• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高速远程冰-岩碎屑流研究进展

    杨情情 郑欣玉 苏志满 程谦恭 任雨豪 侯本勇

    杨情情, 郑欣玉, 苏志满, 程谦恭, 任雨豪, 侯本勇, 2022. 高速远程冰-岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
    引用本文: 杨情情, 郑欣玉, 苏志满, 程谦恭, 任雨豪, 侯本勇, 2022. 高速远程冰-岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
    Yang Qingqing, Zheng Xinyu, Su Zhiman, Cheng Qiangong, Ren Yuhao, Hou Benyong, 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
    Citation: Yang Qingqing, Zheng Xinyu, Su Zhiman, Cheng Qiangong, Ren Yuhao, Hou Benyong, 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949. doi: 10.3799/dqkx.2021.158

    高速远程冰-岩碎屑流研究进展

    doi: 10.3799/dqkx.2021.158
    基金项目: 

    第二次青藏高原综合科学考察研究项目 2019QZKK0905

    国家自然科学基金项目 41402244

    详细信息
      作者简介:

      杨情情(1984-),女,副教授,博士,主要从事高速远程滑坡物理模型实验与数值模拟的教学与研究工作.ORCID: 0000-0001-7775-0844. E-mail: yangqq@swjtu.edu.cn

      通讯作者:

      程谦恭,E-mail: chengqiangong@home.swjtu.edu.cn

    • 中图分类号: P642

    Review on Rock-Ice Avalanches

    • 摘要:

      冰-岩碎屑流是高寒山区陡峭山体斜坡区冰崩、岩崩或滑坡解体后形成的冰屑、岩块和土颗粒混合体高速流动现象.由于裹挟了冰屑,冰-岩碎屑流具有超强的运动性,屡屡引发震惊世人的灾难性事件,是全球气候变暖大背景下地质灾害研究的热点与前沿问题.通过对近40余年来的研究进展进行梳理和评述,指出了冰-岩碎屑流的概念由来和主流定义方法,阐述了其成因机制的气候敏感性,结合典型实例论述了区域发育特征,重点分析了运动特征、减阻机理和冰屑影响机制.冰-岩碎屑流的超强运动性被认为与低摩擦冰减阻机理、摩擦热融减阻机理、侧限约束减阻机理密切相关.冰屑作为材料组分和融水来源,能够降低界面摩擦、改变冰-水-岩相互作用,进而形成复杂的热-水-力耦合作用.今后应加强研究冰-岩碎屑流事件的成因机制和时空分布规律、运动特性和冰屑影响机制、过程演化观测与预警评估技术,以期揭示冰-岩碎屑流运动机理,为冰-岩碎屑流及链生灾害的科学减灾提供有力支撑.

       

    • 图  1  冰-岩碎屑流与普通(不含冰)高速远程滑坡的视摩擦系数对比

      Siebert(1984)Evans and Clague(1988)Hampton et al.(1996)Legros(2002)黄润秋(2007)Schneider et al.(2011a)Zhang and Yin(2013)

      Fig.  1.  The comparison chart of apparent friction coefficient of rock-ice avalanches and rock avalanches

      图  2  全球冰-岩碎屑流灾害分布

      Shreve(1966)Evans and Clague(1988)Van der Woerd et al.(2004)Fischer et al.(2006)Weidinger(2006)Huggel et al.(2008)Petrakov et al.(2008)Evans et al.(2009b); Schneider et al.(2011a)胡文涛等(2018)

      Fig.  2.  The distribution of rock-ice avalanches in the world

      图  3  典型冰-岩碎屑流实例

      a. 中国易贡冰-岩碎屑流,笔者摄; b. 中国色东普冰-岩碎屑流,据赵永辉(2020); c. 尼泊尔Langtang冰-岩碎屑流,据Kargel et al.(2016); d. 俄罗斯Kolka冰-岩碎屑流,据Evans et al.(2009b); e. 加拿大Mt. Meager冰-岩碎屑流,据Evans and Delaney(2015); f. 秘鲁Huascarán冰-岩碎屑流,据Mergili et al.(2018)

