• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示

    李志强 杨波 韩自军 黄振 吴庆勋

    李志强, 杨波, 韩自军, 黄振, 吴庆勋, 2022. 南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
    引用本文: 李志强, 杨波, 韩自军, 黄振, 吴庆勋, 2022. 南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
    Li Zhiqiang, Yang Bo, Han Zijun, Huang Zhen, Wu Qingxun, 2022. Tectonic-Thermal Evolution of Meso-Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin-Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
    Citation: Li Zhiqiang, Yang Bo, Han Zijun, Huang Zhen, Wu Qingxun, 2022. Tectonic-Thermal Evolution of Meso-Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin-Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152

    南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示

    doi: 10.3799/dqkx.2021.152
    基金项目: 

    国家科技重大专项“中国近海富烃凹陷优选与有利勘探方向预测” 2016ZX05024-002

    详细信息
      作者简介:

      李志强(1992-),男,工程师,主要从事沉积盆地分析方面的研究工作. ORCID:0000-0003-4422-6397. E-mail:zhiqiangligeo@163.com

    • 中图分类号: P541

    Tectonic-Thermal Evolution of Meso-Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin-Forming Mechanism and Thermal Evolution of Source Rocks

    • 摘要: 基于Advanced McKenzie地球动力学模型和Easy%RoDL化学动力学模型,建立了南黄海中-新生代(K13-Q)裂谷盆地的构造-热演化史,结合盆地深部壳幔结构、梳理周缘中-新生代板块汇聚与离散过程,讨论了该盆地低地热状态成因、成盆机制和烃源岩热演化.盆地地壳伸展系数约为1.22,岩石圈地幔伸展系数约为1.06;由裂陷期(K13-E2)至今,最高热流值仅由约76 mW/m2降低至约66 mW/m2,最高地温梯度仅由约37 ℃/km降低至约30 ℃/km,首次揭示低地热状态贯穿整个裂谷盆地发育阶段.低岩石圈地幔伸展系数、深部非镜像莫霍面分布、盆地发育阶段仅处于弧后远场拉张应力环境,均指示成盆过程中深部伸展上涌强度低,是导致其持续低地热状态的根本原因,深部热应力不是其主要成盆动力来源;依据高地壳伸展系数和控盆拆离断层演化,认为印支-燕山期先存逆冲断裂复活形成壳间拆离体系,并以简单剪切变形方式控制裂谷盆地发育,是其根本成盆机制;南、北部坳陷烃源岩主排烃期为三垛组二段沉积时期,自渐新世构造反转后热演化终止,古埋深和古地温场条件共同控制现今南、北部坳陷相同深度烃源岩热成熟度差异.

       

    • 图  1  南黄海盆地构造位置、构造格局和研究区构造剖面

      Fig.  1.  Tectonic position, tectonic framework and structural section of the South Yellow Sea basin

      图  2  南黄海中-新生代陆相裂谷盆地综合柱状图和前裂陷期构造事件图

      Fig.  2.  Mesozoic-Cenozoic continental rift basin histogram and pre-rift tectonic event in the South Yellow Sea

      图  3  岩石圈伸展模式、McKenzie地球动力学模型和Advanced McKenzie地球动力学模型

      a. 岩石圈伸展模式;b. McKenzie地球动力学模型;c. Advanced McKenzie地球动力学模型. 符号注释:a.初始地壳和地幔长度,两者总厚度(m);β.岩石圈伸展系数;tc.初始地壳厚度(m);tm.初始地幔厚度(m);βc.地壳伸展系数;βm.地幔伸展系数;Ta.软流圈恒定温度,1 333 ℃;Tswi.沉积水界面温度(℃)

      Fig.  3.  Lithospheric extension model, McKenzie geodynamic model and Advanced McKenzie geodynamic model

      图  4  北部坳陷和南部坳陷构造沉降趋势、伸展阶段划分、壳幔伸展系数和初步背景热流模型

      Fig.  4.  Tectonic subsidence trend, extension stage division, crust-mantle extension coefficient and preliminary background heat flow model in the northern and southern depressions

