The Petrogenesis of Late Carboniferous Monzogranite in Mianduhe Area, Northern Great Xing'an Range: Evidence from Zircon U⁃Pb Ages, Hf Isotopic and Geochemical Features
-
摘要: 为了确定大兴安岭北段晚石炭世二长花岗岩的成因及其构造背景,对免渡河地区二长花岗岩样品进行了锆石U⁃Pb年代学、Hf同位素及地球化学分析测试.锆石U⁃Pb测年结果显示,二长花岗岩形成于307~308 Ma,为晚石炭世岩浆活动的产物.主量元素特征表明,二长花岗岩具有富碱(全碱=7.28%~9.08%)、高钾(K2O=3.45%~5.54%)和弱过铝质(A/CNK=1.02~1.19)特征,属高钾钙碱性I型花岗岩.微量元素特征表明,二长花岗岩具有中等的负铕异常(δEu=0.29~0.77),明显富集大离子亲石元素(Rb、K、Th、U)和轻稀土元素,显著亏损高场强元素(Nb、Ta、Ti)和P元素.此外Hf同位素特征显示,εHf(t)值为介于+7.7~+12.5,tDM2年龄介于501~764 Ma,表明岩浆来源于新元古代晚期下地壳新增生的角闪岩相物质部分熔融形成,并经历了显著的结晶分离过程.结合年代学、地球化学与区域地质特征,认为免渡河地区二长花岗岩是额尔古纳-兴安地块与松嫩地块碰撞拼贴后的后碰撞阶段的产物.Abstract: To determine the petrogenesis and tectonic setting of the Late Carboniferous monzogranite in the northern Great Xing'an Range, (Method) the paper analyzes the zircon U⁃Pb geochronology, Hf isotope and geochemistry of the monzogranite samples from Mianduhe area. The zircon U⁃Pb dating results show that the monzongranite was formed at 307⁃308 Ma, belonging to theLate Carboniferous.The characteristics of major elements reveal thatthe granite is characterized by alkali⁃rich(total alkali=7.28%⁃9.08%), high potassium (K2O=3.45%⁃5.54%) and weak peraluminous (A/CNK=1.02⁃1.19), suggesting that it can be classified as high potassium calc⁃alkaline Ⅰ⁃type granite.The characteristics of trace elements reveal thatthe granite has medium⁃negative Eu anomaly(δEu=0.29⁃0.77), obviously enriched LILES(Rb, K, Th and U)and LREE, significantly depleted HFSEs(Ti, Ta and Nb) and P. In addition, the Hf isotope characteristics show that the εHf(t) values range from +7.73 to +12.46, with the tDM2 age of 501⁃764 Ma, indicating that their parent magma was formed by partial melting of the Neoproterozoic juvenile lower crust under the amphibolite facies, and then experienced significant fraction crystallization.Combined with previous study, it is suggested that the Mianduhe monzogranite was responded for the collage of the Erguna⁃Xing'an block and the Songnen block in an post⁃collision setting during the Late Carboniferous.
