Paleoenvironmental Implications of the Middle Jurassic Phoenicopsis angustifolia Heer in Shaerhu, Xinjiang
-
摘要: 新疆沙尔湖煤田中侏罗统西山窑组产出大量茨康类植物化石.通过选取4块狭叶拟刺葵Phoenicopsis angustifolia Heer化石作为研究对象,在详细揭示其角质层微细构造、统计气孔参数并测定其碳同位素组成的基础上,定量重建研究区中侏罗世早期阿林期至巴柔期古大气CO2浓度、古温度、古海拔高度,测算该植物的水分利用率.结果表明,狭叶拟刺葵平均气孔指数值5.90%,基于气孔比率法获得的古大气CO2浓度为(1240.16±122.75)×10-6,该值处于GEOCARB Ⅲ碳平衡模型可信误差范围内.测得植物化石角质层碳同位素δ13Cp平均值-23.07‰,计算出该植物水分利用效率272.06 mmol/mol,重建沙尔湖中侏罗世早期平均温度16.8~20.7℃,古海拔高度196.7 m.整体而言,新疆沙尔湖地区在中侏罗世早期属于一种高CO2浓度、气候温暖湿润的环境.Abstract: The Middle Jurassic Xinshanyao Formation yields abundant and diverse fossil Ginkgophytes in the Shaerhu Coalfield of Xinjiang, NW China. Four leaf compression fossil of Phoenicopsis angustifolia Heer were selected from this horizon for calculating the epidermal stomatal parameters and their isotope carbon composition of leaf cuticles. On this basis, the Middle Jurassic (Aalenian-Bajocian) paleo-atmospheric CO2 concentration, paleo-temperature, and paleo-altitude of Shaerhu region of were tentatively reconstructed. Additionally, the water use efficiency of the current Ph. angustifolia was also calculated. The results show that the average stomatal index (SI) of Phoenicopsis angustifolia Heer is 5.90%. The paleo-atmospheric CO2 concentration obtained by the stomatal ratio method is (1 240.16±122.75)×10-6, which is within the credible error range of the GEOCARB Ⅲ. The average value of the stable carbon isotope δ13Cp of plant fossils is -23.07‰, and its water use efficiency (WUE) is calculated to be 272.06 mmol/mol. The paleo-average temperature of Shaerhu is about 16.8~20.7℃, the paleo-altitude is 196.7 m, which generally reflects Shaerhu Coalfield was a kind of environment with high CO2 concentration, warm and humid climate in the early Middle Jurassic.
-
表 1 当前标本与拟刺葵亚属已知各种模式标本叶片特征对比表
Table 1. Comparisons on the leaf characters between the present fossil and the type specimens of known species of Phoenicopsis(Phoenicopsis) Samylina
属种 叶片特征 表皮特征 产地层位 长(cm) 最宽处(mm) 叶脉(条) 普通细胞形态 气孔器排列 气孔特征 Ph.(Ph.)aldanenosi 8.0 4.0~5.0 7~9 长卵形,壁直,无毛状体 带状,4~5列 气孔器椭圆形,保卫细胞微陷,具乳突 阿尔丹河左岸,任斯克组,J2 Ph.(Ph.)angustifolia > 9.0 4.0~5.0 6~10 四边或纺锤形,长宽比约(2~3)∶1,呈清晰列状 带状,2~3列 副卫细胞5~6个(或4,7个) 西伯利亚,普里萨扬组,J2 Ph.(Ph.)asiatica > 6.0 3.0~4.5 8~12 多种形状,壁直 密,带状,4~6列 气孔器椭圆-圆形,保卫细胞微陷 东哈萨克斯,邵特柯尔组,J2 Ph.(Ph.)enisseiensis 6.0 3.0~6.0 6~12 长卵形,壁直,无毛体 少,带状,3~4列 气孔器长椭圆形或偏斜具棱角型,副卫细胞具乳突 西西伯利亚,伊塔特组,J3 Ph.(Ph.)doludenkoae > 10.0 7.0~10.0 16~24 长卵形,壁直,不具乳突 列状 气孔器椭圆-圆形,保卫细胞下陷,副卫细胞发育乳突 布列亚河右岸,塔累让组,J3 Ph.(Ph.)solmsi 7.5 8.0~9.0 9~12 长带状,形态各异,具乳突 带状,2~4列不规则 气孔器多纵向方位,副卫细胞强角质化,常呈波状遮掩孔缝 法兰士约瑟夫地岛,斯蒂芬角组,K1 Ph.(Ph.)taschkessiensis > 10.0 4.0~6.0 6~10 长卵近等轴型,具平坦乳突或不具乳突 带状,4~5列 气孔器卵形,副卫细胞具乳突 哈萨克斯坦,邵特柯尔组,J2 Ph.(Ph.)taschkessiensis v.latifolia > 9.0 8.0~10.0 16~18 具乳突 带状, < 5列 气孔器卵形,具两个极副卫细胞,具乳突,保卫细胞几乎被全遮盖 哈萨克斯坦,杜兹拜组,J2 当前化石 4.8~9.0 3.5~6.0 8~10 四边或长梭形,清晰列状,具乳突 带状,3~4列 气孔器椭圆形,副卫细胞4~6个,具乳突 新疆沙尔湖,西山窑组,J2 表 2 狭叶拟刺葵植物化石的气孔参数值与古CO2浓度