      图  5  Easy%Ro、Easy%RoDL、Basin%Ro活化能分布和镜质体反射率-温度关系

      Fig.  5.  Distribution of activation energy of Easy%Ro, Easy% RoDL, Basin%Ro and the relation between vitrinite reflectivity and temperature

      图  6  北部坳陷Well-A井和南部坳陷Well-B井埋藏史及热流演化史

      Fig.  6.  Burial history and heat flow evolution history of Well-A in the northern depression and Well-B in the southern depression

      图  7  下扬子板块周缘中生代以来两阶段洋壳俯冲,深部岩石圈减薄过程和成盆动力学模式

      图7a表明在早白垩世由古太平洋板块(伊泽奈崎板块)高角度俯冲和回撤引起整个中国东部巨量的岩石圈减薄,塑造了南北重力梯度带的雏形(Xu,2007Liu et al., 2017a, 2017b);图7b表明早白垩世晚期太平洋板块出现在西太平洋并持续近北西向俯冲(Ren et al., 2002李三忠等,2013朱光等,2016),垂直剖面参考东亚高分辨率上地幔层析成像中的33°N和35°N垂直剖面(Huang and Zhao, 2006)和34°N垂直剖面(Liu et al., 2017b).南黄海深部地幔过渡带为不连续的高速异常体,滞留洋壳板片可能不都是太平洋板块(Li and van der Hilst,2010Tao et al., 2018Ma et al., 2019

      Fig.  7.  Two-stage oceanic slab subduction, deep lithospheric thinning and basin-forming dynamics model around the lower Yangtze plate since the Mesozoic

      图  8  南黄海盆地结构剖面及拆离体系示意图(位置见图 1)

      Fig.  8.  Structural section and detachment system of South Yellow Sea basin (see Fig. 1 for location)

      图  9  北部坳陷和南部坳陷主力烃源岩热演化过程及现今同深度地温演化

      Fig.  9.  Thermal evolution of main source rocks and present same depth geothermal evolution in northern and southern depressions

      表  1  南黄海盆地岩石圈结构和热物理参数

      Table  1.   Lithospheric structure and thermophysical parameters of the South Yellow Sea basin