-
Key words:
- monzogranite /
- zircon U-Pb chronology /
- Hf isotope /
- geochemistry /
- petrogenesis /
- tectonic setting
-
图 1 中国东北大地构造分区图(据Liu et al., 2017修编)(a); 免渡河地区地质简图(b)
EB. 额尔古纳地块;XB. 兴安地块;SNB. 松嫩地块;JB. 佳木斯地块;KB. 堪察加地块;NT. 那单哈达增生地体;XXS. 新林一喜桂图缝合带;HHS. 贺根山一黑河缝合带;MYS. 牡丹江一依兰缝合带;SXCYS. 索伦科尔一西拉木伦一长春一延吉缝合带;1. 德尔布干断裂;2. 嫩江一八里罕断裂;3. 佳木斯一依兰断裂;4. 敦化一密山断裂;5. 跃进山断裂;6. 赤峰一开源断裂
Fig. 1. Tectonic division of the NE China, showing the major blocks, sutures, and faults (modified after Liu et al., 2017)(a); Schematic geological map of Mianduhe area (b)
图 2 免渡河二长花岗岩手标本、野外露头和正交偏光显微镜下照片
Pl. 斜长石;Kfs. 钾长石;Qz. 石英;Bit. 黑云母;a. 中粗粒二长花岗岩手标本(3320⁃2);b. 中粗粒二长花岗岩正交偏光显微照片;c. 中细粒黑云母二长花岗岩手标本(S004);d. 中细粒黑云母二长花岗岩正交偏光显微照片;e. 中细粒黑云母二长花岗岩野外露头(S013);f. 中细粒黑云母二长花岗岩正交偏光显微照片
Fig. 2. Hand specimens, field outcrop and orthogonal polarizing microscope photos of Minduhe monzogranite
图 3 免渡河二长花岗岩TAS(全碱⁃SiO2)图解(a, 据Irvine and Baragar, 1971); A/CNK⁃A/NK图解(b, 据Maniar and Piccoli, 1989); SiO2⁃FeOT/(FeOT+MgO)图解(c, 据Frost et al., 2001);SiO2⁃K2O图解(d, 据Rickwood et al., 1989); 稀土元素球粒陨石标准化配分模式图解(e, 球粒陨石标准化值据Sun and Mcdonough, 1989); 微量元素原始地幔标准化蛛网图解(f, 原始地幔标准化值据Sun and Mcdonough, 1989)
Fig. 3. TAS(Alk vs SiO2) diagram(a, after Irvine and Baragar, 1971); A/CNK vs A/NK diagram (b, after Maniar and Piccoli, 1989); SiO2 vs FeOT/(FeOT+MgO) diagram (c, after Frost et al., 2001); SiO2 vs K2O diagram (d, after Rickwood et al., 1989); Chondrite⁃normalized REE distribution pattern diagram(e, the chondrite normalization values after Sun and Mcdonough, 1989); Primitive Mantle⁃normalized trace element spider diagram(f, the primitive mantle normalization values after Sun and Mcdonough, 1989) of Minaduhe monzogranite
图 6 免渡河二长花岗岩样品Hf同位素特征与锆石年龄关系图
中亚造山带及华北克拉通数值参考Yang et al(2006)
Fig. 6. Correlations between Hf isotopic compositions and ages of zircons from Mianduhe monzogranite samples
图 7 免渡河二长花岗岩成因类型判别图解
a. Nb⁃10 000Ga/Al图解;b. Zr⁃10 000Ga/Al图解;c.(K2O+Na2O)/CaO⁃(Zr+Nb+Ce+Y)图解;d. FeOT/MgO⁃(Zr+Nb+Ce+Y)图解;a、b、c、d底图据Whalen et al.(1987);A、I & S. A、I & S型花岗岩;FG. 分异的I型花岗岩区;OGT. 未分异的I & S花岗岩区
Fig. 7. Discriminant Diagram of Genetic Types of Mianduhe monzogranite
图 8 免渡河二长花岗岩主量元素(Al2O3+FeOT+MgO+TiO2)⁃Al2O3/(FeOT+MgO+TiO2)图解
PlAn50. 斜长石(An=50);PlAn15. 斜长石(An=15);Kfs. 钾长石;Bt. 黑云母;Ms. 白云母;Grt.石榴子石;Amp. 角闪石;a. 据Patiño,(1999);b. 造岩矿物分离结晶趋势图(Sr⁃Ba),据Janouek et al.(2004);c. Th×10-6⁃Rb×10-6图解
Fig. 8. Major elements(Al2O3+FeOT+MgO+TiO2) vs Al2O3/(FeOT+MgO+TiO2) diagram
图 10 免渡河二长花岗岩构造环境判别图解
Rb⁃(Y+Nb)(a,据Pearce,1984);Hf⁃3Ta⁃Rb/30(b,据Harris,1986);FeOT/(MgO+FeOT)⁃SiO2及FeOT⁃SiO2(c和d,据Maniar and Piccoli, 1989);AG. 岛弧花岗岩类;CAG. 大陆弧花岗岩类;CCG. 大陆碰撞花岗岩类;POG. 后造山花岗岩类;RRG. 与裂谷有关的花岗岩类;CEUG. 与大陆的造陆抬升有关的花岗岩类
Fig. 10. Discriminant relations of tectonic environment of Mianduhe monzogranite
表 1 免渡河二长花岗岩样品主量元素分析测试结果
Table 1. Major compositions of Mianduhe monzogranite
