• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆库米什盆地硝酸盐类矿床成矿离子迁移规律及成矿模型

    李长忠 程怀德 宋建国 马学海 海擎宇 蒋天明

    李长忠, 程怀德, 宋建国, 马学海, 海擎宇, 蒋天明, 2022. 新疆库米什盆地硝酸盐类矿床成矿离子迁移规律及成矿模型. 地球科学, 47(1): 82-93. doi: 10.3799/dqkx.2021.142
    引用本文: 李长忠, 程怀德, 宋建国, 马学海, 海擎宇, 蒋天明, 2022. 新疆库米什盆地硝酸盐类矿床成矿离子迁移规律及成矿模型. 地球科学, 47(1): 82-93. doi: 10.3799/dqkx.2021.142
    Li Changzhong, Cheng Huaide, Song Jianguo, Ma Xuehai, Hai Qingyu, Jiang Tianming, 2022. Ore-Forming Ion Migration Regularity and Metallogenic Model of Nitrate Deposits in Kumishi Basin, Xinjiang. Earth Science, 47(1): 82-93. doi: 10.3799/dqkx.2021.142
    Citation: Li Changzhong, Cheng Huaide, Song Jianguo, Ma Xuehai, Hai Qingyu, Jiang Tianming, 2022. Ore-Forming Ion Migration Regularity and Metallogenic Model of Nitrate Deposits in Kumishi Basin, Xinjiang. Earth Science, 47(1): 82-93. doi: 10.3799/dqkx.2021.142

    新疆库米什盆地硝酸盐类矿床成矿离子迁移规律及成矿模型

    doi: 10.3799/dqkx.2021.142
    基金项目: 

    西北研究院“一三五”重点培育项目 Y760031090

    科技部专项 2012FY112600

    详细信息
      作者简介:

      李长忠(1993-), 男, 博士研究生, 矿物学、岩石学、矿床学专业.ORCID: 0000-0001-8999-8345.E-mail: lichangzhong18@mails.ucas.ac.cn

      通讯作者:

      程怀德, ORCID: 0000-0002-4179-2425.E-mail: chenghuaide@isl.ac.cn

    • 中图分类号: P612

    Ore-Forming Ion Migration Regularity and Metallogenic Model of Nitrate Deposits in Kumishi Basin, Xinjiang

    • 摘要:

      为了深入认识库米什盆地硝酸盐矿床成矿离子的空间分布特征、表层沉积物中硝酸盐含量较高的原因,以盆地硝酸盐矿床为研究对象,开展研究区内各类补给水样和沉积物样可溶性盐类物质化学组成的定量分析研究;结合野外地质踏勘工作,探讨研究区硝酸盐矿床成矿离子的迁移规律,初步建立盆地硝酸盐矿床沉积成矿作用模型. 结果表明,K+、Na+、NO3-等成矿离子自北西部和南东部双向朝盆地中部迁移富集;这些成矿离子的含量在盆地北东部冲洪积扇区沿着基岩区-扇根-扇中-扇缘的方向逐渐增高,在扇缘的表层沉积物内含量较高;在垂向剖面上,K+、Na+、NO3-等成矿离子主要富集于0~60 cm的深度范围内,受毛细作用的影响,具有自深部向表层沉积物内迁移富集的规律.

       

    • 图  1  库米什盆地地质略图

      底图据新疆维吾尔自治区地质矿产局(1993)修改

      Fig.  1.  Geological sketch of Kumishi Basin

      图  2  库米什盆地北西部‒南东部水样离子含量变化

      Fig.  2.  Variations of ion contents in water samples from northwest to southeast of Kumishi Basin

      图  3  库米什盆地北西部‒南东部沉积物样离子含量变化

      Fig.  3.  Variations of ion contents in sediment samples from northwest to southeast of Kumishi Basin

      图  4  库米什盆地北东部‒沉积中心沉积物样离子含量变化

      Fig.  4.  Changes of ion contents in sediment samples in the northeast-subsidence center of Kumishi Basin

      图  5  库米什盆地垂向剖面沉积物的离子含量变化

      Fig.  5.  Variations of ion concentrations in sediments of vertical profiles in Kumishi Basin

      图  6  库米什盆地盐壳内的毛细管照片

      Fig.  6.  Capillarity photograph of the salt crust in Kumishi Basin

      图  7  盐湖区盐壳(a)和扇中沉积剖面照片(b)

      Fig.  7.  Lake salt crust (a) and sedimentary profile in the mid-fan (b)

