Hf Isotopic and Geochronological Characteristics of Mesozoic Granites and Xenoliths in Rushan Area and Its Implication on Crustal Evolution of Jiaodong Peninsula
-
摘要: 花岗岩是大陆地壳主要组成部分,胶东半岛中生代花岗岩的出现是推演俯冲板片岩浆演化与构造演化的重要依据. 因此,通过研究乳山地区出露的花岗岩及其捕虏体(变质基性岩),有助于更好的了解中生代胶东半岛的岩浆演化与地壳演化. 该研究为胶东地区提供了新的主微量元素数据、U⁃Pb和Lu⁃Hf同位素数据. 岩石地球化学表明黑云母二长花岗岩具有高钾钙碱性特征,相对贫钛、铁、锰、镁等元素,岩体有可能是分异程度较高的I型或者M型花岗岩. 大离子亲石元素Ba和Sr明显富集,高场强元素Zr无明显亏损. 斜长角闪岩SiO2、TiO2、Fe2O3T和MgO含量分别为48.9%、0.68%、12.64%和7.33%,为拉斑玄武岩成分,全碱ALK(K2O+Na2O)较低. 大离子亲石元素Ba和Sr无明显富集,高场强元素Zr弱亏损,与石榴斜长角闪岩地球化学性质相似. 锆石CL图像中花岗岩为岩浆锆石,斜长角闪岩为变质重结晶锆石. 黑云母二长花岗岩锆石U⁃Pb定年获得年龄为118.5±2.7 Ma,εHf(t)值为-15.4~-27.7(Mean=-25.2±1.4),相应二阶段模式年龄(TDM2)为2.16~2.90 Ga,但大部分集中在~2.8 Ga. 捕虏体斜长角闪岩锆石U⁃Pb上交点年龄为1 839±27 Ma,εHf(t)值为0.5~5.1(Mean=3.23±0.74),相应的一阶段模式年龄(TDM1)为2.02~2.18 Ga. 此外,念头村含榴花岗岩εHf(t)值为-25.1~-27.1(Mean=-26.0±0.18),相应的二阶段模式年龄(TDM2)为2.75~2.87 Ga. 其捕虏体含榴斜长角闪岩εHf(t)值为3.7~4.4(Mean=3.93±0.21),相应的一阶段模式年龄(TDM1)为1.99~2.03 Ga. 上述数据指示花岗岩为华北太古宙地壳重新熔融的产物;变基性岩属华北荆山群物质. 因此,乳山地区中生代花岗岩及其捕虏体都具有华北板块的亲缘性. 乳山地区模式年龄为太古宙的花岗岩暗示胶东半岛地壳演化的相关信息,并不具备拆沉作用产生岩浆岩的特点. 捕虏体(变基性岩)可能为下地壳部分熔融后形成的新生地壳物质在短时间内携裹的产物.Abstract: Granite is the main component of continental crust, and the occurrence of Mesozoic granite in Jiaodong Peninsula is an important basis for deducing magmatic evolution and tectonic evolution of subduction plates. Therefore, the study of granite and its xenoliths (meta⁃maficrocks) exposed in Rushan area is helpful to better understand the magmatic evolution and crustal evolution of Jiaodong Peninsula in Mesozoic. This study provides new data of major and traceelements, U⁃Pb dataand Lu⁃Hf isotopesfor Jiaodong Peninsula. Petro⁃geochemistry shows that the biotite monzogranite has the characteristics of high potassium and calcium alkalinity, and is relatively poor in elements such as titanium, iron, manganese, and magnesium. The rock may be I⁃type or M⁃type granite with a high degree of differentiation.The large ion lithophile elements Ba and Sr are obviously enriched, and the high field strength element Zr has no obvious loss.The SiO2, TiO2, Fe2O3T, and MgO content of the amphibolite are 48.9%, 0.68%, 12.64% and 7.33%, respectively. It is a tholeiitic basalt composition, and the total alkali ALK (K2O+Na2O) is relatively low.The large ion lithophile elements Ba and Sr are not significantly enriched, and the high field strength element Zr is weakly depleted, which is similar to the geochemical properties of the garnet plagioclase amphibolite.The granite has magmatic zircon and the amphibolite contains metamorphic recrystallized zircon under zircon CL image. The zircon U⁃Pb dating age of the biotite monzogranite is 118.5±2.7 Ma, and the value of εHf(t) is -15.4 to -27.7 (Mean=-25.2±1.4), and the corresponding two⁃stage model age (TDM2) is 2.16 to 2.90 Ga, but most of them are concentrated in ~2.8 Ga.The upper intersection age amphibolite(xenoliths) is 1 839±27 Ma(zircon U⁃Pb), and and the value of εHf(t) is 0.5 to 5.1 (Mean=3.23±0.74), corresponding to the one⁃stage model age (TDM1) is 2.02 to 2.18 Ga.In addition, the value of εHf(t) of the granite⁃bearing granite in Niantou Village is -25.1 to -27.1 (Mean=-26.0±0.18), and the corresponding two⁃stage model age (TDM2) is 2.75 to 2.87 Ga.The