样品编号 3029‐1 3332‐1 3320‐2 S004 S005 S014 S013 G217 G334‐2 SiO2 73.39 70.47 71.28 70.93 74.92 75.63 67.49 67.47 74.48 TiO2 0.24 0.38 0.36 0.311 0.19 0.15 0.52 0.55 0.24 Al2O3 13.86 14.65 14.32 14.87 13.23 12.78 15.45 15.62 14.18 Fe2O3 1.68 2.63 2.47 2.25 1.22 1.32 3.28 3.57 0.95 FeO 1.02 1.58 0.97 0.96 1.00 1.18 2.01 1.91 0.49 MnO 0.04 0.05 0.05 0.05 0.03 0.02 0.07 0.06 0.01 MgO 0.55 1.02 0.98 0.85 0.23 0.22 1.27 1.51 0.15 CaO 1.57 1.57 1.32 2.25 0.61 0.43 2.18 2.71 0.53 Na2O 3.66 3.63 3.7 3.84 3.54 3.55 4.01 3.83 3.61 K2O 4.35 4.44 4.19 3.84 5.54 5.32 3.76 3.45 4.62 P2O5 0.09 0.15 0.15 0.11 0.04 0.04 0.21 0.19 0.09 LOI 0.53 0.96 1.08 0.6 0.46 0.52 1.76 1.02 1.12 Total 100.98 101.53 100.87 100.86 101.01 101.16 102.01 101.89 100.47 Na2O+K2O 8.01 8.07 7.89 7.68 9.08 8.87 7.77 7.28 8.23 Na2O/K2O 0.84 0.82 0.88 1.00 0.64 0.67 1.07 1.11 0.78 A/CNK 1.02 1.08 1.10 1.02 1.02 1.03 1.06 1.04 1.19 A/NK 1.29 1.36 1.35 1.42 1.12 1.10 1.45 1.56 1.30 δ 2.11 2.37 2.20 2.11 2.58 2.41 2.47 2.17 2.15 FeOT 2.53 3.94 3.19 2.98 2.10 2.37 4.96 5.12 1.34 Mg# 30.46 34.12 38.02 36.44 17.91 15.78 33.87 37.11 18.49 表 2 免渡河地区二长花岗岩类稀土元素分析测试结果(10-6)
Table 2. Rare earth element(10-6) compositions of Mianduhe monzogranite
样品编号 3029‐1 3332‐1 3320‐2 S004 S005 S014 S013 G217 G334‐2 La 23.70 33.70 27.60 26.40 46.50 34.60 35.30 34.10 26.00 Ce 47.40 75.00 69.40 56.10 85.10 69.40 77.60 77.90 48.50 Pr 4.46 8.12 6.99 5.40 11.40 8.01 9.67 8.31 6.00 Nd 14.90 31.00 26.50 19.70 42.40 29.20 37.60 32.60 22.80 Sm 2.06 5.68 5.07 3.63 7.69 5.08 7.33 6.44 4.63 Eu 0.44 0.87 0.84 0.72 0.65 0.44 1.34 1.19 0.93 Gd 1.48 4.40 4.43 3.26 6.01 3.74 6.32 5.05 4.02 Tb 0.20 0.73 0.67 0.56 0.92 0.53 0.97 0.93 0.59 Dy 1.04 3.93 3.34 2.65 3.96 2.11 5.12 4.94 2.82 Ho 0.23 0.70 0.65 0.51 0.75 0.35 0.97 0.89 0.49 Er 0.76 2.20 1.96 1.65 2.10 0.86 3.28 2.36 1.30 Tm 0.15 0.36 0.28 0.24 0.33 0.14 0.45 0.41 0.22 Yb 1.27 2.10 2.06 2.18 2.25 0.96 3.50 2.42 1.58 Lu 0.22 0.32 0.26 0.23 0.34 0.15 0.47 0.31 0.21 Y 8.00 21.40 19.70 16.60 20.50 9.71 29.90 25.60 13.30 ΣREE 98.31 169.12 150.04 123.23 210.40 155.56 189.91 177.85 120.09 LREE 92.96 154.37 136.40 111.95 193.74 146.73 168.84 160.54 108.86 HREE 5.35 14.75 13.64 11.29 16.65 8.83 21.07 17.31 11.23 LREE/HREE 17.37 10.47 10.00 9.92 11.63 16.62 8.01 9.27 9.69 LaN/YbN 13.39 11.51 9.61 8.69 14.82 25.83 7.23 10.11 11.80 δEu 0.77 0.53 0.54 0.64 0.29 0.31 0.6 0.64 0.66 δCe 1.13 1.11 1.23 1.15 0.91 1.02 1.03 1.13 0.95 注:ΣREE不包括Y 表 3 免渡河地区二长花岗岩类微量元素分析测试结果(10-6)
Table 3. Trace element(10-6) compositions of Mianduhe monzogranite
样品编号 3029‐1 3332‐1 3320‐2 S004 S005 S014 S013 G217 G334‐2 Rb 168 159 172 139 188 154 104 107 161 Sr 224 305 267 300 79 78 419 417 179 Ba 363 673 548 580 237 186 666 790 427 Th 24.70 25.80 17.20 17.30 24.80 29.50 13.30 11.20 21.80 U 2.03 2.99 2.65 2.42 2.49 2.22 2.07 3.65 2.57 Nb 8.50 12.40 11.80 8.71 14.60 4.67 14.10 13.00 12.80 Ta 0.72 1.17 1.10 0.92 1.45 0.15 1.37 1.44 1.52 Zr 98 65 67 98 147 146 97 101 99 Hf 3.88 2.44 2.53 2.93 4.78 4.80 2.50 3.16 3.62 Co 2.63 5.35 5.09 5.35 0.99 1.07 7.14 8.02 2.59 Ni 3.35 8.60 7.95 5.64 0.86 0.71 9.96 9.18 2.16 Cr 5.20 14.10 13.60 9.17 1.09 0.71 14.80 12.60 4.43 V 21.10 40.60 38.50 40.50 9.08 9.02 56.20 60.40 17.60 Sc 4.17 5.13 5.06 6.06 5.39 5.57 7.56 7.35 2.68 Li 30.50 42.00 32.60 33.10 18.30 6.18 24.90 22.10 10.40 Cs 2.48 4.56 3.08 6.50 2.57 1.71 4.69 3.14 4.21 Be 2.29 2.76 2.72 2.36 2.54 1.66 3.08 2.87 1.67 Ga 16.00 18.30 17.60 17.70 17.30 16.00 19.50 19.10 15.40 In 0.02 0.03 0.04 