Geochronology and Provenance Analysis of the Xiufeng Formation in Mohe Basin: Implications for the Evolution of the Eastern Mongol-Okhotsk Ocean
-
摘要: 漠河盆地位于蒙古‒鄂霍茨克缝合带(MOSB)东段南缘,是研究蒙古‒鄂霍茨克洋东段演化的绝佳窗口.本文对漠河盆地东缘出露的绣峰组砂岩进行详细的岩相学、U-Pb锆石定年和主微量元素地球化学分析,综合前人研究成果,限定了蒙古‒鄂霍茨克洋乃至中亚造山带东段演化历史.结果表明,绣峰组砂岩碎屑物磨圆度较低、分选差,表现出近源剥蚀的特点;U-Pb锆石定年共获得217个谐和年龄,可划分为3个年龄组,其峰值均与盆地南缘额尔古纳地块的岩浆事件相吻合,其中最年轻的碎屑锆石206Pb/238U年龄加权平均值为158±2 Ma(N=5);样品相对富集大离子亲石元素(LILEs)和轻稀土元素(LREEs),亏损高场强元素(HFSEs)和重稀土元素(HREEs),具有明显的Eu负异常.样品源岩为上地壳长英质岩石,形成于大陆岛弧的构造环境,源区可能为漠河盆地南侧的大陆岛弧、额尔古纳地块以及盆地的古老基底.综上所述,绣峰组的最大沉积年龄为晚侏罗世,物源区构造背景为活动大陆边缘的大陆岛弧环境,形成于晚侏罗世蒙古‒鄂霍茨克洋向南俯冲、闭合造山的构造背景下,指示在绣峰组沉积时期(约158 Ma),蒙古‒鄂霍茨克洋仍处于俯冲阶段,尚未完全闭合.综合前人研究成果,推断蒙古‒鄂霍茨克洋最终闭合的时间可能在晚侏罗世至早白垩世之间.Abstract: The Mohe basin is located in the southern margin of the eastern Mongol-Okhotsk suture zone (MOSB), which is an excellent window for studying the evolution of the eastern Mongol-Okhotsk Ocean. In this paper, four sandstone samples from the Xiufeng Formation in the eastern margin of the Mohe basin were analyzed by petrography, chronology and geochemistry. The results show that the sandstone debris of the Xiufeng Formation has poor roundness and sorting, and shows the characteristics of near-source denudation. A total of 217 concordant ages were obtained from U-Pb zircon dating, divided into three age groups, and the peak ages of all concordant ages correspond identically to the regional magmatic activities on the Erguna Block. LA‐ICP‐MS U-Pb zircon dating yields the youngest concordant ages of 158±2 Ma (N=5) for the Xiufeng Formation. Based on the previous research results, we try to limit the evolution of the Mongol-Okhotsk Ocean and even the eastern part of the Central Asian Orogenic Belt. All samples are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), and have obvious negative Eu anomalies. The lithology of the source rocks is mainly felsic from the upper crust and is situated in active continental margins. The continental island arc provides the sediments in the Xiufeng Formation in the south of the Mohe basin, the Erguna block and the old basement of the basin. The provenance is located in the tectonic environment of the continental island arc, which is related to the southward subduction, collision and closure of the Mongol-Okhotsk Ocean in the Late Jurassic. Based on all the evidence above, we can infer that the Mongol-Okhotsk Ocean was still in the subduction stage and did not close during the sedimentation of the Xiufeng Formation (ca. 158 Ma). Combined with previous data, it is inferred that the final closure of the Mongol-Okhotsk Ocean may be limited between the Late Jurassic and Early Cretaceous.
