The Mechanism of Tectonic Deformation of the Central Yunnan Terrane in the Late Cenozoic Based on Tectonic Geomorphology
-
摘要: 滇中地块位于青藏高原东南缘,是研究青藏高原东南缘新生代晚期构造变形机制的理想场所. 滇中地块新生代晚期的变形机制主要有“下地壳流”和“刚性块体挤出”两种模式,前者认为地块构造活动分布较为均匀,后者认为构造活动沿断裂带更为强烈. 由于地貌指数对构造活动非常敏感,为厘定研究区新生代晚期的变形机制,基于30 m分辨率的SRTM⁃3数字高程模型(DEM)提取了滇中地区319个(亚)流域盆地,通过分析获得了面积高程积分曲线及面积高程积分(HI)、流域形状指数(BS)、流域盆地不对称度(AF)、标准化河流阶梯指数(SLK)、谷底宽度与谷间高度比(VF)这5种地貌指数,综合这五种指数得出相对活动构造指数(Iat),并利用构造地貌指数(Iat)揭示了研究区的相对构造活动分布特征. 研究表明丽江-小金河断裂带、则木河-小江断裂带、红河断裂带及金沙江两侧的Iat值相对较小,其他部位相对较高,这表明滇中地区的构造活动性强的区域主要集中发育在断裂带附近,与“刚性块体挤出”模式相一致. 滇中地块中部的金沙江两侧Iat值相对较低,表明其地貌活动性较强. 这是由于新生代晚期青藏高原东南缘的隆升及河流重组,导致的金沙江及其支流切割力增强,从而造成金沙江两侧HI值、BS值、SLK值增高和VF值降低,使得金沙江两侧Iat值相对较低.Abstract: The Central Yunnan Terrane, with internal faults developed, is located in the Southeast of the Tibetan Plateau, which is an ideal place to study the Cenozoic tectonic deformation mechanism of this area. The Cenozoic deformation mechanism of the Central Yunnan Terrane is controversial, and there are two main types of deformation mechanism: "lower crustal flow" and the "rigid block extrusion". The former proposed that the tectonic activity of the block is more uniform, and the latter proposed that the tectonic activity is more intense along the fault. The tectonic activity of different mechanisms has different responses on the surface, and the geomorphic index is extremely sensitive to the tectonic activity response. To determine the tectonic deformation mechanism of the Cenozoic in this study area, 319 basins (sub⁃basins) were extracted based on the SRTM⁃3 Digital Elevation Model (DEM) with a resolution of 30 m. Indices used include hypsometric curve and hypsometric integral (HI), drainage basin shape (BS), asymmetric factor (AF), normalized stream⁃length gradient (SLK), and the ratio of valley floor width to valley height (VF). Results from the analysis are accumulated and expressed as an index of relative active tectonics (Iat), which we divide into four classes from relatively low to highest tectonic activity. The results are: The Iat values of the Lijiang⁃Xiaojinhe fault zone, Zemuhe⁃Xiaojiang fault zone, and Red River fault zone in the Central Yunnan are relatively small, and they gradually increase from north to south, which is consistent with the "rigid block extrusion" mode. At the same time, the Iat value on both sides of the Jinsha River is relatively low it shows that the geomorphic activity is strong, which may be due to the uplift of the Central Yunnan block and river system reconstitution, and the resulting knick points are transmitted upstream. During the migration of the cracks, they are transmitted from the main river channel to the secondary river channel, which affects the increase of the HI, BS and SLK value and the decrease of the VF value, making the relative tectonic activity stronger.
-
表 1 构造活动性分析中的地貌指数
Table 1. Summary and explanation of morphometric parameters used in tectonic landform analysis
-
[1] Bull, W. B., McFadden, L. D., 1977. Tectonic Geomorphology North and South of the Garlock Fault, California. Synthetic Metals, 115-138. https://doi.org/10.1016/S0379-6779(00)01411-9 [2] Cheng, Y. L., He, C. Q., Rao, G., et al., 2018. Geomorphological and Structural Characterization of the Southern Weihe Graben, Central China: Implications for Fault Segmentation. Tectonophysics, 722: 11-24. https://doi.org/10.1016/j.tecto.2017.10.024 [3] Clark, M., Schoenbohm, L., Royden, L., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): TC1006. https://doi.org/10.1029/2002TC001402 [4] Cook, K. L., Turowski, J. M., Hovius, N., 2013. A Demonstration of the Importance of Bedload Transport for Fluvial Bedrock Erosion and Knickpoint Propagation. Earth Surface Processes and Landforms, 38(7): 683-695. https://doi.org/10.1002/esp.3313 [5] Hamdouni, R., Irigaray, C., Fernández, T., et al., 2008. Assessment of Relative Active Tectonics, Southwest Border of the Sierra Nevada (Southern Spain). Geomorphology, 96(1/2): 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004 [6] Faghih, A., Nezamzadeh, I., Kusky, T. M., 2016. Geomorphometric Evidence of an Active Pop-Up Structure along the Sabzpushan Fault Zone, Zagros Mountains, SW Iran. Journal of Earth Science, 27(6): 