      Fig.  3.  Typical examples of rock-ice avalanches

      图  4  沿下伏冰川运动的冰-岩碎屑流的减阻机制模型(De Blasio,2014)

      Fig.  4.  Mechanical model of rock-ice avalanche over glacier (De Blasio, 2014)

    • [1] Alean, J., 1985. Ice Avalanche Activity and Mass Balance of a High-Altitude Hanging Glacier in the Swiss Alps. Annals of Glaciology, 6: 248-249. https://doi.org/10.1017/s026030550001048x
      [2] Allen, S. K., Cox, S. C., Owens, I. F., 2011. Rock Avalanches and Other Landslides in the Central Southern Alps of New Zealand: A Regional Study Considering Possible Climate Change Impacts. Landslides, 8(1): 33-48. https://doi.org/10.1007/s10346-010-0222-z
      [3] Anacona, P. I., Mackintosh, A., Norton, K. P., 2015. Hazardous Processes and Events from Glacier and Permafrost Areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 40(1): 2-21. https://doi.org/10.1002/esp.3524
      [4] Baldis, C. T., Liaudat, D. T., 2019. Rockslides and Rock Avalanches in the Central Andes of Argentina and Their Possible Association with Permafrost Degradation. Permafrost and Periglacial Processes, 30(4): 330-347. https://doi.org/10.1002/ppp.2024
      [5] Bottino, G., Chiarle, M., Joly, A., et al., 2002. Modelling Rock Avalanches and Their Relation to Permafrost Degradation in Glacial Environments. Permafrost and Periglacial Processes, 13(4): 283-288. https://doi.org/10.1002/ppp.432
      [6] Cheng, Q. G., Zhang, Z. Y., Hang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract).
      [7] Coe, J. A., Bessette-Kirton, E. K., Geertsema, M., 2018. Increasing Rock-Avalanche Size and Mobility in Glacier Bay National Park and Preserve, Alaska Detected from 1984 to 2016 Landsat Imagery. Landslides, 15(3): 393-407. https://doi.org/10.1007/s10346-017-0879-7
      [8] Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones de Mutatione Climatis, 10(2): 103-109 (in Chinese with English abstract).
      [9] Cui, P., Jia, Y., Su, F. H., et al., 2017. Natural Hazards in Tibetan Plateau and Key Issue for Feature Research. Bulletin of Chinese Academy of Sciences, 32(9): 985-992 (in Chinese with English abstract).
      [10] Dai, F. C., Deng, J. H., 2020. Development Characteristics of Landslide Hazards in Three-Rivers Basin of Southeast Tibetan Plateau. Advanced Engineering Sciences, 52(5): 3-15 (in Chinese with English abstract).
      [11] De Blasio, F. V., 2014. Friction and Dynamics of Rock Avalanches Travelling on Glaciers. Geomorphology, 213: 88-98. https://doi.org/10.1016/j.geomorph.2014.01.001
      [12] Delaney, K. B., Evans, S. G., 2014. The 1997 Mount Munday Landslide (British Columbia) and the Behaviour of Rock Avalanches on Glacier Surfaces. Landslides, 11(6): 1019-1036. https://doi.org/10.1007/s10346-013-0456-7
      [13] Deline, P., 2009. Interactions between Rock Avalanches and Glaciers in the Mont Blanc Massif during the Late Holocene. Quaternary Science Reviews, 28(11-12): 1070-1083. https://doi.org/10.1016/j.quascirev.2008.09.025
      [14] Deline, P., Akçar, N., Ivy-Ochs, S., et al., 2015a. Repeated Holocene Rock Avalanches onto the Brenva Glacier, Mont Blanc Massif, Italy: A Chronology. Quaternary Science Reviews, 126: 186-200. https://doi.org/10.1016/j.quascirev.2015.09.004
      [15] Deline, P., Hewitt, K., Reznichenko, N., et al., 2015b. Rock Avalanches onto Glaciers. Landslide Hazards, Risks, and Disasters. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-396452-6.00009-4