0.03 0.04 0.04 0.05 0.06 0.02 Tl 0.79 0.87 0.93 0.75 1.07 0.81 0.54 0.62 0.86 Cu 7.86 18.50 13.30 8.73 9.04 1.24 19.50 22.80 3.88 Pb 24.70 22.50 20.10 23.80 25.80 27.10 21.20 19.00 26.50 Zn 31.40 49.50 49.30 48.30 36.60 33.40 62.50 59.00 44.80 Re 0.004 0.006 0.002 0.003 0.002 < 0.002 < 0.002 0.009 0.006 Sb 0.01 0.06 0.04 0.14 0.05 0.05 0.03 0.07 0.09 Bi 0.08 0.07 0.05 0.22 0.07 0.08 0.08 0.09 0.10 W 0.17 0.12 0.16 0.11 0.15 0.43 0.31 0.14 0.70 Mo 0.69 0.33 0.52 0.44 0.17 0.58 0.31 0.59 0.60 Cd 0.06 0.05 0.18 0.04 0.32 0.05 0.13 0.14 0.52 注:Re(10-9) -
[1] Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry: an Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/B206707B [2] Cui, F.H., Zheng, C.Q., Xu, X.C., et al., 2013. Late Carboniferous Magmatic Activities in the Quanshenglinchang Area, Great Xing'an Range: Constrains on the Timing of Amalgamation between Xing'an and Songnen Massifs. Acta Geologica Sinica, 87(9): 1247-1263(in Chinese with English abstract). [3] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [4] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2005. Emplacement age of the Tahe Granite and its Constraints on the Tectoninc Nature of the Ergun Block in the Northern Part of the DaHingan Range. Chinese Science Bulletin, 50(12): 1239-1247(in Chinese). doi: 10.1360/csb2005-50-12-1239 [5] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical Characteristics of Collision⁃Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04 [6] Huang, B., Fu, D., Li, S.C., et al., 2016. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176(in Chinese with English abstract). [7] Irvine, T. N., Baragar, W. R. A, 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055 [8] Janoušek, V., Finger, F., Roberts, M., et al. 2004. Deciphering the Petrogenesis of Deeply Buried Granites: Whole⁃Rock Geochemical Constraints on the Origin of Largely Undepleted Felsic Granulites from the Moldanubian Zone of the Bohemian Massif. Earth and Environmental ScienceTransactions of the Royal Society of Edinburgh: , 95(1/2): 141-159. https://doi.org/10.1017/S0263593300000985 [9] Li, J.Y., Liu, J.F., Qu, J.F., et al., 2019. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts? Earth Science, 44(10): 3157-3177(in Chinese with English abstract). [10] Liu, J.F., Chi, X.G., Zhang, X.Z., et al., 2009. Geochemical Characteristic of Carboniferous Quartz⁃Diorite in the Southern Xiwuqi Area, Inner Mongolia and Its Tectonic Significance. Acta Geologica Sinica, 83(3): 365-376(in Chinese with English abstract). [11] Liu, Y.J., Li, W.M., Feng, Z.Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [12] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2 [13] McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120 (3/4) : 223-253. https://doi.org/10.1016/0009⁃2541(94)00140⁃4 [14] Miao, L.C., Fan, W.M., Zhang, F.Q., et al., 2003. Zircon SHRIMP Geochronology of the Xinkailing⁃Kele Complex in the Northwestern Lesser Xing'an Range, and Its Geological Implications. Chinese Science Bulletin, 49: 2201-2209(in Chinese). [15] Patiño, A.E., 1999. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. doi: 10.1144/GSL.SP.1999.168.01.05 [16] Pearce, J. A., Harris, N. B. W., Tindle, A. G, 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [17] Pearce, J.A., 1983. Role of the Sub⁃Continental Lithosphere in Magma Genesis at Active Continental Margins. Continental Basalts and Mantle Xenoliths. Shiva Publications, Nantwich, Cheshire, 230-249. [18] Qiu, J.S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated I⁃Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U⁃Pb Geochronology, Geochemistry and Nd⁃Hf Isotopes. Acta Petrologica Sinica, 24(11): 2468-2484(in Chinese with English abstract). [19] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8~32 kbar: Implications for Continental Growth and Crust⁃Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [20] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024⁃4937(89)90028⁃5 [21] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, London, 1-352. https://doi.org/10.1016/0016⁃7037(95)90141⁃8 [22] Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004. Emplacement Age and Tectonic Implications of the Xilinhot A⁃Type Granite in Inner Mongolia, China. Chinese Science Bulletin, 49 (4) : 384-389 (in Chinese). doi: 10.1360/csb2004-49-4-384 [23] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 [24] Tang, K.D., Wang, Y., He, G.Q., et al., 1995. Continental⁃Margin Structure of Northeast China and Its Adjacent Areas. Acta Geologica Sinica, 69(1): 16-30(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW199503001.htm [25] Tao, Z.L., Yin, J.Y., Chen, W., et al., 2019. Sr⁃Nd⁃Hf Isotopic Characteristics of Early Permian I⁃Type Granites in the Southern Tianshan: Petrogenesis and Implication for Continental Crustal Growth. Earth Science, 44(10): 3565-3582 (in Chinese with English abstract). [26] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 1-312 [27] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal MagmaTypes. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821x(83)90211⁃x [28] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [29] Wolf, M. B., Wyllie, P. J, 1994. Dehydration⁃Melting of Amphibolite at 10 Kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. https://doi.org/10.1007/BF00320972 [30] Wu, Y.Y., Ju, W.X., Shao, Y.X., et al., 2015. Stratigraphic Division and Age of Upper Carboniferous⁃Lower Permian Baoligaomiao Formation in Qagan Obo Area, Sonid Left Banner, Inner Mongolia. Geology in China, 42(4): 937-947(in Chinese with English abstract). [31] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014. Preliminary Study on the Pre⁃Mesozoic Tectonic Unit Division of the Xing⁃Meng Orogenic Belt(XMOB). Acta Petrologica Sinica, 30(7): 1841-1857(in Chinese with English abstract). [32] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an⁃Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract). [33] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246 (3-4): 336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [34] Zhao, Z., Chi, X.G., Liu, J.F., et al., 2010. Late Paleozoic Arc⁃Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258(in Chinese with English abstract). [35] Zhao, Z., Chi, X.G., Zhao, X.Y., et al., 2012. LA⁃ICP⁃MS U⁃Pb