      岩石圈结构和热物理参数 数值
      裂陷期(Ma) 106
      裂后期(Ma) 32
      膨胀系数(K-1) 3.3×10-5 (地壳)
      5.0×10-5(地幔)
      热导率(W/m/K)(20 ℃) 2.65(地壳)
      4.0(地幔)
      扩散系数(m2/s) 0.804×10-6(地壳)
      6.0×10-6(地幔)
      软流圈温度(℃) 1 333
      沉积水密度(kg/m3) 1 040
      地壳密度(kg/m3) 2 800
      地幔密度(kg/m3) 3 300
      现今地壳厚度(km) 32~34(含沉积层)
      岩石圈初始厚度(km) 122
      注:岩石圈热物理参数参考Hantschel and Kauerauf (2009);现今地壳厚度参考考胥颐等(2008)祁江豪(2015)陈艳等(2017)Kim et al.(2019);初始岩石圈厚度参考陈沪生和张永鸿(1999).
      下载: 导出CSV
    • [1] Chen, H. S., Zhang, Y. H., 1999. The Lithospheric Textural and Structure Features as Well as Oil and Gas Evaluation in the Lower Yangtze Ares and Its Adjacent Region, China. Geological Publishing House, (in Chinese).
      [2] Chen, J. W., Xu, M., Lei, B. H., et al., 2020. Collision of North China and Yangtze Plates: Evidence from the South Yellow Sea. Marine Geology & Quaternary Geology, (3): 1-12 (in Chinese with English abstract).
      [3] Chen, Y., Zhang, J. F., Jiang, W. L., et al., 2017. Gravity Field and Characteristics of Crustal Structure in Subei Basin. Progress in Geophysics, 32(6): 2295-2303 (in Chinese with English abstract).
      [4] Ding, D. G., Luo, K. P., Liu, G. X., et al., 2016. Extensional Detachment Structures in the Lower Yangtze Region. Petroleum Geology & Experiment, 38(1): 1-8 (in Chinese with English abstract).
      [5] Ding, D. G., Zhu, Y., Chen, F. L., et al., 1991. Basal Detaching Reformation of Paleozoic Basins in Central and Lower Yangtze Regions and Their Hydrocarbon Prospectings. Oil & Gas Geology, 12(4): 376-386 (in Chinese with English abstract).
      [6] Dong, S. W., Zhang, Y. Q., Li, H. L., et al., 2019. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia-Commemorating 90th Years of the "Yanshan Orogeny". Science in China (Series D: Earth Sciences), 49(6): 913-938 (in Chinese).
      [7] Hantschel, T., Kauerauf, A. I., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin.
      [8] Hu, S. B., Zhang, R. Y., Luo, Y. H., et al., 1999. Thermal History and Tectonic-Thermal Evolution of Bohai Basin, East China. Chinese Journal of Geophysics, 42(6): 748-755 (in Chinese with English abstract).
      [9] Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research, 111: B09305. https://doi.org/10.1029/2005JB004066
      [10] Kim, H. J., Hao, T., Kim, C. H., et al., 2019. Crustal Structure of the Gunsan Basin in the SE Yellow Sea from Ocean Bottom Seismometer (OBS) Data and Its Linkage to the South China Block. Journal of Asian Earth Sciences, (180): 103881. https://doi.org/10.1016/j.jseaes.2019.103881
      [11] Kusznir, N. J., Marsden, G., Egan, S. S., 1991. A Flexural-Cantilever Simple-Shear/Pure-Shear Model of Continental Lithosphere Extension: Applications to the Jeanne D'Arc Basin, Grand Banks and Viking Graben, North Sea. Geological Society, London, Special Publications, 56(1): 41-60.
      [12] Kusznir, N. J., Mattews, D. H., 1988. Deep Seismic Reflections and the Deformational Mechanics of the Continental Lithosphere. Nature, 366: 557-559. https://doi.org/10.1093/petrology/special_volume.1.63
      [13] Li, C., van der Hilst, R. D., 2010. Structure of the Upper Mantle and Transition Zone Beneath Southeast Asia from Traveltime Tomography. Journal of Geophysical Research, 115: B07308. https://doi.org/10.1029/2009JB006882
      [14] Li, C. F., Chen, B., Zhou, Z. Y., 2009. The Magnetic Anomaly Data in East China and Adjacent Waters of the Deep Structure. Science in China (Series D: Earth Sciences), 39(12): 1770-1779 (in Chinese).
      [15] Li, S. T., Xie, X. N., Wang, H., et al., 2004. Sedimentary Basin Analysis: Principle and Application. Higher Education Press, Beijing (in Chinese).