      [16] Deline, P., Kirkbride, M. P., 2009. Rock Avalanches on a Glacier and Morainic Complex in Haut Val Ferret (Mont Blanc Massif, Italy). Geomorphology, 103(1): 80-92. https://doi.org/10.1016/j.geomorph.2007.10.020
      [17] Erismann, T. H., Abele, G., 2001. Dynamics of Rockslides and Rockfalls. Springer, New York.
      [18] Evans, S. G., Bishop, N. F., Fidel Smoll, L., et al., 2009a. A Re-Examination of the Mechanism and Human Impact of Catastrophic Mass Flows Originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engineering Geology, 108(1-2): 96-118. https://doi.org/10.1016/j.enggeo.2009.06.020
      [19] Evans, S. G., Clague, J. J., 1988. Catastrophic Rock Avalanches in Glacial Environments. Proceedings, 5th International Symposium on Landslides, Lausanne. Rotterdam.
      [20] Evans, S. G., Delaney, K. B., 2015. Catastrophic Mass Flows in the Mountain Glacial Environment. In: Haeberli, W., Whiteman C., eds., Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-394849-6.00016-0
      [21] Evans, S. G., Tutubalina, O. V., Drobyshev, V. N., et al., 2009b. Catastrophic Detachment and High-Velocity Long-Runout Flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology, 105(3-4): 314-321. https://doi.org/10.1016/j.geomorph.2008.10.008
      [22] Evans, S.G., Delaney, K.B., 2015. Chapter 16 -Catastrophic Mass Flows in the Mountain Glacial Environment. Snow and Ice-Related Hazards, Risks and Disasters, Academic Press, Boston, 563-606.
      [23] Fischer, L., Huggel, C., Kääb, A., et al., 2013. Slope Failures and Erosion Rates on a Glacierized High-Mountain Face under Climatic Changes. Earth Surface Processes and Landforms, 38(8): 836-846. https://doi.org/10.1002/esp.3355
      [24] Fischer, L., Kääb, A., Huggel, C., et al., 2006. Geology, Glacier Retreat and Permafrost Degradation as Controlling Factors of Slope Instabilities in a High-Mountain Rock Wall: The Monte Rosa East Face. Natural Hazards and Earth System Sciences, 6(5): 761-772. https://doi.org/10.5194/nhess-6-761-2006
      [25] Fujita, K., Inoue, H., Izumi, T., et al., 2017. Anomalous Winter-Snow-Amplified Earthquake-Induced Disaster of the 2015 Langtang Avalanche in Nepal. Natural Hazards and Earth System Sciences, 17(5): 749-764. https://doi.org/10.5194/nhess-17-749-2017
      [26] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract).
      [27] Geertsema, M., Clague, J. J., Schwab, J. W., et al., 2006. An Overview of Recent Large Catastrophic Landslides in Northern British Columbia, Canada. Engineering Geology, 83(1-3): 120-143. https://doi.org/10.1016/j.enggeo.2005.06.028
      [28] George, D. L., Iverson, R. M., Cannon, C. M., 2017. New Methodology for Computing Tsunami Generation by Subaerial Landslides: Application to the 2015 Tyndall Glacier Landslide, Alaska. Geophysical Research Letters, 44(14): 7276-7284. https://doi.org/10.1002/2017gl074341
      [29] Haeberli, W., Schaub, Y., Huggel, C., 2017. Increasing Risks Related to Landslides from Degrading Permafrost into New Lakes in De-Glaciating Mountain Ranges. Geomorphology, 293: 405-417. https://doi.org/10.1016/j.geomorph.2016.02.009
      [30] Hampton, M. A., Lee, H. J., Locat, J., 1996. Submarine Landslides. Reviews of Geophysics, 34(1): 33-59. https://doi.org/10.1029/95rg03287
