Review on Rock-Ice Avalanches
-
摘要:
冰-岩碎屑流是高寒山区陡峭山体斜坡区冰崩、岩崩或滑坡解体后形成的冰屑、岩块和土颗粒混合体高速流动现象.由于裹挟了冰屑,冰-岩碎屑流具有超强的运动性,屡屡引发震惊世人的灾难性事件,是全球气候变暖大背景下地质灾害研究的热点与前沿问题.通过对近40余年来的研究进展进行梳理和评述,指出了冰-岩碎屑流的概念由来和主流定义方法,阐述了其成因机制的气候敏感性,结合典型实例论述了区域发育特征,重点分析了运动特征、减阻机理和冰屑影响机制.冰-岩碎屑流的超强运动性被认为与低摩擦冰减阻机理、摩擦热融减阻机理、侧限约束减阻机理密切相关.冰屑作为材料组分和融水来源,能够降低界面摩擦、改变冰-水-岩相互作用,进而形成复杂的热-水-力耦合作用.今后应加强研究冰-岩碎屑流事件的成因机制和时空分布规律、运动特性和冰屑影响机制、过程演化观测与预警评估技术,以期揭示冰-岩碎屑流运动机理,为冰-岩碎屑流及链生灾害的科学减灾提供有力支撑.
Abstract:Rock-ice avalanche is a special kind of rock avalanche involving ice, rock, and soil particles, which disintegrates from rock/ice avalanches or landslides in cold high-mountain regions. As involved ice, rock-ice avalanches have extremely high mobility and enormous destructive potential, under the background of global warming, the propagation mechanism of rock-ice avalanches is a frontier scientific issue in the field of geological disasters. The representative achievements in the field of rock-ice avalanches over last forty years were reviewed briefly. The terminology and definition of rock-ice avalanche were given. The formation mechanism and its climate sensitivity were investigated, and the regional development characteristics were analyzed. The propagation mechanism and the influence of ice were studied. The extremely high mobility of rock-ice avalanches was attributed to the low friction of icy surface, fluidization of meltwater, and channeling effects. The influence of ice is complicated by the low friction of icy surface and thermo-hydro-mechanical coupling. Further investigation should be conducted in the dynamic characteristics and propagation mechanism for improving relevant hazard mitigation.
-
Key words:
- rock-ice avalanche /
- propagation mechanism /
- influence of ice /
- global warming /
- engineering geology
-
图 1 冰-岩碎屑流与普通(不含冰)高速远程滑坡的视摩擦系数对比
据Siebert(1984)、Evans and Clague(1988)、Hampton et al.(1996)、Legros(2002)、黄润秋(2007)、Schneider et al.(2011a)、Zhang and Yin(2013)
Fig. 1. The comparison chart of apparent friction coefficient of rock-ice avalanches and rock avalanches
图 2 全球冰-岩碎屑流灾害分布
据Shreve(1966)、Evans and Clague(1988)、Van der Woerd et al.(2004)、Fischer et al.(2006)、Weidinger(2006)、Huggel et al.(2008)、Petrakov et al.(2008)、Evans et al.(2009b); Schneider et al.(2011a)、胡文涛等(2018)
Fig. 2. The distribution of rock-ice avalanches in the world
图 3 典型冰-岩碎屑流实例
a. 中国易贡冰-岩碎屑流,笔者摄; b. 中国色东普冰-岩碎屑流,据赵永辉(2020); c. 尼泊尔Langtang冰-岩碎屑流,据Kargel et al.(2016); d. 俄罗斯Kolka冰-岩碎屑流,据Evans et al.(2009b); e. 加拿大Mt. Meager冰-岩碎屑流,据Evans and Delaney(2015); f. 秘鲁Huascarán冰-岩碎屑流,据Mergili et al.(2018)
Fig. 3. Typical examples of rock-ice avalanches
图 4 沿下伏冰川运动的冰-岩碎屑流的减阻机制模型(De Blasio,2014)
Fig. 4. Mechanical model of rock-ice avalanche over glacier (De Blasio, 2014)
-
[1] Alean, J., 1985. Ice Avalanche Activity and Mass Balance of a High-Altitude Hanging Glacier in the Swiss Alps. Annals of Glaciology, 6: 248-249. https://doi.org/10.1017/s026030550001048x [2] Allen, S. K., Cox, S. C., Owens, I. F., 2011. Rock Avalanches and Other Landslides in the Central Southern Alps of New Zealand: A Regional Study Considering Possible Climate Change Impacts. Landslides, 8(1): 33-48. https://doi.org/10.1007/s10346-010-0222-z [3] Anacona, P. I., Mackintosh, A., Norton, K. P., 2015. Hazardous Processes and Events from Glacier and Permafrost Areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 40(1): 2-21. https://doi.org/10.1002/esp.3524 [4] Baldis, C. T., Liaudat, D. T., 2019. Rockslides and Rock Avalanches in the Central Andes of Argentina and Their Possible Association with Permafrost