大学. [58] 马黎春, 黄华, 张连元, 等, 2015. 湖北潜江凹陷古近系深层富钾卤水矿床特征及成因. 地质学报, 89(11): 2114-2121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511023.htm [59] 潘源敦, 刘成林, 徐海明, 2011. 湖北江陵凹陷深层高温富钾卤水特征及其成因探讨. 化工矿产地质, 33(2): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201102002.htm [60] 宋鹤彬, 宋正平, 肖章棋, 1988. 川东北宣汉地区川25井富钾卤水稳定同位素地球化学特征及找钾意义. 中国地质科学院矿床地质研究所文集, (21): 641. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800009006.htm [61] 瓦里亚什科, 1965. 钾盐矿床形成的地球化学规律. 范立等译. 北京: 中国工业出版社. [62] 王必金, 林畅松, 陈莹, 等, 2006. 江汉盆地幕式构造运动及其演化特征. 石油地球物理勘探, 41(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200602023.htm [63] 吴必豪, 渠洁瑜, 王弭力, 等, 1983. 湖北Q凹陷第三纪含盐系Br、Rb、B、Li的地球化学研究. 矿床地质, 2(1): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198301009.htm [64] 于升松, 1994. 湖北江汉盆地潜江凹陷深层地下卤水水文地球化学研究. 盐湖研究, 2(1): 6-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ401.001.htm [65] 张从伟, 高东林, 马海州, 等, 2010. 兰坪—思茅盆地钾盐矿床的物质来源探讨. 盐湖研究, 18(4): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201004005.htm [66] 张永生, 杨玉卿, 漆智先, 等, 2003. 江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境. 古地理学报, 5(1): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200301002.htm [67] 周训, 李慈君, 1995. 海水蒸发轨迹及其应用. 地球科学, 20(4): 410-414. http://www.earth-science.net/article/id/248