Table 2. Stomatal parameters of fossil Phoenicopsis angustifolia Heer and paleoatmspheric CO2 level
化石
序号气孔密度SD
(个/mm²)表皮细胞密ED
(个/mm²)气孔指数SI
(%)气孔比率
(SR)RCO2 pCO2(NLE)
(10-6)1 36 529 6.37 1.90 3.80 1 139.72 33 522 5.95 2.03 4.07 1 220.17 36 504 6.67 1.81 3.63 1 088.46 31 509 5.74 2.11 4.22 1 264.81 2 29 492 5.57 2.17 4.34 1 303.41 31 536 5.47 2.21 4.42 1 327.24 20 315 5.97 2.03 4.05 1 216.08 28 523 5.08 2.38 4.76 1 429.13 3 20 376 5.05 2.40 4.79 1 437.62 29 461 5.92 2.04 4.09 1 226.35 19 342 5.26 2.30 4.60 1 380.23 22 357 5.80 2.09 4.17 1 251.72 4 40 546 6.83 1.77 3.54 1 062.96 32 465 6.44 1.88 4.76 1 127.33 35 472 6.90 1.75 3.51 1 052.17 32 548 5.52 2.19 4.38 1 315.22 表 3 狭叶拟刺葵植物化石的稳定碳同位素组分与Pi/Pa值
Table 3. Stable carbon isotopic and Pi/Pa values of fossil Phoenicopsis angustifolia Heer
化石序号 δ13Cp(‰,VPDB) 古大气δ13Ca(‰,VPDB) Pi/Pa 测量值 平均值 计算值 平均值 计算值 平均值 1 -22.83 -23.07 -3.78 -4.00 0.648 0.649 2 -22.49 -3.47 0.647 3 -24.22 -5.05 0.654 4 -22.75 -3.71 0.648 注:δ13Cp为本次实验的植物叶片碳同位素测量值;δ13Ca为化石所处地质时期大气CO2的碳同位素组成,由 Arens et al.(2000) 公式计算得出;Pi/Pa由Farquhar et al.(1982) 公式计算得出 -
[1] Arens, N.C., Jahren, A.H., Amundson, R., 2000. Can C3 Plants Faithfully Record the Carbon Isotopic Composition of Atmospheric Carbon Dioxide? Paleobiology, 26(1): 137-164. https://doi.org/10.1666/0094-8373(2000)026<0137:CCPFRT>2.0.CO;2 doi: 10.1666/0094-8373(2000)026<0137:CCPFRT>2.0.CO;2 [2] Beerling, D.J., Royer, D.L., 2002a. Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153(3): 387-397. https://doi.org/10.1046/J.0028-646X.2001.00335.X doi: 10.1046/j.0028-646X.2001.00335.x [3] Beerling, D. J., Royer, D. L., 2002b. Fossil Plants as Indicators of the Phanerozoic Global Carbon Cycle. Annual Review of Earth and Planetary Sciences, 30(1): 527-556. https://doi.org/10.1146/annurev.earth.30.091201.141413 [4] Berner, R.A., 1994. GEOCARB Ⅱ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 294(2): 56-91. https://doi.org/10.2475/ajs.294.1.56 [5] Berner, R.A., Kothavala, Z., 2001. GEOCARB Ⅲ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182-204. https://doi.org/10.2475/ajs.301.2.182 [6] Chakraborty, S., Jana, B. N., Bhattacharya, S. K., et al., 2011. Carbon Isotopic Composition of Fossil Leaves from the Early Cretaceous Sediments of Western India. Journal of Earth System Science, 120(4): 703-711. https://doi.org/10.1007/s12040-011-0098-x [7] Chen, J.P., Huang, D.F., Li, J.C., et al., 1999. Main Source Rocks of Petroleum from Jurassic Coal-Bearing Strata in the Turpan-Hami Basin, Northest China. Acta Geologica Sinica, (2): 140-152(in Chinese with English abstract). [8] Chen, Y.Q., Ma, L.T., Peng, L., et al., 2017. The Paleoenvironmental Significance of Ginkgoites Aganzhenensis Yang from the Middle Jurassic in the Baojishan Basin, Gansu Province. Acta Sedimentologica Sinica, 35(1): 57-66(in Chinese with English abstract). [9] Ding, S.T., Sun, B.N., Wu, J.Y., et al., 2010. Cuticular Composition and Carbon Isotope Characteristics of Jurassic