Degradation. Permafrost and Periglacial Processes, 30(4): 330-347. https://doi.org/10.1002/ppp.2024 [5] Bottino, G., Chiarle, M., Joly, A., et al., 2002. Modelling Rock Avalanches and Their Relation to Permafrost Degradation in Glacial Environments. Permafrost and Periglacial Processes, 13(4): 283-288. https://doi.org/10.1002/ppp.432 [6] Cheng, Q. G., Zhang, Z. Y., Hang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract). [7] Coe, J. A., Bessette-Kirton, E. K., Geertsema, M., 2018. Increasing Rock-Avalanche Size and Mobility in Glacier Bay National Park and Preserve, Alaska Detected from 1984 to 2016 Landsat Imagery. Landslides, 15(3): 393-407. https://doi.org/10.1007/s10346-017-0879-7 [8] Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones de Mutatione Climatis, 10(2): 103-109 (in Chinese with English abstract). [9] Cui, P., Jia, Y., Su, F. H., et al., 2017. Natural Hazards in Tibetan Plateau and Key Issue for Feature Research. Bulletin of Chinese Academy of Sciences, 32(9): 985-992 (in Chinese with English abstract). [10] Dai, F. C., Deng, J. H., 2020. Development Characteristics of Landslide Hazards in Three-Rivers Basin of Southeast Tibetan Plateau. Advanced Engineering Sciences, 52(5): 3-15 (in Chinese with English abstract). [11] De Blasio, F. V., 2014. Friction and Dynamics of Rock Avalanches Travelling on Glaciers. Geomorphology, 213: 88-98. https://doi.org/10.1016/j.geomorph.2014.01.001 [12] Delaney, K. B., Evans, S. G., 2014. The 1997 Mount Munday Landslide (British Columbia) and the Behaviour of Rock Avalanches on Glacier Surfaces. Landslides, 11(6): 1019-1036. https://doi.org/10.1007/s10346-013-0456-7 [13] Deline, P., 2009. Interactions between Rock Avalanches and Glaciers in the Mont Blanc Massif during the Late Holocene. Quaternary Science Reviews, 28(11-12): 1070-1083. https://doi.org/10.1016/j.quascirev.2008.09.025 [14] Deline, P., Akçar, N., Ivy-Ochs, S., et al., 2015a. Repeated Holocene Rock Avalanches onto the Brenva Glacier, Mont Blanc Massif, Italy: A Chronology. Quaternary Science Reviews, 126: 186-200. https://doi.org/10.1016/j.quascirev.2015.09.004 [15] Deline, P., Hewitt, K., Reznichenko, N., et al., 2015b. Rock Avalanches onto Glaciers. Landslide Hazards, Risks, and Disasters. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-396452-6.00009-4 [16] Deline, P., Kirkbride, M. P., 2009. Rock Avalanches on a Glacier and Morainic Complex in Haut Val Ferret (Mont Blanc Massif, Italy). Geomorphology, 103(1): 80-92. https://doi.org/10.1016/j.geomorph.2007.10.020 [17] Erismann, T. H., Abele, G., 2001. Dynamics of Rockslides and Rockfalls. Springer, New York. [18] Evans, S. G., Bishop, N. F., Fidel Smoll, L., et al., 2009a. A Re-Examination of the Mechanism and Human Impact of Catastrophic Mass Flows Originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engineering Geology, 108(1-2): 96-118. https://doi.org/10.1016/j.enggeo.2009.06.020 [19] Evans, S. G., Clague, J. J., 1988. Catastrophic Rock Avalanches in Glacial Environments. Proceedings, 5th International Symposium on Landslides, Lausanne. Rotterdam. [20] Evans, S. G., Delaney, K. B., 2015. Catastrophic Mass Flows in the Mountain Glacial Environment. In: Haeberli, W., Whiteman C., eds., Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-394849-6.00016-0 [21] Evans, S. G., Tutubalina, O. V., Drobyshev, V. N., et al., 2009b. Catastrophic Detachment and High-Velocity Long-Runout Flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology, 105(3-4): 314-321. https://doi.org/10.1016/j.geomorph.2008.10.008 [22] Evans, S.G., Delaney, K.B., 2015. Chapter 16 -Catastrophic Mass Flows in the Mountain Glacial Environment. Snow and Ice-Related Hazards, Risks and Disasters, Academic Press, Boston, 563-606. [23] Fischer, L., Huggel, C., Kääb, A., et al., 2013. Slope Failures and Erosion Rates on a Glacierized High-Mountain Face under Climatic Changes. Earth Surface Processes and Landforms, 38(8): 836-846. https://doi.org/10.1002/esp.3355 [24] Fischer, L., Kääb, A., Huggel, C., et al., 2006. Geology, Glacier Retreat and Permafrost Degradation as Controlling Factors of Slope Instabilities in a High-Mountain Rock Wall: The Monte Rosa East Face. Natural Hazards and Earth System Sciences, 6(5): 761-772. https://doi.org/10.5194/nhess-6-761-2006 [25] Fujita, K., Inoue, H., Izumi, T., et al., 2017. Anomalous Winter-Snow-Amplified Earthquake-Induced Disaster of the 2015 Langtang Avalanche in Nepal. Natural Hazards and Earth System Sciences, 17(5): 749-764. https://doi.org/10.5194/nhess-17-749-2017 [26] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract). [27] Geertsema, M., Clague, J. J., Schwab, J. W., et al., 2006. An Overview of Recent Large Catastrophic Landslides in Northern British Columbia, Canada. Engineering Geology, 83(1-3): 120-143. https://doi.org/10.1016/j.enggeo.2005.06.028 [28] George, D. L., Iverson, R. M., Cannon, C. M., 2017. New Methodology for Computing Tsunami Generation by Subaerial Landslides: Application to the 2015 Tyndall Glacier Landslide, Alaska. Geophysical Research Letters, 44(14): 7276-7284. https://doi.org/10.1002/2017gl074341 [29] Haeberli, W., Schaub, Y., Huggel, C., 2017. Increasing Risks Related to Landslides from Degrading Permafrost into New Lakes in De-Glaciating Mountain Ranges. Geomorphology, 293: 405-417. https://doi.org/10.1016/j.geomorph.2016.02.009 [30] Hampton, M. A., Lee, H. J., Locat, J., 1996. Submarine Landslides. Reviews of Geophysics, 34(1): 33-59. https://doi.org/10.1029/95rg03287 [31] Hauser, A., 2002. Rock Avalanche and Resulting Debris Flow in Estero Parraguirre and Río Colorado, Region Metropolitana, Chile. . In: Evans, S. G., DeGraff, J. V., eds., Catastrophic Landslides: Effects, Occurrence, and Mechanisms. Geological Society of America, Boulder. [32] Heim, A., 1932. Bergsturz und Meschenleben. Frets und Wasmuth, Zurich. [33] Hewitt, K., 1988. Catastrophic Landslide Deposits in the Karakoram Himalaya. Science, 242(4875): 64-67. https://doi.org/10.1126/science.242.4875.64 [34] Hewitt, K., 1999. Quaternary Moraines vs Catastrophic Rock Avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Research, 51(3): 220-237. https://doi.org/10.1006/qres.1999.2033 [35] Hu, K. H., Zhang, X. P., You, Y., et al., 2019. Landslides and Dammed Lakes Triggered by the 2017 Ms 6.9 Milin Earthquake in the Tsangpo Gorge. Landslides, 16(5): 993-1001. https://doi.org/10.1007/s10346-019-01168-w [36] Hu, M. J., Cheng, Q. G., Wang, F. W., 2009. Experimental Study on Formation of Yigong Long-Distance high-Speed Landslide. Chinese Journal of Rock Mechanics and Engineering, 28(1): 138-143 (in Chinese with English abstract). [37] Hu, W. T., Yao, T. D., Yu, W. S., et al., 2018. Advances in the Study of Glacier Avalanches in High Asia. Journal of Glaciology and Geocryology, 40(6): 1141-1152 (in Chinese with English abstract). [38] Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract). [39] Huggel, C., Caplan-Auerbach, J., Gruber, S., et al., 2008. The 2005 Mt. Steller, Alaska, Rock-Ice Avalanche, a Large Slope Failure in Cold Permafrost. In: Kane, D. L., Hinkel, K. M., eds., Proceeding of the 9th International Conference on Permafrost, Fairbanks. [40] Huggel, C., Caplan-Auerbach, J., Waythomas, C. F., et al., 2007. Monitoring and Modeling Ice-Rock Avalanches from Ice-Capped Volcanoes: A Case Study of Frequent Large Avalanches on Iliamna Volcano, Alaska. Journal of Volcanology and Geothermal Research, 168(1-4): 114-136. https://doi.org/10.1016/j.jvolgeores.2007.08.009 [41] Huggel, C., Clague, J. J., Korup, O., 2012. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms, 37(1): 77-91. https://doi.org/10.1002/esp.2223 [42] Huggel, C., Zgraggen-Oswald, S., Haeberli, W., et al., 2005. The 2002 Rock/Ice Avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of Extraordinary Avalanche Formation and Mobility, and Application of QuickBird Satellite Imagery. Natural Hazards and Earth System Sciences, 5(2): 173-187. https://doi.org/10.5194/nhess-5-173-2005 [43] Jacquemart, M., Loso, M., Leopold, M., et al., 2020. What Drives Large-Scale Glacier Detachments? Insights from Flat Creek Glacier, St. Elias Mountains, Alaska. Geology, 48(7): 703-707. https://doi.org/10.1130/g47211.1 [44] Jibson, R. W., Harp, E. L., Schulz, W., et al., 2006. Large Rock Avalanches Triggered by the M 7.9 Denali Fault, Alaska, Earthquake of 3 November 2002. Engineering Geology, 83(1-3): 144-160. https://doi.org/10.1016/j.enggeo.2005.06.029 [45] Jiskoot, H., 2011. Long-Runout Rockslide on Glacier at Tsar Mountain, Canadian Rocky Mountains: Potential Triggers, Seismic and Glaciological Implications. Earth Surface Processes and Landforms, 36(2): 203-216. https://doi.org/10.1002/esp.2037 [46] Kääb, A., Huggel, C., Fischer, L., et al., 2005. Remote Sensing of Glacier- and Permafrost-Related Hazards in High Mountains: An Overview. Natural Hazards and Earth System Sciences, 5(4): 527-554. https://doi.org/10.5194/nhess-5-527-2005 [47] Kääb, A., Jacquemart, M., Gilbert, A., et al., 2021. Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers-More Frequent than Thought? The Cryosphere, 15(4): 1751-1785. https://doi.org/10.5194/tc-15-1751-2021 [48] Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Tibet in 2016 after Surge-Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561-017-0039-7 [49] Kargel, J. S., Leonard, G. J., Shugar, D. H., et al., 2016. Geomorphic and Geologic Controls of Geohazards Induced by Nepal's 2015 Gorkha Earthquake. Science, 351(6269): 140-150. https://doi.org/10.1126/science.aac8353 [50] Krautblatter, M., Funk, D., Günzel, F. K., 2013. Why Permafrost Rocks Become Unstable: A Rock-Ice-Mechanical Model in Time and Space. Earth Surface Processes and Landforms, 38(8): 876-887. https://doi.org/10.1002/esp.3374 [51] Lacroix, P., 2016. Landslides Triggered by the Gorkha Earthquake in the Langtang Valley, Volumes and Initiation Processes. Earth, Planets and Space, 68(1): 1-10. https://doi.org/10.1186/s40623-016-0423-3 [52] Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331. https://doi.org/10.1016/S0013-7952(01)00090-4 [53] Leinss, S., Bernardini, E., Jacquemart, M., et al., 2020. Glacier Detachments and Rock-Ice Avalanches in the Petra Pervogo Range, Tajikistan (1973-2019). Natural Hazards and Earth System Sciences. doi: 10.5194/nhess-2020-285. [54] Li, J., Chen, N. S., Liu, M., et al., 2018. Analysis of Main Factors for Landslide-Triggered Debris Flow in Zhamunong Gully on April 9th, 2000. South-to-North Water Transfers and Water Science & Technology, 16(6): 187-193 (in Chinese with English abstract). [55] Lipovshy, P. S., Huscrift, C.A., Lewkowicz, A. G., 2004. The Nines Creek Ice and Rock Avalanche: An Example of