      图  8  库米什盆地垂向剖面沉积物岩相特征

      Fig.  8.  Characteristics of sedimentary lithofacies in vertical section of Kumishi Basin

      图  9  库米什盆地硝酸盐矿床沉积成矿作用模型

      Fig.  9.  Sedimentary mineralization model of nitrate deposits in Kumishi Basin

      表  1  北西部-中部水样主要化学组分测试结果(mg/L)

      Table  1.   Test results of main chemical components in water samples from northwest to central (mg/L)

      区域 野外
      编号
      室内
      编号
      K+ Na+ Ca2+ Mg2+ NO3 Cl SO42‒ CO32‒ HCO3 TDS
      北西部 KMSW‒86‒1 Y‒1 9.43 104.88 102.48 37.48 20.08 255.01 373.37 17.08 238.08 1 160
      JS‒2 Y‒2 7.57 274.02 129.62 35.94 23.93 307.08 499.83 149.88 1 430
      JS‒1 Y‒3 11.07 588.84 207.53 77.57 38.17 894.25 788.31 59.41 3 480
      中部 XERL‒3‒1 Y‒4 226.30 8 300.77 604.80 446.60 31.41 10 962.46 5 828.50 181.42 26 580
      XERL‒3‒2 Y‒5 19.25 484.36 89.58 53.53 40.78 628.00 541.10 87.74 1 940
      WZL‒5 Y‒6 1 290.00 122 373.27 249.30 2 864.00 1 677.00 178 311.61 26 010.00 104.82 332 880
      WYL‒4 Y‒7 4 684.00 114 490.02 257.30 7 524.00 6 036.00 179 594.43 27 040.00 125.28 339 750
      WYL‒1 Y‒8 3 912.00 118 099.70 386.10 3 355.00 5 267.00 181 390.37 15 730.00 37.59 328 180
      WYL‒10 Y‒9 3 365.00 114 190.26 360.10 6 088.00 4 116.00 182 801.47 16 500.00 108.58 327 530
      注:Y-1~Y-3、Y-4、Y-9的数据来源于李长忠等(2021).
      下载: 导出CSV

      表  2  北西部‒南东部沉积物样主要化学组分测试结果(%)

      Table  2.   Results of major chemical compositions of sediment samples from northwest to southeast (%)

      采样区域 野外编号 室内编号 K+ Na+ Ca2+ Mg2+ NO3 Cl SO42‒
      北西部 KMSW‒92‒1 Y‒10 0.035 0.00 0.04 0.019 4 0.001 3 0.019 0.12
      KMSW‒82 Y‒11 0.008 0.00 0.03 0.003 1 0.158 2 0.017 0.05
      KMSW‒68 Y‒12 0.018 0.13 0.15 0.022 1 0.002 2 0.416 0.14
      中部 KMSS‒1 Y‒13 0.032 22.12 0.33 0.009 4 0.085 0 33.242 2.02
      WZS‒6‒3 Y‒14 0.870 16.43 2.55 0.596 4 2.010 0 26.404 8.07
      WYS‒5 Y‒15 0.057 38.24 0.13 0.062 4 0.045 0 58.502 1.22
      WY‒53 Y‒16 0.390 3.30 1.35 0.068 6 0.000 2 4.667 4.07
      南东部 WY‒63‒1 Y‒17 0.019 0.19 0.75 0.006 7 0.000 1 0.208 1.94
      WY‒65‒1 Y‒18 0.014 0.04 0.16 0.004 9 0.012 3 0.049 0.43
      注:Y-10、Y-13~Y-18的数据来源于李长忠等(2021).
      下载: 导出CSV

      表  3  北东部冲积扇沉积物样化学组分测试结果(%)

      Table  3.   Test results of chemical components of alluvial fan sediment samples in northeastern Kumishi Basin (%)