εHf(t) value of the xenoliths (garnet amphibolite) is 3.7 to 4.4 (Mean=3.93±0.21), and the corresponding one⁃stage model age (TDM1) is 1.99 to 2.03 Ga.The above data indicate that the granite is the product of Archean crust remelting in the Eastern North China Craton; the meta⁃mafic rocks can be classified into the Jingshan Group of the North China Craton.Therefore, the Mesozoic granite and its xenoliths in the Rushan area have the same affiliation as the North China Craton. The granites with model ages of Archean age in the Rushan area suggest information about the crustal evolution of the Jiaodong Peninsula. It does not have the characteristics of magmatic rock produced by delamination. A short time after partial melting of the lower crust entrained, many ancient xenoliths (meta⁃mafic rocks) were carried to the subsurface by re⁃melting magma.
-
Key words:
- Sulu orogenic belt /
- granite /
- Hf isotope /
- magmatic evolution /
- lithospheric delamination /
- geochemistry
-
图 10 下地壳拆沉模式图(修改自Li et al, 2019)
Fig. 10. Model map of lower crust delamination(modified from Li et al, 2019)
-
[1] Cai, Y. C., Fan, H. R., Santosh, M., et al., 2013. Evolution of the Lithospheric Mantle beneath the Southeastern North China Craton: Constraints from Mafic Dikes in the Jiaobei Terrain. Gondwana Research, 24(2): 601-621. https://doi.org/10.1016/j.gr.2012.11.013 [2] Cheng, Y.Q., Chang, Y.F., Xu, H.F., et al., 2001. 1 to 500 000 Geological Map and Sepcification of the Dabie-Sulu Orogenic Belt. Geological Publishing House, Beijing, 1-32(in Chinese). [3] Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001 [4] Ding, W., Wang, T., Li, Y.B. et al., 2018. Petrogenesis of the Linshu Monzonitic Granite in the Southern Part of the Sulu Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2): 344-354. (in Chinese with English abstract). [5] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [6] Gao, S., Zhang, B.R., Jin Z.M. et al., 1999. Delamination of the Lower Crust in the Qinling Dabie Orogenic Belt. Chinese Science (Part D: Earth Science), (6): 532-541(in Chinese with English abstract). [7] Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3/4): 307-322. https://doi.org/10.1016/s0012-821x(2)00489-2 [8] Guo, F., Fan, W. M., Wang, Y. J., et al., 2004. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 78(3): 291-305. https://doi.org/10.1016/j.lithos.2004.05.001 [9] Guo, F., Fan, W. M., Li, C. W., 2006. Geochemistry of Late Mesozoic Adakites from the Sulu Belt, Eastern China: Magma Genesis and Implications for Crustal Recycling beneath Continental Collisional Orogens. Geological Magazine, 143(1): 1-13. https://doi.org/10.1017/s0016756805001214 [10] Guo, J.H., Chen, F.K., Zhang, X.M., et al., 2005. Evolution of Syncollision-Post-Collisinal Magmatism from North Sulu UHP Belt, Eastern China: Zircon U-Pb Geochronology. Acta Petrologica Sinica, 21(4): 1281-130 (in Chinese with English abstract). [11] Hou, M. L., Jiang, Y. H., Jiang, S. Y., et al., 2007. Contrasting Origins of Late Mesozoic Adakitic Granitoids from the Northwestern Jiaodong Peninsula, East China: Implications for Crustal Thickening to Delamination. Geological Magazine, 144(4): 619-631. https://doi.org/10.1017/s0016756807003494 [12] Ishizaka, K., Hirajma, T., Zheng, X., 2010. Rb-Sr Dating for the Jiaodong Gneiss of the Su-Lu Ultra-High Pressure Province, Eastern China. The Island Arc, 3(3): 232-241. https://doi.org/10.1111/j.1440-1738.1994.tb00109.x [13] Li, S. Z., Zhao, G. C., Santosh, M., et al., 2012. Paleoproterozoic Structural Evolution of the Southern Segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59-73. https://doi.org/10.1016/j.precamres.2012.01.007 [14] Li, H. Y., Huang, X. L., Guo, H., 2014. Geochemistry of Cenozoic Basalts from the Bohai Bay Basin: Implications for a Heterogeneous Mantle Source and Lithospheric Evolution beneath the Eastern North China Craton. Lithos, 196-197: 54-66. https://doi.org/10.1016/j.lithos.2014.02.026 [15] Li, X. H., Fan, H. R., Hu, F. F., et al., 2019. Linking Lithospheric Thinning and Magmatic Evolution of Late Jurassic to Early Cretaceous Granitoids in the Jiaobei Terrane, Southeastern North China Craton. Lithos, 324-325: 280-296. https://doi.org/10.1016/j.lithos.2018.11.022 [16] Liu, F. L., Liu, L. S., Liu, P. H., et al., 2017. A Relic Slice of Archean-Early Paleoproterozoic Basement of Jiaobei Terrane Identified within the Sulu UHP Belt: Evidence from Protolith and Metamorphic Ages from Meta-Mafic Rocks, TTG-Granitic Gneisses, and Metasedimentary Rocks in the Haiyangsuo Region. Precambrian Research, 303: 117-152. https://doi.org/10.1016/j.precamres.2017.03.014 [17] Liu, F.L., Xue, H.M., Liu, P.H., 2009. Partial Melting Time of Ultrahigh-Pressure Metamorphic Rocks in the Sulu UHP Terrane: Constrained by Zircon U-Pb Ages, Trace Elements and Lu-Hf Isotope Compositions of Biotite-Bearing Granite. Acta Petrologica Sinicat, 25(5): 1039-1055. (in Chinese with English abstract). [18] Liu, L.S., Liu, F.L., Wang, W., 2017. The Polygenetic Meta-Mafic Rocks from the Northeast of Sulu Ultrahigh-Pressure Metamorphic Belt: Insight from Petrology, Isotopic Chronology and Geochemistry. Acta Petrologica Sinica, 33(9): 2899-2924(in Chinese with English abstract). [19] Liu, L.S., Liu, F.L., Ji, L., et al., 2018. The Polygenetic Meta-Granitic Rocks and Their Geological Significance, within the North Sulu Ultrahigh-Pressure Belt. Acta Petrologica Sinica, 34(6) : 1557-1580(in Chinese with English abstract). [20] Liu, P.H., Tian, Z.H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace ElementsCompositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216. (in Chinese with English abstract). [21] Lu, X.P., Wu, F.Y., Zhang, Y.B., et al., 2004. Emplacement Age and Tectonic Setting of the Paleoproterozoic Liaoji Granites in Tonghua Area, Southern Jilin Province. Acta Petrologica Sinica, 20(3) : 381 -392. (in Chinese with English abstract). [22] Ma, X.H., Zeng, Q.W., Tao, S.Y., et al., 2021. Mineralogical Characteristics and In-Situ Sulfur Isotopic Analysis of Gold-Bearing Sulfides from the Qilishan Gold Deposit in the Jiaodong Peninsula, China. Journal of Earth Science, 32(1): 116-126. https://doi.org/10.1007/s12583-020-1370-2 [23] Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 [24] Meng, E., Liu, F. L., Liu, P. H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China: Evidence from Zircon U-Pb Dating and in Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry. Precambrian Research, 247: 92-109. https://doi.org/10.1016/j.precamres.2014.03.017 [25] Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009gc002618 [26] Peng, P., Zhai, M.G., Zhang, H.F., et al., 2004. Geochemistry and Geological Significance of the 1.8 Ga Mafic Dyke Swarms in the North China Craton: an Example from the Juncture of Shanxi, Hebei and Inner Mongolia. Acta Petrologica Sinica, 20(3) : 439-456(in Chinese with English abstract). [27] Sai, S.X., Zhao T.M., Wang, Z.L., et al., 2016. Petrogenesis of Linglong Biotite Granite: Constraints fromMineralogical Characteristics. Acta Petrologica Sinica, 32(8): 2477-2493 (in Chinese with English abstract). [28] Tian, Z.H., 2021. Structural Complexity of the Suture Zone: A Case Study from the Multi-Phase Modified Suture Zone in the Sulu Area. Chinese Journal of Geology. 56(2): 635-666. (in Chinese with English abstract). [29] Wan, Y. S., Liu, D. Y., Wang, S. J., et al., 2011. ~2.7Ga Juvenile Crust Formation in the North China Craton (Taishan-Xintai Area, Western Shandong Province): Further Evidence of an Understated Event from U-Pb Dating and Hf Isotopic Composition of Zircon. Precambrian Research, 186(1/2/3/4): 169-180. https://doi.org/10.1016/j.precamres.2011.01.015 [30] Wang, J.J., 2000. Discussion on Genesis ofLinglong Granite. Cluster of Geological Prospecting Theories, 15(4): 289-289(in Chinese with English abstract). [31] Wang, Q., Xu, J. F., Jian, P., et al., 2005. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070 [32] Wang S.J., Wan Y.S., Guo R.P., et al., 2011. SHRIMP Zircon Dating of Linglong Type (Superunit) Granite in Eastern Shandong Province. Landand Resources in Shandong Province, 27(4): 1-7 (in Chinese with English abstract). [33] Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1/2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010 [34] Wu, F.Y., Li, X.H., Zheng, Y.F. et al., 2007. Lu-Hf Isotope Systematics and TheirApplicationin Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). [35] Xie, Z., Zheng, Y. F., Zhao, Z. F., et al., 2006. Mineral Isotope Evidence for the Contemporaneous Process of Mesozoic Granite Emplacement and Gneiss Metamorphism in the Dabie Orogen. Chemical Geology, 231(3): 214-235. https://doi.org/10.1016/j.chemgeo.2006.01.028 [36] Xu, H. J., Lei, H. C., Xiong, Z. W., et al., 2019. Paleoproterozoic Ultrahigh-Temperature Granulite-Facies Metamorphism in the Sulu Orogen, Eastern China: Evidence from Zircon and Monazite in the Pelitic Granulite. Precambrian Research, 333: 105430. https://doi.org/10.1016/j.precamres.2019.105430 [37] Xu, S. T., Su, W., Liu, Y. C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and its Implication for Tectonic Setting. Science, 256(5053): 80-82. https://doi.org/10.1126/science.256.5053.80 [38] Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2006. Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(4): 454-464. https://doi.org/10.1016/j.jseaes.2005.03.010 [39] Xu, Y. G., 2001. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 747-757. https://doi.org/10.1016/s1464-1895(1)00124-7 [40] Yang, K. F., Fan, H. R., Santosh, M., et al., 2012. Reactivation of the Archean Lower Crust: Implications for Zircon Geochronology, Elemental and Sr-Nd-Hf Isotopic Geochemistry of Late Mesozoic Granitoids from Northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127. https://doi.org/10.1016/j.lithos.2012.04.035 [41] Yang, W. C., 2002. Geophysical Profiling across the Sulu Ultra-High-Pressure Metamorphic Belt, Eastern China. Tectonophysics, 354(3/4): 277-288. https://doi.org/10.1016/s0040-1951(2)00386-4 [42] Yang, Y.W., Yu, C., Wang, G.W., et al., 2020. Chronology, Geochemistry and Zircon Hf Isotopes of the Paleoproterozoic Alkali Feldspar Granite from the Heigou Area in the Eastern Liaoning Province: Constraints on the Tectonic Evolution of the Liao-Ji Orogenic Belt. Acta Geologica Sinica. 94(8): 2212-2226(in Chinese with English abstract). [43] Ye, K., Cong, B. L., Ye, D. N., 2000a. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734-736. https://doi.org/10.1038/35037566 [44] Ye, K., Yao, Y. P., Katayama, I., et al., 2000b. Large Areal Extent of Ultrahigh-Pressure Metamorphism in the Sulu Ultrahigh-Pressure Terrane of East China: New Implications from Coesite and Omphacite Inclusions in Zircon of Granitic Gneiss. Lithos, 52(1/2/3/4): 157-164. https://doi.org/10.1016/s0024-4937(99)00089-4 [45] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 [46] Zhang, H.F., Zhai, M.G., He, Z.F., et al., 2004. Petrogenesis and Implication of the Sodium-Rich Granites from the Kunyushan Complex, Eastern Shandong Province. Acta Petrologica Sinica, (3): 369-380 (in Chinese with English abstract). [47] Zhang, J. J., Zheng, Y. F., Zhao, Z. F., 2009. Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China. Lithos, 110(1/2/3/4): 305-326. https://doi.org/10.1016/j.lithos.2009.01.006 [48] Zhao, R., Wang, Q. F., Deng, J., et al., 2018. Late Mesozoic Magmatism and Sedimentation in the Jiaodong Peninsula: New Constraints on Lithospheric Thinning of the North China Craton. Lithos, 322: 312-324. https://doi.org/10.1016/j.lithos.2018.10.020 [49] Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8 [50] Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2008. Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 253(3/4): 222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011 [51] Zhao, Z. F., Zheng, Y. F., Zhang, J., et al., 2012. Syn-Exhumation Magmatism during Continental Collision: Evidence from Alkaline Intrusives of Triassic Age in the Sulu Orogen. Chemical Geology, 328: 70-88. https://doi.org/10.1016/j.chemgeo.2011.11.002 [52] Zhao, Z. F., Liu, Z. B., Chen, Q., 2017. Melting of Subducted Continental Crust: Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China. Journal of Asian Earth Sciences, 145: 260-277. https://doi.org/10.1016/j.jseaes.2017.03.038 [53] Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0 [54] Zheng, Y.F., Chen, R.X., Zhang, S.B., et al., 2007. Zircon Lu-Hf Isotope Study of Ultrahigh-Pressure Eclogite and Granitic Gnelss in the Dabie Orogen. Acta Petrologica Sinica, 23 (2): 317-330 (in Chinese with English abstract). [55] Zheng, Y. F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014 [56] Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007 [57] Zheng, Y., Wu, Y., Zhao, Z., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378-400. https://doi.org/10.1016/j.epsl.2005.09.025 [58] Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001 [59] Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005 [60] Zhu, H.Z., Tian, Z.H., Wang, Z.L., et al., 2020. (Garnet Bearing) Plagioclase Amphibolite P-T Evolution Path and Its Geological Implications in Rushan Region, Sulu Tectonic Complex: Constraints by Petrology, Mineral Chemistry and Phase Equilibria Modeling. Earth Science, 45(9): 3420-3435(in Chinese with English abstract). [61] Zhu, R.X., Zhang, H.F., Zhu, G., et al., 2017. Craton Destruction and Related Resources. International Journal of Earth Sciences, 106(7): 1-25. [62] 程裕淇, 常印佛, 徐慧芬, 等. 2001. 大别-苏鲁造山带1: 500 000地质图和说明书. 北京: 地质出版社. 1-32. [63] 丁伟, 王涛, 李彦波, 等, 2018. 苏鲁造山带南缘临沭县二长花岗岩成因. 矿物岩石地球化学通报, 37(2): 344-354. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201802019.htm [64] 高山, 张本仁, 金振民, 等, 1999. 秦岭-大别造山带下地壳拆沉作用. 中国科学(D辑: 地球科学), (6): 532-541. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199906007.htm [65] 郭敬辉, 陈福坤, 张晓曼, 等, 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石U-Pb年代学. 岩石学报, (4): 1281-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504025.htm [66] 刘利双, 刘福来, 王伟, 2017. 苏鲁超高压变质带东北端多种成因类型变基性岩: 来自岩石学、同位素年代学及地球化学属性的制约. 岩石学报, 33(9): 2899-2924. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709016.htm [67] 刘利双, 刘福来, 冀磊, 等, 2018. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义. 岩石学报, 34(6): 1557-1580 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806002.htm [68] 刘福来, 薛怀民, 刘平华, 2009. 苏鲁超高压岩石部分熔融时间的准确限定: 来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据. 岩石学报, 25(5): 1039-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905002.htm [69] 刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228 [70] 路孝平, 吴福元, 张艳斌, 等, 2004. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景. 岩石学报, (3): 381-392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403002.htm [71] 彭澎, 翟明国, 张华锋, 等, 2004. 华北克拉通1.8 Ga镁铁质岩墙群的地球化学特征及其地质意义: 以晋冀蒙交界地区为例. 岩石学报, (3): 439-456. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403008.htm [72] 赛盛勋, 赵天明, 王中亮, 等, 2016. 玲珑黑云母花岗岩成因: 矿物学特征约束. 岩石学报, 32(8): 2477-2493. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608017.htm [73] 田忠华, 2021. 缝合带结构的复杂性: 以苏鲁地区多期改造缝合带为例. 地质科学, 56(2): 635-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102013.htm [74] 王吉珺, 2000. 玲珑花岗岩成因探讨. 地质找矿论丛, 15(4): 289-289. doi: 10.3969/j.issn.1001-1412.2000.04.001 [75] 王世进, 万渝生, 郭瑞朋, 等, 2011. 鲁东地区玲珑型(超单元)花岗岩的锆石SHRIMP定年. 山东国土资源, 27(4): 1-7. doi: 10.3969/j.issn.1672-6979.2011.04.001 [76] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [77] 杨玉伟, 余超, 王广伟, 等, 2020. 辽东黑沟地区古元古代碱长花岗岩年代学、地球化学、Hf同位素特征及其对辽吉造山带构造演化的制约. 地质学报, 94(8): 2212-2226. doi: 10.3969/j.issn.0001-5717.2020.08.004 [78] 张华锋, 翟明国, 何中甫, 等, 2004. 胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义. 岩石学报, (3): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403001.htm [79] 郑永飞, 陈仁旭, 张少兵, 等, 2007. 大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究. 岩石学报, (2): 317-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702013.htm [80] 朱浩忠, 田忠华, 王泽利, 等, 2020. 苏鲁构造杂岩带乳山地区(石榴)斜长角闪岩P-T演化轨迹及其地质意义——来自岩石学、矿物化学及相平衡模拟的约束. 地球科学, 45(9): 3420-3435. doi: 10.3799/dqkx.2020.244 -
dqkxzx-47-8-2951-附表.docx