      [16] Li, S. Z., Yu, S., Zhao, S. J., et al., 2013. Tectonic Transition and Plate Reconstructions of the East Asian Continental Margin. Marine Geology & Quaternary Geology, 33(3): 65-94 (in Chinese with English abstract).
      [17] Lin, C. S., 2016. Principle and Application of Sedimentary Basin Analysis. Petroleum Industry Press, Beijing (in Chinese).
      [18] Lister, G. S., Etheridge, M. A., Symonds, P. A., 1991. Detachment Models for the Formation of Passive Continental Margins. Tectonics, 10(5): 1038-1064. https://doi.org/10.1029/90TC01007
      [19] Liu, Q. Y., He, L. J., 2019. Tectono-Thermal Modeling of Bohai Bay Basin since the Cenozoic. Chinese Journal of Geophysics, 62(1): 219-235 (in Chinese with English abstract).
      [20] Liu, Q. Y., He, L. J., Huang, F., et al., 2016. Cenozoic Lithospheric Evolution of the Bohai Bay Basin, Eastern North China Craton: Constraint from Tectono-Thermal Modeling. Journal of Asian Earth Sciences, 115: 368-382. https://doi.org/10.1016/j.jseaes.2015.10.013
      [21] Liu, S. F., Gurnis, M., Ma, P. F., et al., 2017a. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma. Earth-Science Reviews, 175: 114-142. https://doi.org/10.1016/j.earscirev.2017.10.012
      [22] Liu, X., Zhao, D. P., Li, S. Z., 2017b. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications. Earth and Planetary Science Letters, 464: 166-174. https://doi.org/10.1016/j.epsl.2017.02.024
      [23] Ma, P. F., Liu, S. F., Gurnis, M., et al., 2019. Slab Horizontal Subduction and Slab Tearing Beneath East Asia. Geophysical Research Letters, 46(10): 5161-5169. https://doi.org/10.1029/2018gl081703
      [24] McKenzie, D. K., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
      [25] Mei, L. F., Dai, S. W., Shen, C. B., et al., 2008. Formation and Disintegration of the Meso-Cenozoic Intra- Continental Ramp Zone in Middle and Lower Yangtze Region. Geological Science and Technology Information, 27 (4): 1-7 (in Chinese with English abstract).
      [26] Mi, L. J., Yuan, Y. S., Zhang, G. C., et al., 2009. Characteristics and Genesis of Geothermal Filed in the Deep-Water Area of the Northern South China Sea. Acta Petrolei Sinica, 30(1): 27-32 (in Chinese with English abstract).
      [27] Nielsen, S. B., Clausen, O. R., Mcgregor, E., 2017. Basin% Ro: A Vitrinite Reflectance Model Derived from Basin and Laboratory Data. Basin Research, 29(S1): 515-536. https://doi.org/10.1111/bre.12160
      [28] Pang, Y. M., Zhang, X. H., Guo, X. W., et al., 2017. Mesozoic and Cenozoic Tectono-Thermal Evolution Modeling in the Northern South Yellow Sea Basin. Chinese Journal of Geophysics, (60): 3177-3190 (in Chinese with English abstract).
      [29] Peters, K. E., Burnham, A. K., Walters, C. C., et al., 2018. Guidelines for Kinetic Input to Petroleum System Models from Open-System Pyrolysis. Marine and Petroleum Geology, 92: 979-986. https://doi.org/10.1016/j.marpetgeo.2017.11.024
      [30] Qi, J. F., Yang, Q., 2010. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 27(4): 757-771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
      [31] Qi, J. F., Zhang, Y. W., Lu, K. Z., et al., 1995. Extensional Pattern and Dynamic Process of the Cenozoic Rifiting Basin in the Bohai Bay. Petroleum Geology & Experiment, 17(4): 316-323 (in Chinese with English abstract).
      [32] Qi, J. H., Wu, Z. Q., Zhang, X., et al., 2020. Deep Seismic Evidence of Cenozoic Tectonic Migration in the Western Pacific Back-Arc Area. Earth Science, 45(7): 2495-2507 (in Chinese and English abstract).
      [33] Qi, J. H., Zhang, Y. W., Lu, K. Z., 2015. Research on the Velocity Structure in the South Yellow Sea (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [34] Qiu, N. S., Hu, S. B., He, L. J., 2019. Geothermal in Sedimentary Basin. China University of Petroleum Press, Qingdao (in Chinese).