      [31] Hauser, A., 2002. Rock Avalanche and Resulting Debris Flow in Estero Parraguirre and Río Colorado, Region Metropolitana, Chile. . In: Evans, S. G., DeGraff, J. V., eds., Catastrophic Landslides: Effects, Occurrence, and Mechanisms. Geological Society of America, Boulder.
      [32] Heim, A., 1932. Bergsturz und Meschenleben. Frets und Wasmuth, Zurich.
      [33] Hewitt, K., 1988. Catastrophic Landslide Deposits in the Karakoram Himalaya. Science, 242(4875): 64-67. https://doi.org/10.1126/science.242.4875.64
      [34] Hewitt, K., 1999. Quaternary Moraines vs Catastrophic Rock Avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Research, 51(3): 220-237. https://doi.org/10.1006/qres.1999.2033
      [35] Hu, K. H., Zhang, X. P., You, Y., et al., 2019. Landslides and Dammed Lakes Triggered by the 2017 Ms 6.9 Milin Earthquake in the Tsangpo Gorge. Landslides, 16(5): 993-1001. https://doi.org/10.1007/s10346-019-01168-w
      [36] Hu, M. J., Cheng, Q. G., Wang, F. W., 2009. Experimental Study on Formation of Yigong Long-Distance high-Speed Landslide. Chinese Journal of Rock Mechanics and Engineering, 28(1): 138-143 (in Chinese with English abstract).
      [37] Hu, W. T., Yao, T. D., Yu, W. S., et al., 2018. Advances in the Study of Glacier Avalanches in High Asia. Journal of Glaciology and Geocryology, 40(6): 1141-1152 (in Chinese with English abstract).
      [38] Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      [39] Huggel, C., Caplan-Auerbach, J., Gruber, S., et al., 2008. The 2005 Mt. Steller, Alaska, Rock-Ice Avalanche, a Large Slope Failure in Cold Permafrost. In: Kane, D. L., Hinkel, K. M., eds., Proceeding of the 9th International Conference on Permafrost, Fairbanks.
      [40] Huggel, C., Caplan-Auerbach, J., Waythomas, C. F., et al., 2007. Monitoring and Modeling Ice-Rock Avalanches from Ice-Capped Volcanoes: A Case Study of Frequent Large Avalanches on Iliamna Volcano, Alaska. Journal of Volcanology and Geothermal Research, 168(1-4): 114-136. https://doi.org/10.1016/j.jvolgeores.2007.08.009
      [41] Huggel, C., Clague, J. J., Korup, O., 2012. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms, 37(1): 77-91. https://doi.org/10.1002/esp.2223
      [42] Huggel, C., Zgraggen-Oswald, S., Haeberli, W., et al., 2005. The 2002 Rock/Ice Avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of Extraordinary Avalanche Formation and Mobility, and Application of QuickBird Satellite Imagery. Natural Hazards and Earth System Sciences, 5(2): 173-187. https://doi.org/10.5194/nhess-5-173-2005
      [43] Jacquemart, M., Loso, M., Leopold, M., et al., 2020. What Drives Large-Scale Glacier Detachments? Insights from Flat Creek Glacier, St. Elias Mountains, Alaska. Geology, 48(7): 703-707. https://doi.org/10.1130/g47211.1
      [44] Jibson, R. W., Harp, E. L., Schulz, W., et al., 2006. Large Rock Avalanches Triggered by the M 7.9 Denali Fault, Alaska, Earthquake of 3 November 2002. Engineering Geology, 83(1-3): 144-160. https://doi.org/10.1016/j.enggeo.2005.06.029
      [45] Jiskoot, H., 2011. Long-Runout Rockslide on Glacier at Tsar Mountain, Canadian Rocky Mountains: Potential Triggers, Seismic and Glaciological Implications. Earth Surface Processes and Landforms, 36(2): 203-216. https://doi.org/10.1002/esp.2037