-
Key words:
- Mohe basin /
- Mongol-Okhotsk Ocean /
- Central Asian Orogenic Belt /
- Xiufeng Formation /
- Zircon U-Pb age /
- geochemistry
-
图 1 中‒东亚主要区域大地构造图(a);中国东北地区构造分区(b);漠河盆地额木尔河群地层分布(c)
a.据Zhou and Li(2017)修改;b.据Liu et al.(2017);Liang et al.(2019)修改;c.据Guo et al.(2017)修改
Fig. 1. Schematic tectonic map showing the main subdivisions of central and eastern Asia (a); tectonic divisions of NE China (b); a detailed map of the Mohe basin shows the Emuerhe Group distribution (c)
图 3 研究区地质图及采样点位置(a);漠河盆地额木尔河群地层柱状图(b)
a.据黑龙江省地质矿产局(1993)修改;b.据Wu et al.(2003)修改
Fig. 3. Detailed geological map of the study area with sample locations(a); stratigraphic column for the Emuerhe Group in the Mohe basin (b)
图 5 绣峰组砂岩样品岩性判别图(据Folk et al., 1970修改)
Fig. 5. Lithological discrimination diagram for sandstone samples from the Xiufeng Formation (after Folk et al., 1970)
图 6 绣峰组砂岩物源判别图
a. Qt-F-L三元图;b. Qm-F-Lt三元图;据Dickinson et al.(1983)修改
Fig. 6. diagrams on provenance discrimination of the sandstones from the Xiufeng Formations
图 9 绣峰组砂岩岩石地球化学分类图解(据Herron, 1988修改)
Fig. 9. Geochemical classification diagram of the sandstones from the Xiufeng Formation (after Herron, 1988)
图 10 漠河盆地绣峰组砂岩原始地幔标准化微量元素蛛网图(a;据Sun and McDonough, 1989)和球粒陨石标准化稀土元素配分图(b;据Boynton, 1984)
Fig. 10. Primitive mantle normalized trace element spidergrams (a; after Sun and McDonough, 1989) and chondrite normalized REE patterns (b; after Boynton, 1984) of the sandstones from the Xiufeng Formation in the Mohe basin
图 11 绣峰组砂岩主量元素A-CN-K风化图解(据Nesbitt and Young, 1984修改)
实心箭头代表各火成岩的理想风化趋势线,数据引自Condie(1993);A. Al2O3;CN. CaO*+Na2O;K. K2O
Fig. 11. A-CN-K weathering diagram of major elements in sandstones from the Xiufeng Formation (after Nesbitt and Young, 1984)
图 12 漠河盆地绣峰组源岩性质判别图: La/Th-Hf判别图解(a);TiO2-Ni判别图解(b)
a.据Floyd and Leveridge(1987)修改;b.据Floyd and Leveridge(1987)修改
Fig. 12. Discrimination diagrams of source rock of the sandstones from the Xiufeng Formation; La/Th-Hf diagram (a); TiO2-Ni diagram (b)
图 13 漠河盆地绣峰组及潜在物源区碎屑锆石U-Pb年龄直方图
a.绣峰组;b.中国东北地区;c.额尔古纳地块;d~e.西伯利亚板块;N为锆石总数;数据引自Donskaya et al.(2012)、Fridovsky et al.(2020)、Nikolenko et al.(2020)、Wang et al.(2011)、Wu et al.(2011)、唐杰(2016)
Fig. 13. Histogram of detrital zircon U-Pb ages from the Xiufeng Formation, with the comparison with potential source area
图 14 额木尔河群碎屑锆石构造判别图解(据Cawood et al., 2012)
A.汇聚型盆地;B.碰撞型盆地;C.伸展型盆地;数据引自Zhang et al.(2020)、Liang et al.(2019)、李良等(2017)
Fig. 14. Tectonic discrimination diagram of detrital zircons from the Emuerhe Group (after Cawood et al., 2012)
图 15 绣峰组砂岩样品主要元素和微量元素数据的构造判别图
a~b.据Roser and Korsch(1986)修改;c~d.据Bhatia and Crook(1986)修改;CIA.大陆岛弧;OIA.大洋岛弧;ACM.活动大陆边缘;PM.被动大陆边缘;A1.长英质侵入岩岛弧源区;A2.玄武岩和安山岩岛弧源区
Fig. 15. Discrimination diagrams defining the tectonic setting of clastic sediments based on major and trace element data in the Xiufeng Formation
表 1 漠河盆地绣峰组砂岩样品碎屑组分含量(%)
Table 1. Detrital component contents (%) of sandstone samples in the Xiufeng Formation in the Mohe basin
样品号 Qt F L Qm Lt 17MH21 33 31 36 36 37 19MH07 37 29 34 32 35 19MH8-1 30 33 37 29 38 19MH46 33 30 37 32 38 表 2 漠河盆地绣峰组砂岩主量元素(%)、微量元素(10‒6)测试结果
Table 2. Major (%) and trace (10‒6) element compositions of the sandstones from the Xiufeng Formation in the Mohe basin