945-954. https://doi.org/10.1007/s12583-016-0663-y [7] Figueroa, A. M., Knott, J. R., 2010. Tectonic Geomorphology of the Southern Sierra Nevada Mountains (California): Evidence for Uplift and Basin Formation. Geomorphology, 123(1/2): 34-45. https://doi.org/10.1016/j.geomorph.2010.06.009 [8] Geng, Y., Kuang, H., Liu, Y., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Y angtze Block. Acta Geologica Sinica, 91(10): 2151-2174(in Chinese with English abstract). [9] Hack, J., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the Us Geological Survey, 1(4): 421-429. [10] Kan, R., Lin, Z., 1986. A Preliminary Study on Crustal and Upper Mantle Steucture in Yunnan. Earthquake Research in China, 2(4): 1001-4683 (in Chinese with English abstract). [11] Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54-75. https://doi.org/10.1016/j.jsg.2012.07.009 [12] Béon, M. L., Klinger, Y., Mériaux, A. S., et al., 2012. Quaternary Morphotectonic Mapping of the Wadi Araba and Implications for the Tectonic Activity of the Southern Dead Sea Fault. Tectonics, 31(5): TC5003. https://doi.org/10.1029/2012TC003112 [13] Li, H. N., Dai, J. G., Xu, S. Y., et al., 2019a. The Formation and Expansion of the Eastern Proto-Tibetan Plateau: Insights from Low-Temperature Thermochronology. Journal of Asian Earth Sciences, 183: 103975. https://doi.org/10.1016/j.jseaes.2019.103975 [14] Li, Q., Pan, B. T., Gao, H. S., et al., 2019b. Differential Rock Uplift along the Northeastern Margin of the Tibetan Plateau Inferred from Bedrock Channel Longitudinal Profiles. Journal of Asian Earth Sciences, 169: 182-198. https://doi.org/10.1016/j.jseaes.2018.08.005 [15] Li, S. H., Su, T., Spicer, R., et al., 2020. Oligocene Deformation of the Chuandian Terrane in the SE Margin of the Tibetan Plateau Related to the Extrusion of Indochina. Tectonics, 39(7): 1-15. https://doi.org/10.1029/2019TC005974 [16] Liu, X., Shao, Z., 2020. Current Fault Movement Characteristics in the Lijiang-Xiaojinhe Fault Zone. Chinese Journal of Geophysics, 63(3): 1117-1126(in Chinese with English abstract). [17] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419 [18] Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788 [19] Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371 [20] Shen, Z., Lü, J., Wang, M., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research Solid Earth, 110: B11409. [21] Shi, X.H., Wang, E.Q., Wang, G., et al., 2008. Late Cenozoic Uplift of the Yulong Snow Mountain(5 596 m) Se Tibetan Plateau, Caused by Erosion and Tectonic Forcing. Quaternary Sciences, 28(2): 222-231 (in Chinese with English abstract). [22] Shi, X. H., Yang, Z., Dong, Y. P., et al., 2020. Geomorphic Indices and Longitudinal Profile of the Daba Shan, Northeastern Sichuan Basin: Evidence for the Late Cenozoic Eastward Growth of the Tibetan Plateau. Geomorphology, 353: 107031. https://doi.org/10.1016/j.geomorph.2020.107031 [23] Strahler, A. N., 1952. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Bulletin of the Geological Society of America, 63(11): 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 [24] Su, Q., Yuan, D., Xie, H., et al., 2016. Geomorphic Features of the Shule River Drainage Basin in Qilianshan and its Insight into Tectonic Implications. Seismology and Geology, 38(2): 240-258 (in Chinese with English abstract). [25] Tapponnier, P., Zhiqin, X., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978 [26] Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [27] Wang, E., Burchfiel, B. C., Royden, L. H., et al., 1998. Late Cenozoic Xianshuihe-Xiaojiang Red River, and Dali Fault Systems of South-Western Sichuan and Central Yunnan, China. Special Paper of the Geological Society of America, 327: 1-108. [28] Wang, E., Fan, C., Wang, G., et al., 2006. Deformational and Geomorphic Processes in the Formation of the Ailao Shan-Diancang Range West Yunnan. Quaternary Sciences, 26(2): 220-227 (in Chinese with English abstract). [29] Wang, G., Wang, E., 2005. Extensional Structures Whthin The Compressional orogenic Belt And Its Mechanism : A Case Study for the Late Cenozoic Deformation in Central Yunnan. Seismology and Geology, 27(2): 188-199 (in Chinese with English abstract). [30] Wang, Y., Liu, S., 2013. Quantitative Research on