Phoenicopsis (Phoenicopsis) Angustifolia Heer from Huating in Gansu Province, China. Journal of Lanzhou University(Natural Sciences), 46(1): 14-21(in Chinese with English abstract). [10] Dong, M., 2012. Middle Jurassic Plants from Shaerhu Coal Field of Xinjiang, China (Dissertation). Jilin University, Changchun(in Chinese with English abstract). [11] Du, Y.X., Karádi, V., Roghi G., et al, 2021a. Revision of the Conodont Mockina slovakensis and Its Paleogeographic Implications for the Upper Triassic Intraplatform Basins of the Alps. Journal of Earth Science, 32(3): 657-666. https://doi.org/10.1007/s12583-021-1411-5 [12] Du, Y.X., Onoue, T., Karádi, V., et al., 2021b. Evolutionary Process from Mockina bidentata to Parvigondolella andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 32(3): 667-676. https://doi.org/10.1007/s12583-020-1362-2 [13] Farquhar, G., Richards, R., 1984. Isotopic Composition of Plant Carbon Correlates with Water-Use Efficiency of Wheat Genotypes. Functional Plant Biology, 11(6): 539. https://doi.org/10.1071/pp9840539 doi: 10.1071/PP9840539 [14] Farquhar, G., O'Leary, M., Berry, J., 1982. On the Relationship between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Functional Plant Biology, 9(2): 121. https://doi.org/10.1071/pp9820121 doi: 10.1071/PP9820121 [15] Florin, R., 1936. Die Fossilen Ginkgophyten von Franz-Joseph-Land nebst Errterung über Vermeintliche Cordaitales Mesozoischen Alters. I. Spezieller Teil. Palaeontographica, B. 81(3-6): 71-173. [16] Heer, O., 1876. Beitrage zur Jura-Flora Ostsibiriens und des Amurlandes. Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, 7(22): 1-122. doi: 10.1007/BF02261547 [17] Huang, T.D., Wang, P., Li, H., et al., 2011. The Analysis of Heterotopic Formation about Extremely-Thick Coal Seam in Shaerhu Coalfield. Xinjiang Geology, 29(3): 324-326(in Chinese with English abstract). [18] Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696(in Chinese with English abstract). [19] Li, J., Yang, Q., Chen, H., et al., 2019. The Middle Jurassic Ginkgophyte Fossils from Huating, Gansu and Their Stomatal Parameters Responding to Paleoatmosphere CO2. Journal of Lanzhou University(Natural Sciences), 55(5): 561-570(in Chinese with English abstract). [20] Li, J.L., Zhang, S.Q., Pu, Z.C., et al., 2013. Spatial-Temporal Variation and Annual Air Temperature in Xinjiang during 1961-2010. Arid Land Geography, 36(2): 228-237(in Chinese with English abstract). [21] Li, R.Y., 2014. Fossil Liverworts form the Jurassic-Cretaceous of Xinjiang and Inner Mongolia and Paleoenvironment Reconstruction (Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract). [22] McElwain, J. C., Beerling, D. J., Woodward, F. I., 1999. Fossil Plants and Global Warming at the Triassic-Jurassic Boundary. Science, 285(5432): 1386-1390. https://doi.org/10.1126/science.285.5432.1386 [23] McElwain, J. C., 1998. Do Fossil Plants Signal Palaeoatmospheric Carbon Dioxide Concentration in the Geological Past?. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 353(1365): 83-96. https://doi.org/10.1098/rstb.1998.0193 [24] McElwain, J.C., Chaloner, W.G., 1995. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Annals of Botany, 76(4): 389-395. https://doi.org/10.1006/anbo.1995.1112 [25] Nie, F.J., Zhang, C.Y., Jiang, M.Z., et al., 2018. Relationship of Depositional Facies and Microfacies to Uranium Mineralization in Sandstone along the Southern Margin of Turpan-Hami Basin. Earth Science 43(10): 3584-3602(in Chinese with English abstract). [26] Royer, D. L., Berner, R. A., Park, J., 2007. Climate Sensitivity Constrained by CO2 Concentrations over the Past 420 million Years. Nature, 446(7135): 530-532. https://doi.org/10.1038/nature05699 [27] Royer, D. L., 2001. Stomatal Density and Stomatal Index as Indicators of Paleoatmospheric CO2 Concentration. Review of Palaeobotany and Palynology, 114(1/2): 1-28. https://doi.org/10.1016/s0034-6667(0)00074-9 [28] Royer, D. L., Wing, S. L., Beerling, D. J., et al., 2001. Paleobotanical Evidence for near Present-Day Levels of Atmospheric CO2 during Part of the Tertiary. Science, 292(5525): 2310-2313. https://doi.org/10.1126/science.292.5525.2310 [29] Sun, B., Dilcher, D. L., Beerling, D. J., et al., 2003. Variation in Ginkgo Biloba L. Leaf Characters Across a Climatic Gradient in China. Proceedings of the National Academy of Sciences, 100(12): 7141-7146. https://doi.org/10.1073/pnas.1232419100 [30] Sun, G., 1987. Cuticles of Phoenicopsis from NE China with Discussion on Its Taxonomy. Acta Palaeontologica Sinica, 1987(6): 662-681+688+767-770. [31] Wang, G.C., Xu, X.H., Chen, C., et al., 2020. Basin-Range Coupling and Tectonic Topography Analysis during Geological Mapping on Covered Area: A Case Study of Turpan-Hami Basin, Eastern Tianshan. Earth Science, 45(12): 4313-4331(in Chinese with English abstract). [32] Wang, Q.J., Xu, X.H., Jin, P.H., et al., 2013. Quantitative Reconstruction of Mesozoic Paleoatmosphere CO2 Based on Stomatal Parameters of Fossil Baiera furcata of Ginkgophytes. Geological Review, 59(6): 1035-1045(in Chinese with English abstract). [33] Wang, Y. D., Huang, C. M., Sun, B. N., et al., 2014. Paleo-CO2 Variation Trends and the Cretaceous Greenhouse Climate. Earth-Science Reviews, 129(3): 136-147. https://doi.org/10.1016/j.earscirev.2013.11.001 [34] Woodward, F. I., 1986. Ecophysiological Studies on the Shrub Vaccinium Myrtillus L. Taken from a Wide Altitudinal Range. Oecologia, 70(4): 580-586. https://doi.org/10.1007/bf00379908 doi: 10.1007/BF00379908 [35] Woodward, F. I., 1987. Stomatal Numbers are Sensitive to Increases in CO2 from Pre-Industrial Levels. Nature, 327(6123): 617-618. https://doi.org/10.1038/327617a0 [36] Xiao, L., Li, Y., Zhou, J. R., et al., 2014. Paleoatmospheric CO2 Level of the Middle Jurassic in Turpan-Hami Basin, Xinjiang. Journal of Lanzhou University(Natural Sciences), 50(2): 