• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    老挝表层沉积物69种元素地球化学背景值

    王玮 王学求 张必敏 聂兰仕 程新彬 韩志轩 刘汉粮 刘东盛

    王玮, 王学求, 张必敏, 聂兰仕, 程新彬, 韩志轩, 刘汉粮, 刘东盛, 2022. 老挝表层沉积物69种元素地球化学背景值. 地球科学, 47(8): 2765-2780. doi: 10.3799/dqkx.2021.151
    引用本文: 王玮, 王学求, 张必敏, 聂兰仕, 程新彬, 韩志轩, 刘汉粮, 刘东盛, 2022. 老挝表层沉积物69种元素地球化学背景值. 地球科学, 47(8): 2765-2780. doi: 10.3799/dqkx.2021.151
    Wang Wei, Wang Xueqiu, Zhang Bimin, Nie Lanshi, Cheng Xinbin, Han Zhixuan, Liu Hanliang, Liu Dongsheng, 2022. Geochemical Background Values of 69 Elements in Surface Sediment of the Laos. Earth Science, 47(8): 2765-2780. doi: 10.3799/dqkx.2021.151
    Citation: Wang Wei, Wang Xueqiu, Zhang Bimin, Nie Lanshi, Cheng Xinbin, Han Zhixuan, Liu Hanliang, Liu Dongsheng, 2022. Geochemical Background Values of 69 Elements in Surface Sediment of the Laos. Earth Science, 47(8): 2765-2780. doi: 10.3799/dqkx.2021.151

    老挝表层沉积物69种元素地球化学背景值

    doi: 10.3799/dqkx.2021.151
    基金项目: 

    国家重点研发计划项目 2016YFC0600600

    中国地质调查项目 DD20190451

    中国地质调查项目 DD20221807

    物化探所中央级公益性科研院所基本科研业务费专项资金资助项目 AS2022P03

    详细信息
      作者简介:

      王玮(1984-),女,硕士,高级工程师,从事勘查地球化学研究. ORCID:0000-0002-0040-609X.E-mail:cgswangwei@163.com

      通讯作者:

      王学求, E-mail:wxueqiu@mail.cgs.gov.cn

    • 中图分类号: P595;P596

    Geochemical Background Values of 69 Elements in Surface Sediment of the Laos

    • 摘要: 老挝地质条件优越,资源潜力巨大. 为响应国家“一带一路”倡议,在老挝全境开展1∶100万国家尺度地球化学填图工作. 采集了大量地球化学数据,为研究区元素分散富集、矿产开发、环境保护、农业生产提供了高质量的基础地球化学数据.共采集地球化学样品2 079件,采用高精度分析技术及严格的质量控制,分析了69种元素. 采用X±3S一次性剔除异点后数据集的中位值作为估值,首次给出了老挝全国69种元素地球化学背景值,填补了老挝国家尺度地球化学填图工作的空白. 初步讨论了老挝全境、7个三级大地构造单元,6个三级成矿带69种元素的背景值特征. 研究表明不同构造单元中受地质背景、构造及岩浆活动的影响,元素分布具有各自特征,同时不同成矿带受成矿作用及构造岩浆活动的影响,元素在各个成矿带分布特征不同,元素的富集对矿床有很好的指示意义. 这些背景值的获得为下一步深入研究老挝地球化学填图数据提供了基础对比数据.

       

    • 图  1  采样点位及统计单元图

      刘书生等(2018)王宏等(2015)修改

      Fig.  1.  Skech map of the sampling sites and statistic units

      图  2  景洪-素可泰火山弧区域浓集系数对比图

      Fig.  2.  Comparison map of regional concentration coefficient values in Jinghong⁃Sukhothai arc

      图  3  思茅-彭世洛区域浓集系数对比图

      Fig.  3.  Comparison map of regional concentration coefficient values in Simao⁃Phitsanulok block

      图  4  奠边府-黎府缝合带区域浓集系数对比图

      Fig.  4.  Comparison map of regional concentration coefficient values in DienBienPhu⁃Loei suture

      图  5  万象-昆嵩地块区域浓集系数对比图

      Fig.  5.  Comparison map of regional concentration coefficient values in Vientiane⁃Kontum block