      [46] Kääb, A., Huggel, C., Fischer, L., et al., 2005. Remote Sensing of Glacier- and Permafrost-Related Hazards in High Mountains: An Overview. Natural Hazards and Earth System Sciences, 5(4): 527-554. https://doi.org/10.5194/nhess-5-527-2005
      [47] Kääb, A., Jacquemart, M., Gilbert, A., et al., 2021. Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers-More Frequent than Thought? The Cryosphere, 15(4): 1751-1785. https://doi.org/10.5194/tc-15-1751-2021
      [48] Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Tibet in 2016 after Surge-Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561-017-0039-7
      [49] Kargel, J. S., Leonard, G. J., Shugar, D. H., et al., 2016. Geomorphic and Geologic Controls of Geohazards Induced by Nepal's 2015 Gorkha Earthquake. Science, 351(6269): 140-150. https://doi.org/10.1126/science.aac8353
      [50] Krautblatter, M., Funk, D., Günzel, F. K., 2013. Why Permafrost Rocks Become Unstable: A Rock-Ice-Mechanical Model in Time and Space. Earth Surface Processes and Landforms, 38(8): 876-887. https://doi.org/10.1002/esp.3374
      [51] Lacroix, P., 2016. Landslides Triggered by the Gorkha Earthquake in the Langtang Valley, Volumes and Initiation Processes. Earth, Planets and Space, 68(1): 1-10. https://doi.org/10.1186/s40623-016-0423-3
      [52] Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331. https://doi.org/10.1016/S0013-7952(01)00090-4
      [53] Leinss, S., Bernardini, E., Jacquemart, M., et al., 2020. Glacier Detachments and Rock-Ice Avalanches in the Petra Pervogo Range, Tajikistan (1973-2019). Natural Hazards and Earth System Sciences. doi: 10.5194/nhess-2020-285.
      [54] Li, J., Chen, N. S., Liu, M., et al., 2018. Analysis of Main Factors for Landslide-Triggered Debris Flow in Zhamunong Gully on April 9th, 2000. South-to-North Water Transfers and Water Science & Technology, 16(6): 187-193 (in Chinese with English abstract).
      [55] Lipovshy, P. S., Huscrift, C.A., Lewkowicz, A. G., 2004. The Nines Creek Ice and Rock Avalanche: An Example of the Impact of Climate Change on Catastrophic Geomorphic Processes in the Kluane Ranges, Yukon Territory, Canada. American Geophysical Union, San Francisco.
      [56] Lipovsky, P. S., Evans, S. G., Clague, J. J., et al., 2008. The July 2007 Rock and Ice Avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada. Landslides, 5(4): 445-455. https://doi.org/10.1007/s10346-008-0133-4
      [57] Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234 (in Chinese with English abstract).
      [58] Liu, G. Q., Lu, X. Y., 2000. Analysis on the Causes of Collapse, Landslide and Debris flow in Zhamunong Gully, Yigong, Tibet. Tibet Science and Technology, (4): 15-17 (in Chinese).
      [59] Liu, W., 2002. Study on the Characteristics of Huge Scale-Super Highspeed-Long Distance Landslide Chain in Yigong, Tibet. The Chinese Journal of Geological Hazard and Control, 13(3): 9-18 (in Chinese with English abstract).
      [60] McSaveney, M. J., 1975. Sherman Glacier Rock Avalanche of 1964: Its Emplacement and Subsequent Effects on the Glacier Beneath it (Dissertation). Ohio State Unversity, Columbus.
      [61] McSaveney, M. J., 2002. Recent Rockfalls and Rock Avalanches in Mount Cook National Park, New Zealand. GSA Reviews in Engineering Geology, 15: 35-70. https://doi.org/10.1130/REG15-p35.