154-160(in Chinese with English abstract). [37] Xiao, L., Qi, Y.L., Ma, W.Z., et al., 2017. Stable Carbon Isotope of Middle Jurassic Plant Fossils in the North Edge of Turpan-Hami Basin, Xinjiang and Their Palaeoenvironmental Implications. Acta Sedimentologica Sinica, 35(3): 489-498(in Chinese with English abstract). [38] Xie, S.P., Yan, D.F., Wei, L.J., et al., 2005. A Stomatal Approach for Accurate Reconstruction of Palaeoatmosphere CO2 Concentration. Acta Palaeontologica Sinica, 44(3): 464-471(in Chinese with English abstract). [39] Yan, D.F., Sun, B.N., 2004. The Discovery of Solenites Murrayana L. et H. in Yaojie Coal Field, Gansu and its Geological Significance. Journal of Lanzhou University(Natural Sciences), 4(3): 84-88(in Chinese with English abstract). [40] 陈建平, 黄第藩, 李晋超, 等, 1999. 吐哈盆地侏罗纪煤系油气主力源岩探讨. 地质学报, (2): 140-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199902004.htm [41] 陈应权, 马利涛, 彭琳, 等, 2017. 甘肃宝积山盆地中侏罗世阿干镇似银杏(Ginkgoites aganzhenensis Yang)的古环境意义. 沉积学报, 35(1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701006.htm [42] 丁素婷, 孙柏年, 吴靖宇, 等, 2010. 甘肃华亭侏罗系Phoenicopsis(Phoenicopsis) angustifolia Heer的表皮构造与碳同位素特征. 兰州大学学报(自然科学版), 46(1): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201001005.htm [43] 董曼, 2012. 新疆沙尔湖煤田中侏罗世植物化石(博士学位论文). 长春: 吉林大学. [44] 黄铁栋, 王平, 李慧, 等, 2011. 沙尔湖煤田巨厚煤层异地成煤分析. 新疆地质, 29(3): 324-326. doi: 10.3969/j.issn.1000-8845.2011.03.015 [45] 焦养泉, 吴立群, 荣辉, 等. 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108001.htm [46] 李景林, 张山清, 普宗朝, 等. 2013. 近50a新疆气温精细化时空变化分析. 干旱区地理, 36(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201302005.htm [47] 李军, 杨倩, 陈慧, 等, 2019. 甘肃华亭中侏罗世银杏类化石及其气孔参数对古大气CO2的响应. 兰州大学学报(自然科学版), 55(5): 561-570. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201905003.htm [48] 李瑞云, 2014. 新疆内蒙古侏罗-白垩纪苔类植物及古环境重建(博士学位论文). 兰州: 兰州大学. [49] 聂逢君, 张成勇, 姜美珠, 等, 2018. 吐哈盆地西南缘地区砂岩型铀矿含矿目的层沉积相与铀矿化. 地球科学, 43(10): 3584-3602. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810020.htm [50] 孙革, 1987. 东北、内蒙古几种拟刺葵(Phoenicopsis)及其分类. 古生物学报, (6): 662-681+688+767-770. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198706002.htm [51] 王国灿, 申添毅, 陈超, 等, 2020. 覆盖区地质调查中的盆山构造地貌关系研究: 以东天山-吐哈盆地为例. 地球科学, 45(12): 4313-4331. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012004.htm [52] 王秋军, 徐小慧, 金培红, 等, 2013. 基于银杏类化石Baiera furcata气孔参数定量重建中生代古大气CO2浓度变化. 地质论评, 59(6): 1035-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306004.htm [53] 肖良, 李勇, 周建仁, 等, 2014. 新疆吐哈盆地中侏罗世古大气CO2重建. 兰州大学学报(自然科学版), 50(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201402003.htm [54] 肖良, 漆亚玲, 马文忠, 等, 2017. 吐哈盆地北缘中侏罗世植物化石稳定碳同位素的古环境意义. 沉积学报, 35(3): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703007.htm [55] 解三平, 阎德飞, 韦利杰, 等, 2005. 精确重建古大气CO2浓度的气孔方法. 古生物学报, 44(3): 464-471 doi: 10.3969/j.issn.0001-6616.2005.03.010 [56] 阎德飞, 孙柏年, 2004. Solenites murrayana L. et H. 在甘肃窑街煤田的发现及其地质意义. 兰州大学学报, 4(3): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200403018.htm