the Impact of Climate Change on Catastrophic Geomorphic Processes in the Kluane Ranges, Yukon Territory, Canada. American Geophysical Union, San Francisco. [56] Lipovsky, P. S., Evans, S. G., Clague, J. J., et al., 2008. The July 2007 Rock and Ice Avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada. Landslides, 5(4): 445-455. https://doi.org/10.1007/s10346-008-0133-4 [57] Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234 (in Chinese with English abstract). [58] Liu, G. Q., Lu, X. Y., 2000. Analysis on the Causes of Collapse, Landslide and Debris flow in Zhamunong Gully, Yigong, Tibet. Tibet Science and Technology, (4): 15-17 (in Chinese). [59] Liu, W., 2002. Study on the Characteristics of Huge Scale-Super Highspeed-Long Distance Landslide Chain in Yigong, Tibet. The Chinese Journal of Geological Hazard and Control, 13(3): 9-18 (in Chinese with English abstract). [60] McSaveney, M. J., 1975. Sherman Glacier Rock Avalanche of 1964: Its Emplacement and Subsequent Effects on the Glacier Beneath it (Dissertation). Ohio State Unversity, Columbus. [61] McSaveney, M. J., 2002. Recent Rockfalls and Rock Avalanches in Mount Cook National Park, New Zealand. GSA Reviews in Engineering Geology, 15: 35-70. https://doi.org/10.1130/REG15-p35. [62] Mergili, M., Frank, B., Fischer, J. T., et al., 2018. Computational Experiments on the 1962 and 1970 Landslide Events at Huascarán (Peru) with R. Avaflow: Lessons Learned for Predictive Mass Flow Simulations. Geomorphology, 322: 15-28. https://doi.org/10.1016/j.geomorph.2018.08.032 [63] Noetzli, J., Huggel, C., Hoelzle, M., et al., 2006. GIS-Based Modelling of Rock-Ice Avalanches from Alpine Permafrost Areas. Computational Geosciences, 10(2): 161-178. https://doi.org/10.1007/s10596-005-9017-z [64] Pararas-Carayannis, G., 1999. Analysis of Mechanism of Tsunami Generation in Lituya Bay. Science of Tsunami Hazards, 17(3): 193-206. [65] Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan—Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract). [66] Petrakov, D. A., Chernomorets, S. S., Evans, S. G., et al., 2008. Catastrophic Glacial Multi-Phase Mass Movements: A Special Type of Glacial Hazard. Advances in Geosciences, 14: 211-218. https://doi.org/10.5194/adgeo-14-211-2008 [67] Pudasaini, S. P., Krautblatter, M., 2014. A Two-Phase Mechanical Model for Rock-Ice Avalanches. Journal of Geophysical Research: Earth Surface, 119(10): 2272-2290. https://doi.org/10.1002/2014jf003183 [68] Qin, D. H., Yao, T. D., Ding, Y. J., et al., 2014. A Dictionary of Cryosphere Science. China Meteorological Press, Beijing (in Chinese). [69] Ren, Y. H., Yang, Q. Q., Cheng, Q. G., et al., 2021. Solid-Liquid Interaction Caused by Minor Wetting in Gravel-Ice Mixtures: A Key Factor for the Mobility of Rock-Ice Avalanches. Engineering Geology, 286: 106072. https://doi.org/10.1016/j.enggeo.2021.106072 [70] Reynolds, J. M., 1992. The Identification and Mitigation of Glacier-Related Hazards: Examples from the Cordillera Blanca, Peru. In: McCall, G. J. H., Laming, D. J. C., Scott, S. C., eds., Geohazards. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0381-4_13 [71] Sansone, S., Zugliani, D., Rosatti, G., 2021. A Mathematical Framework for Modelling Rock-Ice Avalanches. Journal of Fluid Mechanics, 919: A8. https://doi.org/10.1017/jfm.2021.348 [72] Schneider, D., Huggel, C., Haeberli, W., et al., 2011a. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948-1966. https://doi.org/10.1002/esp.2218 [73] Schneider, D., Kaitna, R., Dietrich, W. E., et al., 2011b. Frictional Behavior of Granular Gravel-Ice Mixtures in Vertically Rotating Drum Experiments and Implications for Rock-Ice Avalanches. Cold Regions Science and Technology, 69(1): 70-90. https://doi.org/10.1016/j.coldregions.2011.07.001 [74] Shang, Y. J., Yang, Z. F., Li, L. H., et al., 2003. A Super-Large Landslide in Tibet in 2000: Background, Occurrence, Disaster, and Origin. Geomorphology, 54(3-4): 225-243. https://doi.org/10.1016/S0169-555X(02)00358-6 [75] Shreve, R. L., 1966. Sherman Landslide, Alaska. Science, 154(3757): 1639-1643. https://doi.org/10.1126/science.154.3757.1639 [76] Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, India Himalaya. Science, 372(6552): eabh4455. https://doi.org/10.1126/science.abh4455. [77] Siebert, L., 1984. Large Volcanic Debris Avalanches: Characteristics of Source Areas, Deposits, and Associated Eruptions. Journal of Volcanology and Geothermal Research, 22(3-4): 163-197. https://doi.org/10.1016/0377-0273(84)90002-7 [78] Sosio, R., 2015. Rock-Snow-Ice Avalanches. Landslide Hazards, Risks, and Disasters. In: Shroder, J. F., Davies, T., eds., Elsevier, Amsterdam. 191-240. https://doi.org/10.1016/b978-0-12-396452-6.00007-0 [79] Sosio, R., Crosta, G. B., Chen, J. H., et al., 2012. Modelling Rock Avalanche Propagation onto Glaciers. Quaternary Science Reviews, 47: 23-40. https://doi.org/10.1016/j.quascirev.2012.05.010 [80] Sosio, R., Crosta, G. B., Hungr, O., 2008. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Engineering Geology, 100(1-2): 11-26. https://doi.org/10.1016/j.enggeo.2008.02.012 [81] Strom, A., 2014. Catastrophic Slope Processes in Glaciated Zones of Mountainous Regions. In: Shan, W., Guo, Y., Wang, F. W., et al., eds., Landslides in Cold Regions in the Context of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-00867-7_1 [82] Tong, L. Q., Pei, L. X., Tu, J. N., et al., 2020. A Preliminary Study of Definition and Classification of Ice Avalanche in the Tibetan Plateau Region. Remote Sensing for Land & Resources, 32(2): 11-18 (in Chinese with English abstract). [83] Van der Woerd, J., Owen, L. A., Tapponnier, P., et al., 2004. Giant, ∼M8 Earthquake-Triggered Ice Avalanches in the Eastern Kunlun Shan, Northern Tibet: Characteristics, Nature and Dynamics. Geological Society of America Bulletin, 116(3): 394-406. https://doi.org/10.1130/b25317.1 [84] Wang, W. P., Yang, J. S., Wang, Y. B., 2020. Dynamic Processes of 2018 Sedongpu Landslide in Namcha Barwa-Gyala Peri Massif Revealed by Broadband Seismic Records. Landslides, 17(2): 409-418. https://doi.org/10.1007/s10346-019-01315-3 [85] Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181 (in Chinese with English abstract). [86] Weidinger, J. T., 2006. Predesign, Failure and Displacement Mechanisms of Large Rockslides in the Annapurna Himalayas, Nepal. Engineering Geology, 83(1-3): 201-216. https://doi.org/10.1016/j.enggeo.2005.06.032 [87] Xu, Q., Shang, Y. J., van Asch, T., et al., 2012. Observations from the Large, Rapid Yigong Rock Slide-Debris Avalanche, Southeast Tibet. Canadian Geotechnical Journal, 49(5): 589-606. https://doi.org/10.1139/t2012-021 [88] Yang, Q. Q., Su, Z. M., Chen, L. Z., et al., 2015. Flume Tests on Influence of Ice to Mobility of rock-Ice Avalanches. Journal of Engineering Geology, 23(6): 1117-1126 (in Chinese with English abstract). [89] Yang, Q. Q., Su, Z. M., Cheng, Q. G., et al., 2019. High Mobility of Rock-Ice Avalanches: Insights from Small Flume Tests of Gravel-Ice Mixtures. Engineering Geology, 260: 105260. https://doi.org/10.1016/j.enggeo.2019.105260 [90] Yin, Y. P., 2000. Rapid Huge Landslide