      [62] Mergili, M., Frank, B., Fischer, J. T., et al., 2018. Computational Experiments on the 1962 and 1970 Landslide Events at Huascarán (Peru) with R. Avaflow: Lessons Learned for Predictive Mass Flow Simulations. Geomorphology, 322: 15-28. https://doi.org/10.1016/j.geomorph.2018.08.032
      [63] Noetzli, J., Huggel, C., Hoelzle, M., et al., 2006. GIS-Based Modelling of Rock-Ice Avalanches from Alpine Permafrost Areas. Computational Geosciences, 10(2): 161-178. https://doi.org/10.1007/s10596-005-9017-z
      [64] Pararas-Carayannis, G., 1999. Analysis of Mechanism of Tsunami Generation in Lituya Bay. Science of Tsunami Hazards, 17(3): 193-206.
      [65] Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan—Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract).
      [66] Petrakov, D. A., Chernomorets, S. S., Evans, S. G., et al., 2008. Catastrophic Glacial Multi-Phase Mass Movements: A Special Type of Glacial Hazard. Advances in Geosciences, 14: 211-218. https://doi.org/10.5194/adgeo-14-211-2008
      [67] Pudasaini, S. P., Krautblatter, M., 2014. A Two-Phase Mechanical Model for Rock-Ice Avalanches. Journal of Geophysical Research: Earth Surface, 119(10): 2272-2290. https://doi.org/10.1002/2014jf003183
      [68] Qin, D. H., Yao, T. D., Ding, Y. J., et al., 2014. A Dictionary of Cryosphere Science. China Meteorological Press, Beijing (in Chinese).
      [69] Ren, Y. H., Yang, Q. Q., Cheng, Q. G., et al., 2021. Solid-Liquid Interaction Caused by Minor Wetting in Gravel-Ice Mixtures: A Key Factor for the Mobility of Rock-Ice Avalanches. Engineering Geology, 286: 106072. https://doi.org/10.1016/j.enggeo.2021.106072
      [70] Reynolds, J. M., 1992. The Identification and Mitigation of Glacier-Related Hazards: Examples from the Cordillera Blanca, Peru. In: McCall, G. J. H., Laming, D. J. C., Scott, S. C., eds., Geohazards. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0381-4_13
      [71] Sansone, S., Zugliani, D., Rosatti, G., 2021. A Mathematical Framework for Modelling Rock-Ice Avalanches. Journal of Fluid Mechanics, 919: A8. https://doi.org/10.1017/jfm.2021.348
      [72] Schneider, D., Huggel, C., Haeberli, W., et al., 2011a. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948-1966. https://doi.org/10.1002/esp.2218
      [73] Schneider, D., Kaitna, R., Dietrich, W. E., et al., 2011b. Frictional Behavior of Granular Gravel-Ice Mixtures in Vertically Rotating Drum Experiments and Implications for Rock-Ice Avalanches. Cold Regions Science and Technology, 69(1): 70-90. https://doi.org/10.1016/j.coldregions.2011.07.001
      [74] Shang, Y. J., Yang, Z. F., Li, L. H., et al., 2003. A Super-Large Landslide in Tibet in 2000: Background, Occurrence, Disaster, and Origin. Geomorphology, 54(3-4): 225-243. https://doi.org/10.1016/S0169-555X(02)00358-6
      [75] Shreve, R. L., 1966. Sherman Landslide, Alaska. Science, 154(3757): 1639-1643. https://doi.org/10.1126/science.154.3757.1639
      [76] Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, India Himalaya. Science, 372(6552): eabh4455. https://doi.org/10.1126/science.abh4455.
      [77] Siebert, L., 1984. Large Volcanic Debris Avalanches: Characteristics of Source Areas, Deposits, and Associated Eruptions. Journal of Volcanology and Geothermal Research, 22(3-4): 163-197. https://doi.org/10.1016/0377-0273(84)90002-7