      图  6  色潘-三岐缝合带区域浓集系数对比图

      Fig.  6.  Comparison map of regional concentration coefficient values in Sepon⁃TamKy suture

      图  7  长山地块区域浓集系数对比图

      Fig.  7.  Comparison map of regional concentration coefficient values in Truong Son block

      图  8  哀牢山-马江缝合带区域浓集系数对比图

      Fig.  8.  Comparison map of regional concentration coefficient values in Ailaoshan⁃Song Ma sture

      图  9  清迈成矿带区域浓集系数对比图

      Fig.  9.  Comparison map of regional concentration coefficient values in Chiang Mai Metallogenic Belt

      图  10  琅南塔-庄他武里成矿带区域浓集系数对比图

      Fig.  10.  Comparison map of regional concentration coefficient values in Luangnamtha⁃Chanthaburi Metallogenic Belt

      图  11  琅勃拉邦-大叻成矿带区域浓集系数对比图

      Fig.  11.  Comparison map of regional concentration coefficient values in Louangphrabang⁃Đà Lat Metallogenic Belt

      图  12  万象-昆嵩成矿带区域浓集系数对比图

      Fig.  12.  Comparison map of regional concentration coefficient values in Vientiane⁃Kontum Metallogenic Belt

      图  13  长山成矿带区域浓集系数对比图

      Fig.  13.  Comparison map of regional concentration coefficient values in Truong Son Metallogenic Belt

      图  14  红河成矿带区域浓集系数对比图

      Fig.  14.  Comparison map of regional concentration coefficient values in Honghe Metallogenic Belt