Longmen Shan Uplift Caused by Late Cenozoic Isostatic Rebound. Geoscience, 27(2): 239-247 (in Chinese with English abstract). [31] Wang, Y., Zhang, H., Zhang, P., 2017. A Brief Introduction to the New Method for Riverprofile Analaysis: Integral Approach. Seismology and Geology, 39(6): 1111-1126 (in Chinese with English abstract). [32] Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2014. Controls on Decadal Erosion Rates in Qilian Shan: Re-Evaluation and New Insights into Landscape Evolution in North-East Tibet. Geomorphology, 223: 117-128. https://doi.org/10.1016/j.geomorph.2014.07.002. [33] Wang, Y., Zheng, D., Zhang, H., et al., 2020. Activity Characteristics of the Huashan Piedmont Normal Fault: Insights from Fluvial Geomorphic Parameters. Seismology and Geology, 42(2): 382-398 (in Chinese with English abstract). [34] Wu, K., Dong, Y. P., Duan, J. X., et al., 2020. Cenozoic Uplift of the Central Yunnan Fragment, Southwestern China, Revealed by Apatite (U-Th)/He Dating. Journal of Earth Science, 31(4): 735-742. https://doi.org/10.1007/s12583-020-1328-4 [35] Xu, X., Wen, X., Zheng, R., et al., 2003. Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 46(S2): 210-226 (in Chinese with English abstract). [36] Yang, R., Suhail, H. A., Gourbet, L., et al., 2020. Early Pleistocene Drainage Pattern Changes in Eastern Tibet: Constraints from Provenance Analysis, Thermochronometry, and Numerical Modeling. Earth and Planetary Science Letters, 531: 115955. https://doi.org/10.1016/j.epsl.2019.115955 [37] Zhang, H., Zhang, P., Fan, Q., 2011. Initiation and Recession of the Fluvial Knickpoints: A Case Study from the Yalu River-Wangtian Evolcanic Region, Northeastern China. Sci. China Earth Sci. , 41(11): 1627-1635 (in Chinese with English abstract). [38] Zhang, P., Shen, Z., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 9(32): 809-812. https://doi.org/10.1130/G20554.1 [39] Zhang, P., 2008. A Study on The Present Tectonic Deformation, Strain Partitioning and Deep Dynamic Process of West Sichuan Region on Eastern Margin of Qinghai-Tibet Plateau. Science in China (Series D), 38(9): 1041-1056 (in Chinese). [40] Zhang, Y., Li, H., 2016. Late Cenozoic Tectonic Events in East Tibetan Plateau and Extrusion-Related Orogenic System. Geology in China, 43(6): 1829-1852(in Chinese with English abstract). [41] Zeng, W.P., Purnell, M.A., Jiang, H.S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583-021-1459-2 [42] 耿元生, 旷红伟, 柳永清, 等, 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174. doi: 10.3969/j.issn.0001-5717.2017.10.001 [43] 阚荣举, 林中洋, 1986. 云南地壳上地幔构造的初步研究. 中国地震, (4): 1001-4683. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198604007.htm [44] 刘晓霞, 邵志刚, 2020. 丽江-小金河断裂带现今断层运动特征. 地球物理学报, 63(3): 1117-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003029.htm [45] 石许华, 王二七, 王刚, 等, 2008. 青藏高原东南缘玉龙雪山(5 596 m)晚新生代隆升的侵蚀与构造控制作用. 第四纪研究, (2): 222-231. doi: 10.3321/j.issn:1001-7410.2008.02.004 [46] 苏琦, 袁道阳, 谢虹, 等, 2016. 祁连山西段疏勒河流域地貌特征及其构造意义. 地震地质, 38(2): 240-258. doi: 10.3969/j.issn.0253-4967.2016.02.002 [47] 王二七, 樊春, 王刚, 等, 2006. 滇西哀牢山-点苍山形成的构造和地貌过程. 第四纪研究, 26(2): 220-227. doi: 10.3321/j.issn:1001-7410.2006.02.009 [48] 王刚, 王二七, 2005. 挤压造山带中的伸展构造及其成因——以滇中地区晚新生代构造为例. 地震地质, 27(2): 188-199. doi: 10.3969/j.issn.0253-4967.2005.02.002 [49] 王岩, 刘少峰, 2013. 龙门山晚新生代均衡反弹隆升的定量研究. 现代地质, 27(2): 239-247. doi: 10.3969/j.issn.1000-8527.2013.02.001 [50] 王一舟, 张会平, 郑德文, 2017. 稳态河道高程剖面分析的新方法———积分法. 地震地质, 39(6): 1111-1126. doi: 10.3969/j.issn.0253-4967.2017.06.002 [51] 王一舟, 郑德文, 张会平, 等, 2020. 华山山前正断层的分段活动特征——来自河流地貌参数的约束. 地震地质, 42(2): 382-398. doi: 10.3969/j.issn.0253-4967.2020.02.009 [52] 徐锡伟, 闻学泽, 郑荣章, 等, 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33(z1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm [53] 张会平, 张培震, 樊祺诚, 2011. 河流裂点的发育及其溯源迁移: 以鸭绿江-望天鹅火山区为例. 中国科学: 地球科学, 41(11): 1627-1635. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201111008.htm [54] 张培震, 2008. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程. 中国科学(D辑: 地球科学), (9): 1041-1056. doi: 10.3321/j.issn:1006-9267.2008.09.001 [55] 张岳桥, 李海龙, 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系. 中国地质, 43(6): 1829-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606002.htm -
dqkxzx-47-8-3016-附表.docx