      [35] Qiu, N. S., Chang, J., Zhu, C. Q., et al., 2022. Thermal Regime of Sedimentary Basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Science Review, 224: 103884. https://doi.org/10.1016/j.earsci-rev.2021.103884
      [36] Ren, J. Y., 2018. Genetic Dynamic of China Offshore Cenozoic Basin. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract).
      [37] Ren, J. Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920. https://doi.org/10.6038/cjg2018L0588
      [38] Ren, J. Y., Tamaki, K., Li, S. T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. https://doi.org/10.1016/s0040-1951(01)00271-2
      [39] Ren, Z. L., Xiao, D. M., Chi, Y. L., et al., 2011. Restoration Thermal History of the Permo-Carboniferous Basement in the Songliao Basin. Oil&Gas Geology, 32 (3): 430-439 (in Chinese with English abstract).
      [40] Royden, L. H., Keen, C. E., 1980. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 51(2): 343-361. https://doi.org/10.1016/0012-821X(80)90216-2
      [41] Schenk, O., Peters, K. E., Burnham, A. K., 2017. Evaluation of Alternatives to Easy%Ro for Calibration of Basin and Petroleum System Models, Paris, France. 79th EAGE Conference and Exhibition, Paris.
      [42] Shi, D. N., Lü, Q. T., Xu, W. Y., et al., 2012. Crustal Structure beneath the Mid-Lower Metallogenic Belt and Its Adjacent Regions in Eastern China-Evidences from P-Wave Receiver Function Imaging for a MASH Metallogenic Process?. Acta Geologica Sinica, (3): 29-39 (in Chinese with English abstract).
      [43] Shu, L. S., Wang, B., Wang, L. H., et al., 2005. Analysis of Late Cretaceous-Neogene Prototype Basin in Subei Basin. Geological Journal China Universities, 4(11): 534-543 (in Chinese with English abstract).
      [44] Tao, K., Grand, S. P., Niu, F. L., 2018. Seismic Structure of the Upper Mantle beneath Eastern Asia from Full Waveform Seismic Tomography. Geochemistry, Geophysics, Geosystems, 19(8): 2732-2763. https://doi.org/10.1029/2018GC007460
      [45] Wang, L. S., Li, C., Shi, Y. S., et al., 1995. Distribution of Geothemperature and Terrestrial Heat Flow Density in Lower Yangtze Region. Chinese Journal of Geophysics, 38(4): 469-476 (in Chinese with English abstract).
      [46] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291(5817): 645-648. https://doi.org/10.1038/291645a0
      [47] Wu, F. Y., Ge, W. C., Sun, D. Y., et al., 2003. Discussions on the Lithospheric Thinning in Eastern China. Earth Science Frontiers, 10(3): 51-60 (in Chinese with English abstract).
      [48] Wu, J. F., Yang, S. H., Zhang, G. C., et al., 2013. Geothermal History and Thermal Evolution of the Source Rocks in the Deep-Water Area of Northern South China Sea. Chinese Journal of Geophysics, 56(1): 170-180. https://doi.org/10.6038/cjg20130117
      [49] Wu, L. L., Mei, L. F., Paton, D. A., et al., 2018. Deciphering the Origin of the Cenozoic Intracontinental Rifting and Volcanism in Eastern China Using Integrated Evidence from the Jianghan Basin. Gondwana Research, 64: 67-83. https://doi.org/10.1016/j.gr.2018.07.004
      [50] Xie, J. C., Wang, Y. L., Li, Q. Z., et al., 2017. Early Cretaceous Adakitic Rocks in the Anqing Region, Southeastern China: Constraints on Petrogenesis and Metallogenic Significance. International Geology Review, 60(11-14): 1435-1452. https://doi.org/10.1080/00206814.2017.1362672
      [51] Xing, J. S., Yang, W. R, Xing, Z. Y., et al., 2019. Meso-Cenozoic Asthenosphere Upwelling of Eastern China: Its Impacts on Structure-Magma-Mineralization Concentration Region. Earth Science, 44(5): 1570-1583 (in Chinese with English abstract).
      [52] Xu, J. Y., Zhu, X. F., Song, Y., et al., 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3): 848-858 (in Chinese with English abstract).