    • [1] Albanese, S., De Vivo, B., Lima, A., et al., 2007. Geochemical Background and Baseline Values of Toxic Elements in Stream Sediments of Campania Region (Italy). Journal of Geochemical Exploration, 93(1): 21-34. https://doi.org/10.1016/j.gexplo.2006.07.006
      [2] Breckenridge, R. P., Crockett, A. B., 1998. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. Environmental Monitoring and Assessment, 51 (3): 621-656. https://doi.org/10.1023/A:1005808031053
      [3] Chen, M., Ma, L. N., Hoogeweg, C. G., et al., 2001. Arsenic Background Concentrations in Florida, U. S. A. Surface Soils: Determination and Interpretation. Environmental Forensics, 2(2): 117-126. https://doi.org/10.1006/enfo.2001.0050
      [4] Cheng, H. X., Li, K., Li, M., et al., 2014. Geochemical Background and Baseline Value of Chemical Elements in Urban Soil in China. Earth Science Forntiers, 21(3): 265-306(in Chinese with English abstract).
      [5] Chi, Q. H., Yan, M. C., 2007. Applied Geochemistry Elemental Abundance Data Book. Geological Publishing House, Beijing(in Chinese).
      [6] Darnley, A., Björklund, A., Bölviken, B., et al., 1995. A Global Geochemical Database for Environmental and Resource Management. Final Report of IGCP Project 259. UNESCO, Paris, 19: 122.
      [7] Deng, J., Yang, L. Q., Wang, C. M., 2010. Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 37-42(in Chinese with English abstract).
      [8] Dickins, J., Tien, P., 1997. Indosinian Tectogeny in the Geological Correlation of Vietnam and Adjacent Regions. Late Palaeozoic and Early Mesozoic Circum⁃Pacific Events and Their Global Correlation, 10: 87-96. https://doi.org/10.1017/CBO9780511564413.009
      [9] Fan, P. F., 2000. Accreted Terranes and Mineral Deposits of Indochina. Journal of Asian Earth Sciences, 18(3): 343-350. https://doi.org/10.1016/s1367⁃9120(99)00061⁃9
      [10] Hawkes, H., Webb, J., 1962. Geochemistry in Mineral Exploration. Harper, New York.
      [11] Huang, F., Xu, J. F., Wang, B. D., et al., 2020. Destiny of Neo⁃Tethyan Lithosphere during India⁃Asia Collision. Earth Science, 45 (8): 2785-2804(in Chinese with English abstract).
      [12] Jia, R. X., Fang, W. X., Wei, X. Y., 2014. General Introduction of Geology, Mineral Resources and Mining Exploitation in Laos. Mineral Exploration, 5 (5): 826-833(in Chinese with English abstract).
      [13] Kamvong, T., Khin, Z., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165-184. https://doi.org/10.1016/j.gr.2013.06.011
      [14] Lepvrier, C., Maluski, H., Van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif); Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1/2/3/4): 87-118. https://doi.org/10.1016/j.tecto.2004.07.030
      [15] Li, X. Z., Jiang, X. S., Sun, Z. M., et al., 2002. Collisional Orogeny in the Sanjiang Region of Southwest China. Geological Publishing House, Beijing(in Chinese).
      [16] Lin, F. C., Shi, M. F., Li, X. Z., 2010. Report on the Results of a Comparative Study on the Geological Background and Mineralization Rules of the Sanjiang⁃Mekong Mineralization Belt. Chengdu Geological Survey Center, Chengdu(in Chinese).
      [17] Liu, H. L., Nie, L. S., Wang, X. Q., et al., 2020. Background Values of 69 Elements in Catchment Sediments of the China⁃Mongolia Boundary Region. Earth Science Forntiers, 27 (3): 202-221(in Chinese with English abstract).
      [18] Liu, J. L., Tang, Y., Song, Z. J., et al., 2011. The Ailaoshan Belt in Western Yunnna: Tectonic Framework and Tectonic Evolution. Journal of Jilin University( Earth Science Edition ), 41 (5): 1285-1303(in Chinese with English abstract).
      [19] Liu, S. S., Yang, Y. F., Guo, L. N., et al., 2018. Ectonic Characteristics and Metallogeny in Southeast Asia. Geology in China, 45 (5): 7-33(in Chinese with English abstract).