样品号 19MH07-1 19MH07-2 19MH08-1 19MH08-2 19MH46-1 19MH46-2 17MH21-1 17MH21-2 SiO2 74.04 73.24 70.86 70.75 72.91 72.99 72.04 72.10 Al2O3 13.50 13.90 14.32 14.29 13.15 13.04 13.80 13.91 TFe 2.15 2.11 2.45 2.51 2.50 2.41 2.00 1.92 CaO 0.39 0.38 1.42 1.41 1.08 0.97 1.09 1.03 MgO 0.45 0.43 0.93 0.94 0.92 0.89 0.90 0.87 K2O 3.67 4.11 3.75 3.76 2.97 2.97 3.84 3.92 Na2O 4.33 4.22 3.67 3.66 3.94 3.96 3.87 3.86 TiO2 0.27 0.25 0.48 0.49 0.44 0.39 0.28 0.26 P2O5 0.08 0.07 0.08 0.08 0.10 0.09 0.07 0.07 MnO 0.05 0.05 0.04 0.04 0.06 0.06 0.05 0.05 LOI 1.10 1.19 1.78 1.79 1.89 1.74 1.63 1.70 总计 100.02 99.96 99.79 99.73 99.96 99.51 99.56 99.68 A/NK 1.69 1.67 1.93 1.93 1.90 1.88 1.79 1.79 A/CNK 1.14 1.15 1.13 1.13 1.13 1.13 1.10 1.12 K2O/Na2O 0.85 0.97 1.02 1.03 0.75 0.75 0.99 1.02 Li 16.83 15.45 18.67 17.96 20.98 22.36 15.05 14.44 Be 1.41 1.41 2.43 2.30 1.56 1.61 2.08 2.01 B 6.74 6.10 9.20 9.07 14.84 14.52 17.11 17.14 Sc 1.98 1.68 5.65 5.33 4.27 4.70 3.51 2.91 V 26.97 28.09 46.14 45.15 40.06 39.18 32.17 30.52 Cr 5.15 5.04 36.49 36.56 27.00 26.57 27.42 26.08 Mn 283.60 289.80 254.60 249.40 354.10 357.40 279.70 261.30 Co 3.11 2.81 6.09 6.05 4.70 5.05 4.18 4.27 Ni 2.53 2.36 11.42 11.42 10.08 10.87 9.87 9.26 Cu 2.12 2.08 7.74 6.88 4.68 7.39 4.84 4.76 Zn 36.22 35.64 52.36 53.32 39.54 153.80 36.75 36.55 Ga 13.95 14.12 17.25 16.46 13.63 14.02 14.75 14.31 Ge 2.58 2.59 2.89 2.79 2.75 2.83 2.64 2.52 As 4.56 4.49 5.45 6.31 4.00 3.45 3.50 3.65 Se 0.60 0.69 1.14 1.02 0.88 1.01 0.83 0.69 Rb 69.60 82.08 78.85 60.73 40.35 51.79 52.70 58.19 Sr 85.47 87.93 282.60 264.80 108.80 112.30 138.70 123.60 Y 7.56 7.58 18.33 16.64 14.29 13.08 10.46 9.72 Zr 142.50 156.30 306.40 319.60 248.40 179.80 133.70 118.40 Nb 6.69 6.56 11.79 11.42 8.02 7.28 6.16 5.71 Mo 0.19 0.16 0.17 0.17 0.13 0.14 0.13 0.11 Ag 0.14 0.15 0.29 0.29 0.23 0.17 0.14 0.12 Cd 0.87 1.12 1.93 2.08 1.63 1.21 0.83 0.76 Sn 1.07 0.99 2.14 1.99 1.48 1.48 1.36 1.27 Sb 1.65 1.79 3.55 3.44 1.90 2.21 2.19 1.80 Cs 1.13 1.09 11.27 10.23 1.62 1.83 1.74 1.85 Ba 781.70 881.40 752.80 727.90 645.60 678.90 770.70 764.10 La 20.25 19.07 28.10 24.89 26.26 26.45 16.21 13.80 Ce 35.75 32.57 53.28 51.87 49.52 48.16 32.65 27.79 Pr 4.37 4.11 6.67 6.12 5.96 5.79 3.89 3.28 Nd 15.40 14.37 24.41 22.63 21.45 20.81 14.16 12.13 Sm 2.54 2.46 4.56 4.34 3.81 3.65 2.67 2.33 Eu 0.65 0.67 0.87 0.81 0.85 0.83 0.70 0.64 Gd 2.13 2.08 4.10 3.90 3.33 3.19 2.45 2.14 Tb 0.31 0.30 0.62 0.61 0.49 0.45 0.36 0.32 Dy 1.72 1.76 3.66 3.54 2.82 2.49 2.08 1.89 Ho 0.35 0.37 0.76 0.72 0.57 0.51 0.43 0.39 Er 1.06 1.11 2.25 2.20 1.68 1.50 1.28 1.14 Tm 0.16 0.16 0.34 0.33 0.24 0.22 0.19 0.17 Yb 1.06 1.09 2.23 2.15 1.64 1.48 1.26 1.12 Lu 0.17 0.17 0.34 0.33 0.25 0.23 0.19 0.17 Hf 3.71 3.98 8.18 8.30 6.19 4.48 3.38 2.95 Ta 0.48 0.46 0.82 0.80 0.60 0.54 0.46 0.42 W 0.42 0.41 1.99 1.95 1.11 1.06 0.56 0.50 Tl 0.65 0.71 0.90 0.86 0.54 0.55 0.72 0.72 Pb 14.33 16.34 19.18 18.84 13.41 13.75 16.15 15.92 Bi 0.05 0.05 0.18 0.19 0.09 0.09 0.11 0.11 Th 4.65 4.77 9.13 10.08 6.76 6.42 5.07 4.60 U 0.80 0.86 2.46 2.42 1.45 1.49 1.39 1.18 δEu 0.83 0.89 0.60 0.59 0.72 0.73 0.82 0.86 Sr/Y 80.25 89.21 132.06 133.13 73.61 75.72 101.99 97.55 ΣREE 85.90 80.29 132.19 124.44 118.87 115.73 78.52 67.30 ΣLREE/ΣHREE 11.37 10.41 8.24 8.04 9.80 10.52 8.52 8.18 (La/Yb)N 12.93 11.78 8.48 7.82 10.79 12.07 8.68 8.32 -