      [53] Xu, X., Zuza, A. V., Chen, L., et al., 2021. Late Cretaceous to Early Cenozoic Extension in the Lower Yangtze Region (East China) Driven by Izanagi-Pacific Plate Subduction. Earth-Science Reviews, 221: 103790. https://doi.org/10.1016/j.earscirev.2021.103790
      [54] Xu, Y., Li, Z. W., Liu, J. S., et al., 2008. Pn Wave Velocity and Anisotropy in the Yellow Sea and Adjacent Region. Chinese Journal of Geophysics, 51(5): 1444-1450 (in Chinese with English abstract).
      [55] Xu, Y. G., 2007. Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxing'anling-Taihangshan Gravity Lineament. Lithos, 96: 281-298. https://doi.org/10.1016/j.lithos.2006.09.013
      [56] Xue, H. M., Dong, S. W., Ma, F., 2010. Geochemical of the Shoshonitic Volcanic Rocks in the Luzong Basin, Anhui Province (Eastern China): Constranits on Cretaceous Lithospheric Thinning of the Lower Yangtze Area. Acta Geologica Sinica, 84(5): 664-681(in Chinese with English abstract).
      [57] Yang, F. L., Hu, P. P., Zhou, X. H., et al., 2020. The Late Jurassic to Early Cretaceous Strike-Slip Faults in the Subei-South Yellow Sea Basin, Eastern China: Constraints from Seismic Data. Tectonics, 39(10): e2020TC006091. https://doi.org/10.1029/2020tc006091
      [58] Yang, S. C., Hu, S. B., Cai, D. S., et al., 2003. Geothermal Field Characteristics and Thermal-Tectonic Evolution of the Southern Basin of the South Yellow Sea. Chinese Science Bulletin, 48(14): 1564-1569 (in Chinese). doi: 10.1360/csb2003-48-14-1564
      [59] Yang, S. F., Chen, H. L., Gong, G. H., et al., 2019. Sedimentary Characteristics and Basin-Orogen Processes of the Late Early Paleozoic Foreland Basins in the Lower Yangtze Region. Earth Science, 44(5): 1494-1510 (in Chinese with English abstract).
      [60] Yang, S. C., Hu, S. B., Cai, D. S., et al., 2004. Present-Day Heat Flow, Thermal History and Tectonic Subsidence of the East China Sea Basin. Marine and Petroleum Geology, 21(9): 1095-1105. https://doi.org/ 10.1016/j.marpetgeo.2004.05.007
      [61] Yu, X. Q., Chen, Z. W., Hu, J., et al., 2020. Mesozoic Thrust-Nappe and Extensional Structure Frameworks in the East Segment of Southeast Yangtze Block, Southeast China. Journal of Earth Science, 31(4): 772-794. https://doi.org/10.1007/s12583-020-1292-z
      [62] Zhang, G. C., 2012. Co-Control of Source and Heat: The Generation and Distribution of Hydrocarbons Controlled by Source Rocks and Heat. Acta Petrolei Sinica, 33(5): 723-738 (in Chinese with English abstract).
      [63] Zhu, G., Jiang, Q. Q., Piao, X. F., et al., 2013. Role of Basement Faults in Faulting System Development of a Rift Basin: An Example from the Gaoyou Sag in Southern Subei Basin. Acta Geologica Sinica, 87(4): 441-452 (in Chinese with English abstract).
      [64] Zhu, G., Wang, W., Gu, C. C., et al., 2016. Late Mesozoic Evolution History of the Tan-Lu Fault Zone and Its Indication to Destruction Processes of the North China Craton. Acta Petrologica Sinica, 32(4): 935-949 (in Chinese with English abstract).
      [65] 陈沪生, 张永鸿, 1999. 下扬子及邻区岩石圈结构构造特征与油气资源评价. 北京: 地质出版社.
      [66] 陈建文, 许明, 雷宝华, 等, 2020. 华北-扬子板块碰撞结构的识别: 来自南黄海海域的证据. 海洋地质与第四纪地质, (3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202003001.htm
      [67] 陈艳, 张景发, 姜文亮, 等, 2017. 苏北盆地重力场及地壳结构特征. 地球物理学进展, 32(6): 2295-2303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201706002.htm
      [68] 丁道桂, 罗开平, 刘光祥, 等, 2016. 下扬子区伸展拆离构造. 石油实验地质, 38(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601002.htm
      [69] 丁道桂, 朱樱, 陈凤良, 等, 1991. 中、下扬子区古生代盆地基底拆离式改造与油气领域. 石油与天然气地质, 12(4): 376-386. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199104002.htm
      [70] 董树文, 张岳桥, 李海龙, 等, 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造——纪念"燕山运动"90周年. 中国科学(D辑: 地球科学), 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm
      [71] 胡圣标, 张容燕, 罗毓晖, 等, 1999. 渤海盆地热历史及构造-热演化特征. 地球物理学报, 42(6): 748-755. doi: 10.3321/j.issn:0001-5733.1999.06.004
      [72] 李春峰, 陈冰, 周祖翼, 2009. 中国东部及邻近海域磁异常数据所揭示的深部构造. 中国科学(D辑: 地球科学), 39(12): 1770-1779. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200912013.htm
      [73] 李思田, 谢习农, 王华, 等, 2004. 沉积盆地分析基础与应用. 北京: 高等教育出版社.
      [74] 李三忠, 余珊, 赵淑娟, 等, 2013. 东亚大陆边缘的板块重建与构造转换. 海洋地质与第四纪地质, 33(3): 65-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201303011.htm
      [75] 林畅松, 2016. 沉积盆地分析原理与应用. 北京: 石油工业出版社.
      [76] 刘琼颖, 何丽娟, 2019. 渤海湾盆地新生代以来构造-热演化模拟研究. 地球物理学报, 62(1): 219-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201901016.htm
      [77] 梅廉夫, 戴少武, 沈传波, 等, 2008. 中、下扬子区中、新生代陆内对冲带的形成及解体. 地质科技情报, 27(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200804002.htm
      [78] 米立军, 袁玉松, 张功成, 等, 2009. 南海北部深水区地热特征及其成因. 石油学报, 30(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901006.htm
      [79] 庞玉茂, 张训华, 郭兴伟, 等, 2017. 南黄海北部盆地中、新生代构造热演化史模拟研究. 地球物理学报, (60): 3177-3190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201708024.htm
      [80] 漆家福, 张一伟, 陆克政, 等, 1995. 渤海湾新生代裂陷盆地的伸展模式及其动力学过程. 石油实验地质, 17(4): 316-323. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD504.001.htm
      [81] 祁江豪, 2015. 南黄海地区地壳速度结构研究(博士学位论文). 北京: 中国地质大学.
      [82] 祁江豪, 吴志强, 张训华, 等, 2020. 西太平洋弧后地区新生代构造迁移的深部地震证据. 地球科学, 45(7): 2495-2507. doi: 10.3799/dqkx.2020.031
      [83] 邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社.
      [84] 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      [85] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
      [86] 任战利, 萧德铭, 迟元林, 等, 2011. 松辽盆地基底石炭—二叠系热演化史. 石油与天然气地质, 32(3): 430-439. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201103020.htm
      [87] 史大年, 吕庆田, 徐文艺, 等, 2012. 长江中下游成矿带及邻区地壳结构——MASH成矿过程的P波接收函数成像证据?. 地质学报, (3): 29-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201203005.htm
      [88] 舒良树, 王博, 王良书, 等, 2005. 苏北盆地晚白垩世-新近纪原型盆地分析. 高校地质学报, 4(11): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504009.htm
      [89] 王良书, 李成, 施央申, 等, 1995. 下扬子区地温场和大地热流密度分布. 地球物理学报, 38(4): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX504.006.htm
      [90] 吴福元, 葛文春, 孙德有, 等, 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303005.htm
      [91] 吴景富, 杨树春, 张功成, 等, 2013. 南海北部深水区盆地热历史及烃源岩热演化研究. 地球物理学报, 56(1): 170-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301018.htm
      [92] 邢集善, 杨巍然, 邢作云, 等, 2019. 中国东部中、新生代软流圈上涌与构造-岩浆-矿集区. 地球科学, 44(5): 1570-1583. doi: 10.3799/dqkx.2019.976
      [93] 徐建永, 朱祥峰, 宋宇, 等, 2019. 南黄海盆地古近系烃源岩地球化学特征及油源对比. 地球科学, 44(3) : 848-858. doi: 10.3799/dqkx.2018.377
      [94] 胥颐, 李志伟, 刘劲松, 等, 2008. 黄海及其邻近地区的Pn波速度与各向异性. 地球物理学报, 51(5): 1444-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805018.htm
      [95] 薛怀民, 董树文, 马芳, 2010. 安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的约束. 地质学报, 84(5): 664-681. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201005007.htm
      [96] 杨树春, 胡圣标, 蔡东升, 等, 2003. 南黄海南部盆地地温场特征及热-构造演化. 科学通报, 48(14): 1564-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314016.htm
      [97] 杨树峰, 陈汉林, 龚根辉, 等, 2019. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程. 地球科学, 44(5): 1494-1510. doi: 10.3799/dqkx.2019.973
      [98] 张功成, 2012. 源热共控论. 石油学报, 33(5): 723-738. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205002.htm
      [99] 朱光, 姜芹芹, 朴学峰, 等, 2013. 基底断层在断陷盆地断层系统发育中的作用: 以苏北盆地南部高邮凹陷为例. 地质学报, 87(4): 441-452. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304002.htm
      [100] 朱光, 王薇, 顾承串, 等, 2016. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示. 岩石学报, 32(4): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  407
    • HTML全文浏览量:  224
    • PDF下载量:  90
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-22
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回