      [20] Liu, Y. J., Cao, L. M., Li, Z. L., et al., 1984. Elemental Geochemistry. Geological Science Publishing & Media Ltd., Beijing(in Chinese).
      [21] Lu, Y. X., Liu, H. G., Huang, J. N., et al., 2009. Preliminary Division of the Metallogenetic Belts in the Central South Peninsula of Southeast Asia and Their Regional Ore⁃Forming Characteristics. Geological Bulletin of China, 28 (2): 314-325(in Chinese with English abstract).
      [22] Niu, Y. J., Hu, J. C., Li, X. H., 2013. Study on the Geochemical Features of the Phabon Gold Deposit, Laos. Geological Survey and Research, 36 (2): 92-99(in Chinese with English abstract).
      [23] Pan, G. T., Hao, G. J., Feng, Y. F., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36 (1): 1-28(in Chinese with English abstract).
      [24] Reimann, C., Garrett, R. G., 2005. Geochemical Background⁃Concept and Reality. Science of The Total Environment, 350 (1-3): 12-27. https://doi.org/10.1016/j.scitotenv.2005.01.047
      [25] Reimann, C., Garrett, R. G., 2005. Geochemical Background⁃Concept and Reality. Science of The Total Environment, 350(1/2/3): 12-27. https://doi.org/10.1016/j.scitotenv.2005.01.047
      [26] Ren, T. X., Li, M. X., Xu, Y. X., et al., 1983. A Preliminary Study of Hyoergene Geochemistry and Regional Geochemical Exploration Techniques High⁃Cold Mountainous Regions. Geological Review 29 (5): 428-438(in Chinese with English abstract).
      [27] Rudnick, R., Gao, S., Holland, H., et al., 2003. Composition of the Continental Crust. The Crust, 3: 1-64. https://doi.org/10.1006/B0⁃08⁃043751⁃6/⁃03016⁃4
      [28] Salminen, R., Gregorauskien, V., 2000. Considerations Regarding the Definition of a Geochemical Baseline of Elements in the Surficial Materials in Areas Differing in Basic Geology. Applied Geochemistry, 15(5): 647-653. https://doi.org/10.1016/s0883⁃2927(99)00077⁃3
      [29] Salminen, R., Tarvainen, T., 1997. The Problem of Defining Geochemical Baselines: a Case Study of Selected Elements and Geological Materials in Finland. Journal of Geochemical Exploration, 60(1): 91-98. https://doi.org/10.1016/s0375⁃6742(97)00028⁃9
      [30] Shi, C. Y., 1994. A New Method for Studying Regional Dispersion and Enrichment Regularity of Trace Elements. Geophysical & Geochemical Exploration, 18 (3): 219-227(in Chinese with English abstract).
      [31] Shi, C. Y., Liang, M., Feng, B., 2016. Average Background Values of 39 Chemical Elements in Stream Sediments of China. Earth Science, 41 (2): 234-251(in Chinese with English abstract).
      [32] Shi, M. F., Lin, F. C., Li, X. Z., et al., 2011. Stratigraphic Zoning and Tectonic Events in Indochina and Adjacent Areas of Southwest China. Geolegy in China, 38 (5): 1244-1256(in Chinese with English abstract).
      [33] Shi, M. F., Lin, F. C., Liu, C. J., et al., 2013. Classification and Metallogenesis of Metallogenic Belts in Southeast Asia and the Neighbouring Southwestern Part of China. Sedimentary Geology and Tethyan Geology, 33 (2): 103-112(in Chinese with English abstract).
      [34] Vivo, B., Boni, M., Marcello, A., et al., 1997. Baseline Geochemical Mapping of Sardinia (Italy). Journal of Geochemical Exploration, 60(1): 77-90. https://doi.org/10.1016/s0375⁃6742(97)00027⁃7
      [35] Wakita, K., Metcalfe, I., 2005. Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences, 24(6): 679-702. https://doi.org/10.1016/j.jseaes.2004.04.004
      [36] Wang, H., Lin, F. C., Li, X. Z., et al., 2015. The Division of Tectonic Units and Tectonic Evolution in Laos and Its Adjacent Regions. Geology in China, 42 (1): 71-84(in Chinese with English abstract).
      [37] Wang, W., Wang, X. Q., Zhang, B. M., et al., 2020a. National⁃Scale Geochemical Mapping and Prediction of Metallogenic Prospective Areas in Laos. Acta Geologica Sinica, 41 (1): 80-90(in Chinese with English abstract).