Geochronology of Detrital Zircon from the Hongshui⁃Quan Formation in the Northern Da Hinggan Area and Its Tectonic Significance. Journal of Jilin University (Earth Science Edition), 42(1): 126-135(in Chinese with English abstract). [36] Zhang, C., Wu, X.W., Liu, Y.J., et al., 2020. Genesis of Early Permian A⁃Type Granites in the Middle of the Great Xing'an Range and Constraints on Tectonic Evolution of the Zhalantun Area. Acta Petrologica Sinica, 36(4): 1091-1106(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.04.08 [37] Zhou, C.Y., Wu, F.Y., Ge, W.C., et al., 2005. Age, Geochemistry and Petrogenesis of the Cumulate Gabbro in Tahe, Northern Da Hinggan Mountain. Acta Petrologica Sinica, 21(3): 763-775(in Chinese with English abstract). [38] 崔芳华, 郑常青, 徐学纯, 等, 2013. 大兴安岭全胜林场地区晚石炭世岩浆活动研究: 对兴安地块与松嫩地块拼合时间的限定. 地质学报, 87(9): 148-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309005.htm [39] 黄波, 付冬, 李树才, 等, 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示, 岩石学报, 32(1): 50-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201601021.htm [40] 葛文春, 吴福元, 周长勇, 等, 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报, 50(12): 1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015 [41] 李锦轶, 刘建峰, 曲军峰, 等, 2019. 中国东北地区古生代构造单元: 地块还是造山带?地球科学, 44(10): 3157-3177. doi: 10.3799/dqkx.2019.980 [42] 刘建峰, 迟效国, 张兴洲, 等, 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义. 地质学报, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm [43] 苗来成, 苑蔚茗, 张福勤, 等, 2003. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义. 科学通报, 48(22); 2315-2323. doi: 10.3321/j.issn:0023-074X.2003.22.004 [44] 邱检生, 肖娥, 胡建, 等, 2008. 福建北东沿海高分异I型花岗岩的成因: 锆石U⁃Pb年代学、地球化学和Nd⁃Hf同位素制约. 岩石学报, 24(11): 2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [45] 施光海, 苗来成, 张福勤, 等, 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015 [46] 唐克东, 王莹, 何国琦, 等, 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69: 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htm [47] 陶再礼, 尹继元, 陈文, 等, 2019. 南天山早二叠世I型花岗岩Sr⁃Nd⁃Hf同位素特征: 岩石成因和大陆地壳增长的意义. 地球科学, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079 [48] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23 (6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [49] 武跃勇, 鞠文信, 邵永旭, 等, 2015. 内蒙古查干敖包地区上石炭一下二叠统宝力高庙组特征及时代. 中国地质, 42(4): 937-947. doi: 10.3969/j.issn.1000-3657.2015.04.011 [50] 徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [51] 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1621-1646. doi: 10.3799/dqkx.2019.036 [52] 赵芝, 迟效国, 刘建峰, 等, 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据. 岩石学报, 26(11): 3245-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htm [53] 赵芝, 迟效国, 赵秀羽, 等, 2012. 大兴安岭北部红水泉组碎屑锆石LA⁃ICP⁃MS U⁃Pb年代学及其地质意义. 吉林大学学报(地球科学版), 42(1): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201018.htm [54] 周长勇, 吴福元, 葛文春, 等, 2005. 大兴安岩北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因. 岩石学报, 21(3), 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503017.htm [55] 张超, 吴新伟, 刘永江, 等, 2020. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约. 岩石学报, 36(4): 1091-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004008.htm -
dqkxzx-47-8-2839-附表.docx