[1] Bhatia, M. R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. https://doi.org/10.1086/628815 [2] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/BF00375292 [3] Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry, Elsevier, New York, 63-114. https://doi.org/10.1016/B978⁃0⁃444⁃42148⁃7.50008⁃3 [4] Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875-878. https://doi.org/10.1130/g32945.1 [5] Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253-266. https://doi.org/10.1007/s12583-021-1404-4 [6] Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4): 1-37. https://doi.org/10.1016/0009-2541(93)90140-E [7] Dickinson, W. R., 1979. Plate Tectonics and Sandstone Compositions. AAPG Bulletin, 63: 2164-2182. https://doi.org/10.1306/2f9188fb-16ce-11d7-8645000102c1865d [8] Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222-235. https://doi.org/10.1130/0016-7606(1983)94222: ponaps>2.0.co;2 doi: 10.1130/0016-7606(1983)94222:ponaps>2.0.co;2 [9] Donskaya, T. V., Gladkochub, D. P., Mazukabzov, A. M., et al., 2012. The Late Triassic Kataev Volcanoplutonic Association in Western Transbaikalia, a Fragment of the Active Continental Margin of the Mongol-Okhotsk Ocean. Russian Geology and Geophysics, 53(1): 22-36. https://doi.org/10.1016/j.rgg.2011.12.002 [10] Enkin, R. J., Yang, Z. Y., Chen, Y., et al., 1992. Paleomagnetic Constraints on the Geodynamic History of the Major Blocks of China from the Permian to the Present. Journal of Geophysical Research: Solid Earth, 97(B10): 13953-13989. https://doi.org/10.1029/92JB00648 [11] Fedo, C. M., Wayne Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)0230921: uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 [12] Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. https://doi.org/10.1144/gsjgs.144.4.0531 [13] Folk, R. L., Andrews, P. B., Lewis, D. W., 1970. Detrital Sedimentary Rock Classification and Nomenclature for Use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4): 937-968. https://doi.org/10.1080/00288306.1970.10418211 [14] Fridovsky, V. Y., Yakovleva, K. Y., Vernikovskaya, A. E., et al., 2020. Geodynamic Emplacement Setting of Late Jurassic Dikes of the Yana-Kolyma Gold Belt, NE Folded Framing of the Siberian Craton: Geochemical, Petrologic, and U-Pb Zircon Data. Minerals, 10(11): 1000. https://doi.org/10.3390/min10111000 [15] Guo, Z. X., Yang, Y. T., Zyabrev, S., et al., 2017. Tectonostratigraphic Evolution of the Mohe-Upper Amur Basin Reflects the Final Closure of the Mongol-Okhotsk Ocean in the Latest Jurassic-Earliest Cretaceous. Journal of Asian Earth Sciences, 145: 494-511. https://doi.org/10.1016/j.jseaes.2017.06.020 [16] He, Z. H., Wang, Y. F., Hou, W., 2008. Geochemistry and Provenance Analysis of the Middle Jurassic Sandstones in the Mohe Basin, Heilongjiang. Sedimentary Geology and Tethyan Geology, 28(4): 93-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2008.04.016 [17] He, Z. J., Li, J. Y., Mo, S. G., et al., 2003. Geochemistry, Tectonic Background and Provenance Analysis of the Sandstones from the Mohe Foreland Basin. Science in China (Series D), 33(12): 1219-1226 (in Chinese). [18] Heilongjiang Bureau of Geology Mineral Resources, 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing (in Chinese). [19] Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58(5): 820-829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d [20] Hou, W., Liu, Z. J., He, Y. P., et al., 2010. Sedimentary Characteristics and Tectonic Setting of the Upper Jurassic Mohe Basin. Journal of Jilin University (Earth Science Edition), 40(2): 286-297 (in Chinese with English abstract). [21] Johnsson, M., 1993. Processes Controlling the Composition of Clastic Sediment. Special Paper of the Geological Society of America, 284: 1-19. https://doi.org/10.1130/SPE284-p1 [22] Kravchinsky, V. A., Cogné, J. P., Harbert, W. P., et al., 2002. Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone, Siberia. Geophysical Journal International, 148(1): 34-57. https://doi.org/10.1046/j.1365-246x.2002.01557.x [23] Li, J. Y., He, Z. J., Mo, S. G., et al., 2004. The Age of Conglomerates in the Lower Part of the Xiufeng Formation in the Northern Da Hinggan Mountains, NE China, and Their Tectonic Implications. Geological Bulletin of China, 23(2): 120-129 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2004.02.004 [24] Li, L., Sun, F. Y., Li, B. L., et al., 2017. Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance. Earth Science, 42(1): 35-52 (in Chinese with English abstract). [25] Li, J. Y., Qian, Y., Tekoumc, L., et al., 2021. Petrogenesis of Jurassic Granitoids on Liaodong Peninsula, Northeast China: Constraints on the Evolution of the Mongol-Okhotsk and Pacific Tectonic Regimes. Journal of Earth Science, 32(1): 127-143. https://doi.org/10.1007/s12583-020-1372-0 [26] Liang, C. Y., Liu, Y. J., Neubauer, F., et al., 2015. Structural Characteristics and LA-ICP-MS U-Pb Zircon Geochronology of the Deformed Granitic Rocks from the Mesozoic Xingcheng-Taili Ductile Shear Zone in the North China Craton. Tectonophysics, 650: 80-103. https://doi.org/10.1016/j.tecto.2014.05.010 [27] Liang, C. Y., Liu, Y. J., Song, Z. W., et al., 2020. Deformation Pattern and Age of Hulin Complex in Heilongjiang Province: Implications for Subduction of the Palaeo-Pacific Plate during the Early Cretaceous, Eastern NE China. Acta Petrologica Sinica, 36(3): 685-702 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.03.04 [28] Liang, C. Y., Liu, Y. J., Zheng, C. Q., et al., 2019. Deformation Patterns and Timing of the Thrust-Nappe Structures in the Mohe Formation in Mohe Basin, Northeast China: Implication of the Closure Timing of Mongol-Okhotsk Ocean. Geological Journal, 54(2): 746-769. https://doi.org/10.1002/gj.3502 [29] Liu, X. J., Zhao, L. G., Tian, J., et al., 2014. ESR Ages Evidences of Mohe Overthrust Structure Stage. Journal of Geomechanics, 20(3): 299-303 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2014.03.009 [30] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [31] Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808 [32] Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [33] Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 [34] Nikolenko, E. I., Lobov, K. V., Agashev, A. M., et al., 2020. 40Ar/39Ar Geochronology and New Mineralogical and Geochemical Data from Lamprophyres of Chompolo Field (South Yakutia, Russia). Minerals, 10(10): 886. https://doi.org/10.3390/min10100886 [35] Ren, Q., Zhang, S. H., Wu, H. C., et al., 2016. Further Paleomagnetic Results from the ~155 Ma Tiaojishan Formation, Yanshan Belt, North China, and Their Implications for the Tectonic Evolution of the Mongol-Okhotsk Suture. Gondwana Research, 35: 180-191. https://doi.org/10.1016/j.gr.2015.05.002 [36] Roser, B., Korsch, R., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Journal of Geology, 94: 635-650. doi: 10.1086/629071 [37] Song, Z. W., Zheng, C. Q., Liang, C. Y., et al., 2021. Identification and Geological Significance of Early Jurassic Adakitic Volcanic Rocks in Xintaimen Area, Western