      [38] Wang, W., Wang, X. Q., Zhang, B. M., et al., 2020b. Geochemical Background and Anomalies of Copper in Laos. Acta Geoscientica Sinica, 41 (6): 125-131(in Chinese with English abstract).
      [39] Wang, W., Wang, X. Q., Zhang, B. M., et al., 2019. Progress in National Scale and Geochemical Mapping of Laos: Taking Fluorine Element as an Example. Journal of Guilin University of Technology, 39 (2): 335-340(in Chinese with English abstract).
      [40] Wang, X. F., Metcalfe, I., Jian, P., et al., 2000. The Jinshajiang⁃Ailaoshan Suture Zone, China: Tectonostratigraphy, Age and Evolution. Journal of Asian Earth Sciences, 18(6): 675-690. https://doi.org/10.1016/s1367⁃9120(00)00039⁃0
      [41] Wang, X. Q., 2012. Global Geochemical Baselines : Understanding the Past and Predicting the Future. Earth Science Forntiers, 19 (3): 7-18(in Chinese with English abstract).
      [42] Wang, X. Q., 2015. China Geochemical Baselines: Sampling Methodology. Journal of Geochemical Exploration, 148(1): 25-39. https://doi.org/10.1016/j.gexplo.2014.05.018
      [43] Wang, X. Q., Zhou, J., Xu, S. F., et al., 2016. China Soil Geochemical Baselines Networks: Data Characteristics. Geology in China, 43 (5): 1469-1480(in Chinese with English abstract).
      [44] Xie, X., 1979. Regional Geochemical Exploration. Field Method of Regional Geological Survey, 4. Geological Publishing House, Beijing(in Chinese).
      [45] Xie, X., 2002. Exploration Geochemistry: Retrospect and Prospect. Geology and Prospecting, 38 (6): 1-9.
      [46] Xie, X., Liu, D., 2006. Geochemical Mapping and Geochemical Exploration. geological Review, 52 (6): 721-732(in Chinese with English abstract).
      [47] Xie, X., Ren, T. X., Xi, X. H., et al., 2009. The Implementation of the Regional Geochemistry⁃National Reconnaissance Program (RGNR) in China in the Past Thirty Years. Acta Geologica Sinica, 30(6): 700-716(in Chinese with English abstract).
      [48] Yin, F. G., Pan, G. T., Wang, F., et al., 2006. Tectonic Facies along the Nujiang⁃Lancangjiang⁃Jinshajiang Orogenic Belt in Southwestern China. Sedimentary Geology and Tethyan Geology, 26(4): 33-39. https://doi.org/10.1007/s11442⁃006⁃0415⁃5
      [49] Zaw, K., Meffre, S., Lai, C. K., et al., 2014a. Tectonics and Metallogeny of Mainland Southeast Asia: A Review and Contribution. Gondwana Research, 26 (1): 5-30. https://doi.org/10.1016/j.gr.2013.10.010
      [50] Zaw, K., Santosh, M., Graham, I. T., 2014b. Tectonics and Metallogeny of Mainland SE Asia: Preface. Gondwana Research, 26 (1): 1-4. https://doi.org/10.1016/j.gr.2014.01.005
      [51] Zeng, Q. G., Wang, B. D., Mao, G. Z., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45 (8): 2735-2763(in Chinese with English abstract).
      [52] Zhang, Q., Bai, J. F., Wang, Y., 2012. Analytical Scheme and Quality Monitoring System for China Geochemical Baselines. Earth Science Forntiers, 19 (3): 33-42(in Chinese with English abstract).
      [53] Zhao, Y. P., He, G. P., Lu, J. H., 2013. Geological Characteristics and Metallogenic Model of Typical Gold Deposits in Laos. Mineral Resources and Geology, 27 (S1): 47-52(in Chinese).
      [54] Zhao, Y. P., Mo, J. P., Wang, X. M., 2015. Clues for Prospecting and Metallogenic Prognosis of Pangkuam Cu⁃Au Deposit in Laos. Mineral Resources and Geology, 29 (2): 178-188(in Chinese with English abstract).
      [55] Zhu, H. P., Lin, F. C., Shi, M. F., et al., 2016. Analysis of the Output Environment, Mineralization Potential and Direction of Mineralization Search in Important Mining Areas in the East Tethys Region, Chengdu Geological Survey Center, Chengdu(in Chinese).
      [56] Zhu, Y. J., Wu, J., Hu, J. J., et al., 2009. Introduction for Geology and Mineral Resources in Laos. Yunnan Science and Technology Publishing House, Kunming(in Chinese).