      [78] Sosio, R., 2015. Rock-Snow-Ice Avalanches. Landslide Hazards, Risks, and Disasters. In: Shroder, J. F., Davies, T., eds., Elsevier, Amsterdam. 191-240. https://doi.org/10.1016/b978-0-12-396452-6.00007-0
      [79] Sosio, R., Crosta, G. B., Chen, J. H., et al., 2012. Modelling Rock Avalanche Propagation onto Glaciers. Quaternary Science Reviews, 47: 23-40. https://doi.org/10.1016/j.quascirev.2012.05.010
      [80] Sosio, R., Crosta, G. B., Hungr, O., 2008. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Engineering Geology, 100(1-2): 11-26. https://doi.org/10.1016/j.enggeo.2008.02.012
      [81] Strom, A., 2014. Catastrophic Slope Processes in Glaciated Zones of Mountainous Regions. In: Shan, W., Guo, Y., Wang, F. W., et al., eds., Landslides in Cold Regions in the Context of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-00867-7_1
      [82] Tong, L. Q., Pei, L. X., Tu, J. N., et al., 2020. A Preliminary Study of Definition and Classification of Ice Avalanche in the Tibetan Plateau Region. Remote Sensing for Land & Resources, 32(2): 11-18 (in Chinese with English abstract).
      [83] Van der Woerd, J., Owen, L. A., Tapponnier, P., et al., 2004. Giant, ∼M8 Earthquake-Triggered Ice Avalanches in the Eastern Kunlun Shan, Northern Tibet: Characteristics, Nature and Dynamics. Geological Society of America Bulletin, 116(3): 394-406. https://doi.org/10.1130/b25317.1
      [84] Wang, W. P., Yang, J. S., Wang, Y. B., 2020. Dynamic Processes of 2018 Sedongpu Landslide in Namcha Barwa-Gyala Peri Massif Revealed by Broadband Seismic Records. Landslides, 17(2): 409-418. https://doi.org/10.1007/s10346-019-01315-3
      [85] Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181 (in Chinese with English abstract).
      [86] Weidinger, J. T., 2006. Predesign, Failure and Displacement Mechanisms of Large Rockslides in the Annapurna Himalayas, Nepal. Engineering Geology, 83(1-3): 201-216. https://doi.org/10.1016/j.enggeo.2005.06.032
      [87] Xu, Q., Shang, Y. J., van Asch, T., et al., 2012. Observations from the Large, Rapid Yigong Rock Slide-Debris Avalanche, Southeast Tibet. Canadian Geotechnical Journal, 49(5): 589-606. https://doi.org/10.1139/t2012-021
      [88] Yang, Q. Q., Su, Z. M., Chen, L. Z., et al., 2015. Flume Tests on Influence of Ice to Mobility of rock-Ice Avalanches. Journal of Engineering Geology, 23(6): 1117-1126 (in Chinese with English abstract).
      [89] Yang, Q. Q., Su, Z. M., Cheng, Q. G., et al., 2019. High Mobility of Rock-Ice Avalanches: Insights from Small Flume Tests of Gravel-Ice Mixtures. Engineering Geology, 260: 105260. https://doi.org/10.1016/j.enggeo.2019.105260
      [90] Yin, Y. P., 2000. Rapid Huge Landslide and Hazard Reduction of Yigong River in the Bomi, Tibet. Hydrogeology and Engineering Geology, 27(4): 8-11 (in Chinese with English abstract).
      [91] Yin, Y. P., Li, B., Zhang, T. T., et al., 2021. The February 7 of 2021 Glacier-Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli, India. The Chinese Journal of Geological Hazard and Control, 32(3): 1-8 (in Chinese with English abstract).
      [92] Zhang, M., Yin, Y. P., 2013. Dynamics, Mobility-Controlling Factors and Transport Mechanisms of Rapid Long-Runout Rock Avalanches in China. Engineering Geology, 167: 37-58. https://doi.org/10.1016/j.enggeo.2013.10.010