Liaoning. Minerals, 11(3): 331. https://doi.org/10.3390/min11030331 [38] Sorokin, A. A., Kudryashov, N. M., Kotov, A. B., 2007. Age and Geochemistry of the Early Mesozoic Granitoid Massifs of the Southern Bureya Terrane of the Russian Far East. Russian Journal of Pacific Geology, 1(5): 454-463. https://doi.org/10.1134/s1819714007050053 [39] Sun, Q. S., Fang, S., Xie, R. X., et al., 2016. The Application of Zircon Fission Track to the Study of the Up-Lifting Process in the Mohe Basin. Geological Bulletin of China, 35(5): 807-813 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.05.015 [40] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [41] Tang, J., 2016. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Erguna Massif, NE China: Constraints on the Tectonic Evolution of the Mongol-Okhotsk Suture Zone (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [42] Tang, J., Xu, W. L., Wang, F., et al., 2015. Geochronology, Geochemistry, and Deformation History of Late Jurassic-Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China: Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt. Tectonophysics, 658: 91-110. https://doi.org/10.1016/j.tecto.2015.07.012 [43] Tomurtogoo, O., Windley, B. F., Kröner, A., et al., 2005. Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia: Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen. Journal of the Geological Society, 162(1): 125-134. https://doi.org/10.1144/0016-764903-146 [44] Wang, C. Y., Campbell, I. H., Stepanov, A. S., et al., 2011. Growth Rate of the Preserved Continental Crust: Ⅱ. Constraints from Hf and O Isotopes in Detrital Zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75(5): 1308-1345. https://doi.org/10.1016/j.gca.2010.12.010 [45] Wang, S. Y., Xu, H., Yang, X. P., et al., 2015. Detrital Zircon U-Pb Dating of Middle Jurassic Mohe Formation in Northern Da Hinggan Mountains: Reconstruction of the Provenance of Mohe Basin. Geology in China, 42(5): 1293-1302 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.05.009 [46] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [47] Wu, H. H., Hu, D. G., Wu, X. W., et al., 2016. Mesozoic-Cenozoic Uplift and Denudation of Northern Da Hing-Gan Mountains: Evidence from Apatite Fission Track Data. Geological Bulletin of China, 35(12): 2058-2062 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.12.013 [48] Wu, H. Y., Yang, J. G., Huang, Q. H., et al., 2003. Sequence and Age of the Mesozoic Strata in the Mohe Basin. Journal of Stratigraphy, 27(3): 193-198 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4959.2003.03.004 [49] Xiao, C. T., Ye, M., Wen, Z. G., et al., 2015. A Study on Paleoflora in Emuerhe Group, Mohe Basin. Earth Science Frontiers, 22(3): 299-309 (in Chinese with English abstract). [50] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). [51] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [52] Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract). [53] Yang, X. P., Jiang, B., Yang, Y. J., 2019. Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area. Earth Science, 44(10): 3237-3251 (in Chinese with English abstract). [54] Yang, Y. T., Guo, Z. X., Song, C. C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096-1116. https://doi.org/10.1016/j.gr.2014.09.010 [55] Ying, J. F., Zhou, X. H., Zhang, L. C., et al., 2010. Geochronological Framework of Mesozoic Volcanic Rocks in the Great Xing'an Range, NE China, and Their Geodynamic Implications. Journal of Asian Earth Sciences, 39(6): 786-793. https://doi.org/10.1016/j.jseaes.2010.04.035 [56] Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: a Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211. https://doi.org/10.1016/j.earscirev.2019.02.016 [57] Yu, S. Y., Peng, Y. B., Zhang, J. X., et al., 2021. Tectono-Thermal Evolution of the Qilian Orogenic System: Tracing the Subduction, Accretion and Closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547. https://doi.org/10.1016/j.earscirev.2021.103547 [58] Zhang, C., Liu, Y. J., Zhang, Z. L., et al., 2019. Deformation and Geochronological Characteristics of Gudonghe Ductile Shear Zone in Yanbian Area. Earth Science, 44(10): 3252-3264 (in Chinese with English abstract). [59] Zhang, Q., Liang, C. Y., Liu, Y. J., et al., 2020. Provenance Analysis and Tectonic Setting of the Upper Jurassic Series in Mohe Basin, Northeast China: Implication for the Closure of Mongol-Okhotsk Ocean. Geological Journal, 55(6): 4713-4732. https://doi.org/10.1002/gj.3670 [60] Zhou, J. B., Li, L., 2017. The Mesozoic Accretionary Complex in Northeast China: Evidence for the Accretion History of Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 145: 91-100. https://doi.org/10.1016/j.jseaes.2017.04.013 [61] Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93. https://doi.org/10.1016/j.earscirev.2017.01.012 [62] 和钟铧, 王玉芬, 侯伟, 2008. 漠河盆地中侏罗统砂岩地球化学特征及物源属性分析. 沉积与特提斯地质, 28(4): 93-100. doi: 10.3969/j.issn.1009-3850.2008.04.016 [63] 和政军, 李锦轶, 莫申国, 等, 2003. 漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析. 中国科学(D辑), 33(12): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312010.htm [64] 黑龙江省地质矿产局, 1993. 黑龙江省区域地质. 北京: 地质出版社. [65] 侯伟, 刘招君, 何玉平, 等, 2010. 漠河盆地上侏罗统沉积特征与构造背景. 吉林大学学报(地球科学版), 40(2): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002007.htm [66] 李锦轶, 和政军, 莫申国, 等, 2004. 大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义. 地质通报, 23 (2): 120-129. doi: 10.3969/j.issn.1671-2552.2004.02.004 [67] 李良, 孙丰月, 李碧乐, 等, 2017. 漠河盆地二十二站组砂岩形成时代及物源区构造环境判别. 地球科学, 42(1): 35-52. doi: 10.3799/dqkx.2017.003 [68] 梁琛岳, 刘永江, 宋志伟, 等, 2020. 黑龙江虎林杂岩变形样式与时代: 对中国东北东部早白垩世古太平洋板块俯冲的启示. 岩石学报, 36(3): 685-702. [69] 刘晓佳, 赵立国, 田珺, 等, 2014. 漠河逆冲推覆构造活动时代的ESR年龄证据. 地质力学学报, 20(3): 299-303. doi: 10.3969/j.issn.1006-6616.2014.03.009 [70] 孙求实, 方石, 谢荣祥, 等, 2016. 利用锆石裂变径迹研究漠河盆地隆升过程. 地质通报, 35(5): 807-813. doi: 10.3969/j.issn.1671-2552.2016.05.015 [71] 唐杰, 2016. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古‒鄂霍茨克缝合带构造演化的制约(博士学位论文). 长春: 吉林大学. [72] 王少轶, 许虹, 杨晓平, 等, 2015. 大兴安岭北部中侏罗统漠河组砂岩LA-ICP-MS碎屑锆石U-Pb年龄: 对漠河盆地源区的制约. 中国地质, 42(5): 1293-1302. doi: 10.3969/j.issn.1000-3657.2015.05.009 [73] 吴环环, 胡道功, 吴学文, 等, 2016. 大兴安岭北段中新生代隆升与剥露历史的磷灰石裂变径迹证据. 地质通报, 35(12): 2058-2062. doi: 10.3969/j.issn.1671-2552.2016.12.013 [74] 吴河勇, 杨建国, 黄清华, 等, 2003. 漠河盆地中生代地层层序及时代. 地层学杂志, 27(3): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303004.htm [75] 肖传桃, 叶明, 文志刚, 等, 2015. 漠河盆地额木尔河群古植物群研究. 地学前缘, 22(3): 299-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503029.htm [76] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979 [77] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [78] 杨晓平, 江斌, 杨雅军, 2019. 大兴安岭早白垩世火山岩的时空分布特征. 地球科学, 44(10): 3237-3251. doi: 10.3799/dqkx.2019.080 [79] 张超, 刘永江, 张照录, 等, 2019. 延边地区古洞河韧性剪切带变形特征及变形时代. 地球科学, 44(10): 3252-3264. doi: 10.3799/dqkx.2019.086