      [57] 成杭新, 李括, 李敏, 等, 2014. 中国城市土壤化学元素的背景值与基准值. 地学前缘, 21(3): 265-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403035.htm
      [58] 迟清华, 鄢明才, 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.
      [59] 邓军, 杨立强, 王长明, 2010. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109002.htm
      [60] 黄丰, 许继峰, 王保弟, 等, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180
      [61] 贾润幸, 方维萱, 隗雪燕, 2014. 老挝地质矿产资源及开发概况. 矿产勘查, 5(5): 826-833. doi: 10.3969/j.issn.1674-7801.2014.05.019
      [62] 李兴振, 江新胜, 孙志明, 等, 2002. 西南三江地区碰撞造山过程. 北京: 地质出版社.
      [63] 林方成, 施美凤, 李兴振, 2010. 三江-湄公河成矿带地质背景和成矿规律对比研究专题成果报告. 成都: 成都地质调查中心.
      [64] 刘汉粮, 聂兰仕, 王学求, 等, 2020. 中蒙边界地区汇水域沉积物69种元素的背景值. 地学前缘, 27(3): 202-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003020.htm
      [65] 刘俊来, 唐渊, 宋志杰, 等, 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105004.htm
      [66] 刘书生, 杨永飞, 郭林楠, 等, 2018. 东南亚大地构造特征与成矿作用. 中国地质, 45(5): 7-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805002.htm
      [67] 刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社.
      [68] 卢映祥, 刘洪光, 黄静宁, 等, 2009. 东南亚中南半岛成矿带初步划分与区域成矿特征. 地质通报, 28(2): 314-325. doi: 10.3969/j.issn.1671-2552.2009.02.027
      [69] 牛英杰, 胡金才, 李孝红, 2013. 老挝琅勃拉邦省帕奔金矿地球化学特征. 地质调查与研究, 36(2): 92-99. doi: 10.3969/j.issn.1672-4135.2013.02.003
      [70] 潘桂棠, 郝国杰, 冯艳芳, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804003.htm
      [71] 任天祥, 李明喜, 徐耀先, 等, 1983. 高寒山区表生作用地球化学特征及区域化探方法的初步研究. 地质论评, 29(5): 428-438. doi: 10.3321/j.issn:0371-5736.1983.05.004
      [72] 施美凤, 林方成, 李兴振, 等, 2011. 东南亚中南半岛与中国西南邻区地层分区及沉积演化历史. 中国地质, 38(5): 1244-1256. doi: 10.3969/j.issn.1000-3657.2011.05.011
      [73] 施美凤, 林方成, 刘朝基, 等, 2013. 东南亚缅泰老越柬五国与中国邻区成矿带划分及成矿特征. 沉积与特提斯地质, 33(2): 103-112. doi: 10.3969/j.issn.1009-3850.2013.02.015
      [74] 史长义, 1994. 研究微量元素区域分散与富集规律的新方法. 物探与化探, 18(3): 219-227. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH403.008.htm
      [75] 史长义, 梁萌, 冯斌, 2016. 中国水系沉积物39种元素系列背景值. 地球科学, 41(2): 234-251. doi: 10.3799/dqkx.2016.018
      [76] 王宏, 林方成, 李兴振, 等, 2015. 老挝及邻区构造单元划分与构造演化. 中国地质, 42(1): 71-84. doi: 10.3969/j.issn.1000-3657.2015.01.006
      [77] 王玮, 王学求, 张必敏, 等, 2020a. 老挝全国地球化学填图与成矿远景区预测. 地球学报, 41(1): 80-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001007.htm
      [78] 王玮, 王学求, 张必敏, 等, 2020b. 老挝铜地球化学背景与异常特征. 地球学报, 41(6): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006012.htm
      [79] 王玮, 周建, 王学求, 等, 2019. 老挝国家尺度地球化学填图进展——以氟元素为例. 桂林理工大学学报, 39(2): 335-340.
      [80] 王学求, 2012. 全球地球化学基准: 了解过去, 预测未来. 地学前缘, 19(3): 7-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203002.htm
      [81] 王学求, 周建, 徐善法, 等, 2016. 全国地球化学基准网建立与土壤地球化学基准值特征. 中国地质, 43(5): 1469-1480.
      [82] 谢学锦, 1979. 区域化探. 区域地质调查野外工作方法. 北京: 地质出版社, 4.
      [83] 谢学锦, 2002. 勘查地球化学: 发展史·现状·展望. 地质与勘探, 38(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206001.htm
      [84] 谢学锦, 刘大文, 2006. 地球化学填图与地球化学勘查. 地质论评, 52(6): 721-732. doi: 10.3321/j.issn:0371-5736.2006.06.001
      [85] 谢学锦, 任天祥, 奚小环, 等, 2009. 中国区域化探全国扫面计划卅年. 地球学报, 30(6): 700-716. doi: 10.3321/j.issn:1006-3021.2009.06.003
      [86] 张勤, 白金峰, 王烨, 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm
      [87] 赵延朋, 何国朝, 陆家海, 2013. 老挝典型金矿床地质特征及成矿模式. 矿产与地质, 27(S1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD2013S1012.htm
      [88] 赵延朋, 莫江平, 王晓曼, 2015. 老挝班康姆铜金矿床找矿标志及成矿预测研究. 矿产与地质, 29(2): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201502008.htm
      [89] 朱华平, 林方成, 施美凤, 等, 2016. 东特提斯地区重要矿区产出环境、成矿潜力和找矿方向分析成果报告. 成都: 成都地质调查中心.
      [90] 曾庆高, 王保弟, 毛国正, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
      [91] 朱延浙, 吴军, 胡建军, 等, 2009. 老挝地质矿产概论. 昆明: 云南科技出版社.
    • dqkxzx-47-8-2765-附表.docx
    • 加载中
    图(14)
    计量
    • 文章访问数:  351
    • HTML全文浏览量:  75
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-26
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回