and Hazard Reduction of Yigong River in the Bomi, Tibet. Hydrogeology and Engineering Geology, 27(4): 8-11 (in Chinese with English abstract). [91] Yin, Y. P., Li, B., Zhang, T. T., et al., 2021. The February 7 of 2021 Glacier-Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli, India. The Chinese Journal of Geological Hazard and Control, 32(3): 1-8 (in Chinese with English abstract). [92] Zhang, M., Yin, Y. P., 2013. Dynamics, Mobility-Controlling Factors and Transport Mechanisms of Rapid Long-Runout Rock Avalanches in China. Engineering Geology, 167: 37-58. https://doi.org/10.1016/j.enggeo.2013.10.010 [93] Zhang, M., Yin, Y. P., Wu, S. R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6): 805-817 (in Chinese with English abstract). [94] Zhao, Y. H., 2020. Study on the Barrier Lake Event for Landslide-River Blocking of Sedongpu Valley on Yarlung Zangbo River in Tibet of China. Journal of Hebei GEO University, 43(3): 31-37 (in Chinese with English abstract). [95] Zhu, P. Y., Wang, C. H., Tang, B. X., 2000. The Deposition Characteristic of Supper Debris Flow in Tibet. Journal of Mountain Research, 18(5): 453-456 (in Chinese with English abstract). [96] 程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007 [97] 崔鹏, 陈容, 向灵芝, 等, 2014. 气候变暖背景下青藏高原山地灾害及其风险分析. 气候变化研究进展, 10(2): 103-109. doi: 10.3969/j.issn.1673-1719.2014.02.004 [98] 崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题. 中国科学院院刊, 32(9): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709014.htm [99] 戴福初, 邓建辉, 2020. 青藏高原东南三江流域滑坡灾害发育特征. 工程科学与技术, 52(5): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005002.htm [100] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589 [101] 胡明鉴, 程谦恭, 汪发武, 2009. 易贡远程高速滑坡形成原因试验探索. 岩石力学与工程学报, 28(1): 138-143. doi: 10.3321/j.issn:1000-6915.2009.01.018 [102] 胡文涛, 姚檀栋, 余武生, 等, 2018. 高亚洲地区冰崩灾害的研究进展. 冰川冻土, 40(6): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201806008.htm [103] 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001 [104] 李俊, 陈宁生, 刘美, 等, 2018.2000年易贡乡扎木弄沟滑坡型泥石流主控因素分析. 南水北调与水利科技, 16(6): 187-193. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201806026.htm [105] 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm [106] 刘国权, 鲁修元, 2000. 西藏易贡藏布扎木弄沟特大型山体崩塌滑坡、泥石流成因分析. 西藏科技, (4): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XZKJ200004003.htm [107] 刘伟, 2002. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析. 中国地质灾害与防治学报, 13(3): 9-18. doi: 10.3969/j.issn.1003-8035.2002.03.002 [108] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm [109] 秦大河, 姚檀栋, 丁永建, 等, 2014. 冰冻圈科学辞典. 北京: 气象出版社. [110] 童立强, 裴丽鑫, 涂杰楠, 等, 2020. 冰崩灾害的界定与类型划分: 以青藏高原地区为例. 国土资源遥感, 32(2): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202002002.htm [111] 王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm [112] 杨情情, 苏志满, 陈锣增, 等, 2015. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析. 工程地质学报, 23(6): 1117-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506013.htm [113] 殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11. doi: 10.3969/j.issn.1000-3665.2000.04.003 [114] 殷跃平, 李滨, 张田田, 等, 2021. 印度查莫利"2·7"冰岩山崩堵江溃决洪水灾害链研究. 中国地质灾害与防治学报, 32(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103001.htm [115] 张明, 殷跃平, 吴树仁, 等, 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望. 工程地质学报, 18(6): 805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001 [116] 赵永辉, 2020. 中国西藏雅鲁藏布江色东普沟滑坡-堵江堰塞湖事件研究. 河北地质大学学报, 43(3): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX202003006.htm [117] 朱平一, 王成华, 唐邦兴, 2000. 西藏特大规模碎屑流堆积特征. 山地学报, 18(5): 453-456. doi: 10.3969/j.issn.1008-2786.2000.05.009