      [93] Zhang, M., Yin, Y. P., Wu, S. R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6): 805-817 (in Chinese with English abstract).
      [94] Zhao, Y. H., 2020. Study on the Barrier Lake Event for Landslide-River Blocking of Sedongpu Valley on Yarlung Zangbo River in Tibet of China. Journal of Hebei GEO University, 43(3): 31-37 (in Chinese with English abstract).
      [95] Zhu, P. Y., Wang, C. H., Tang, B. X., 2000. The Deposition Characteristic of Supper Debris Flow in Tibet. Journal of Mountain Research, 18(5): 453-456 (in Chinese with English abstract).
      [96] 程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007
      [97] 崔鹏, 陈容, 向灵芝, 等, 2014. 气候变暖背景下青藏高原山地灾害及其风险分析. 气候变化研究进展, 10(2): 103-109. doi: 10.3969/j.issn.1673-1719.2014.02.004
      [98] 崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题. 中国科学院院刊, 32(9): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709014.htm
      [99] 戴福初, 邓建辉, 2020. 青藏高原东南三江流域滑坡灾害发育特征. 工程科学与技术, 52(5): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005002.htm
      [100] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      [101] 胡明鉴, 程谦恭, 汪发武, 2009. 易贡远程高速滑坡形成原因试验探索. 岩石力学与工程学报, 28(1): 138-143. doi: 10.3321/j.issn:1000-6915.2009.01.018
      [102] 胡文涛, 姚檀栋, 余武生, 等, 2018. 高亚洲地区冰崩灾害的研究进展. 冰川冻土, 40(6): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201806008.htm
      [103] 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
      [104] 李俊, 陈宁生, 刘美, 等, 2018.2000年易贡乡扎木弄沟滑坡型泥石流主控因素分析. 南水北调与水利科技, 16(6): 187-193. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201806026.htm
      [105] 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
      [106] 刘国权, 鲁修元, 2000. 西藏易贡藏布扎木弄沟特大型山体崩塌滑坡、泥石流成因分析. 西藏科技, (4): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XZKJ200004003.htm
      [107] 刘伟, 2002. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析. 中国地质灾害与防治学报, 13(3): 9-18. doi: 10.3969/j.issn.1003-8035.2002.03.002
      [108] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
      [109] 秦大河, 姚檀栋, 丁永建, 等, 2014. 冰冻圈科学辞典. 北京: 气象出版社.
      [110] 童立强, 裴丽鑫, 涂杰楠, 等, 2020. 冰崩灾害的界定与类型划分: 以青藏高原地区为例. 国土资源遥感, 32(2): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202002002.htm
      [111] 王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm
      [112] 杨情情, 苏志满, 陈锣增, 等, 2015. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析. 工程地质学报, 23(6): 1117-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506013.htm
      [113] 殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11. doi: 10.3969/j.issn.1000-3665.2000.04.003
      [114] 殷跃平, 李滨, 张田田, 等, 2021. 印度查莫利"2·7"冰岩山崩堵江溃决洪水灾害链研究. 中国地质灾害与防治学报, 32(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103001.htm
      [115] 张明, 殷跃平, 吴树仁, 等, 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望. 工程地质学报, 18(6): 805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001
      [116] 赵永辉, 2020. 中国西藏雅鲁藏布江色东普沟滑坡-堵江堰塞湖事件研究. 河北地质大学学报, 43(3): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX202003006.htm
      [117] 朱平一, 王成华, 唐邦兴, 2000. 西藏特大规模碎屑流堆积特征. 山地学报, 18(5): 453-456. doi: 10.3969/j.issn.1008-2786.2000.05.009
    • 加载中
    图(4)
    计量
    • 文章访问数:  648
    • HTML全文浏览量:  198
    • PDF下载量:  126
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-27
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回