      野外编号 室内编号 海拔(m) K+ Na+ Ca2+ Mg2+ NO3 Cl SO42‒ 分层深度(cm) 环境
      WB‒16‒3 Y‒19 1 338 0.241 1.11 0.33 0.033 0.000 1.31 1.45 0.0~27.0 基岩区
      Y‒20 0.028 0.28 0.48 0.011 0.110 0.27 1.44 27.0~35.0
      Y‒21 0.030 0.27 0.13 0.016 0.070 0.29 0.55 35.0~70.0
      WB‒16‒1 Y‒22 874 0.046 1.37 0.40 0.008 0.177 2.12 0.96 0.0~6.0 扇根
      Y‒23 0.040 1.69 2.20 0.006 0.101 1.09 7.33 6.0~18.0
      Y‒24 0.019 1.22 2.79 0.006 0.022 0.88 8.06 18.0~35.0
      Y‒25 0.018 1.61 2.48 0.006 0.031 1.07 7.86 35.0~60.0
      WB‒17 Y‒26 739 0.035 0.26 0.40 0.013 0.096 0.34 1.07 0.0~12.0 扇中
      Y‒27 0.024 0.00 2.53 0.008 0.022 0.10 5.84 12.0~30.0
      Y‒28 0.010 0.00 2.89 0.005 0.010 0.04 6.68 30.0~45.0
      Y‒29 0.010 0.00 2.98 0.007 0.009 0.05 6.76 45.0~65.0
      WB‒18 Y‒30 718 0.072 1.65 1.34 0.042 0.064 2.60 3.31 0.0~32.0 扇缘
      Y‒31 0.009 0.19 0.81 0.009 0.010 0.31 1.95 32.0~64.0
      Y‒32 0.004 0.02 0.43 0.008 0.005 0.06 1.01 64.0~95.0
      Y‒33 0.003 0.02 0.37 0.008 0.002 0.05 0.88 95.0~126.0
      Y‒34 0.003 0.07 0.41 0.010 0.009 0.13 1.01 126.0~157.0
      下载: 导出CSV

      表  4  库米什盆地垂向土壤剖面沉积物中主要化学组分测试结果(%)

      Table  4.   Test results of main chemical components of vertical soil samples in Kumishi Basin(%)

      野外编号 室内编号 K+ Na+ Ca2+ Mg2+ NO3 Cl SO42‒ 分层深度(m)
      WY‒58 Y‒35 0.423 10.539 1.086 0.029 7 0.002 113 12.903 7.244 0.0~13.0
      Y‒37 0.039 5.082 0.649 0.005 7 0.000 187 7.058 2.627 13.0~25.0
      Y‒38 0.037 6.941 0.492 0.004 8 0.000 188 10.604 1.327 25.0~37.0
      Y‒39 0.028 1.318 0.380 0.009 2 0.000 166 1.843 1.202 37.0~58.0
      Y‒36 0.031 1.292 0.483 0.009 9 0.000 129 1.822 1.424 58.0~79.0
      Y‒40 0.034 1.213 0.502 0.011 9 0.000 140 1.688 1.497 79.0~100.0
      下载: 导出CSV
    • [1] Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing (in Chinese).
      [2] Cai, K.Q., Yu, Y.K., Yun, L.T., et al., 1991. Geological Summary of Nitrate Deposits in Chile. Geology of Chemical Minerals, 13(Z1): 47-54 (in Chinese).
      [3] Chen, C., Lü, X.B., Cao, X.F., et al., 2013. Geochronology, Geochemistry and Geological Significance of Late Carboniferous-Early Permian Granites in Kumishi Area, Xinjiang. Earth Science, 38(2): 218-232 (in Chinese with English abstract). https://www.cambridge.org/core/journals/geological-magazine/article/geochronology-geochemistry-and-geological-implications-of-late-carboniferous-early-permian-mafic-and-felsic-intrusive-rocks-from-urad-zhongqi-western-inner-mongolia/0C0BE47377E81ED796A72A7DB2A8B138
      [4] Chen, K.Z., Yang, S.X., Zheng, X.Y., 1981. The Salt Lakes on the Qinghai-Xizang Plateau. Acta Geographica Sinica, 36(1): 13-21 (in Chinese with English abstract). https://www.cabdirect.org/cabdirect/abstract/19812608991
      [5] Deng, H.S., 1992. Discussion on Classification of Groundwater by Chemical Composition and Mineralization Degree. Ground Water, 14(2): 119-122, 91 (in Chinese).
      [6] Fu, X.C., Shen, W.X., Yao, T.Y., 1990. Physical Chemistry. Higher Education Press, Beijing (in Chinese).
      [7] Geological Dictionary Office of Ministry of Geology and Mineral Resources, 2005. Geological Dictionary. Geological Publishing House, Beijing (in Chinese).
      [8] Huang, G., Wang, X.L., Zhang, W.F., et al., 2011. Zircon LA-ICP-MS U-Pb Age and Geochemistry of Two-Mica Granite in Kumishen Area in Eastern Part of the Southern Tianshan Mountains. Xinjiang Geology, 29(3): 263-269 (in Chinese with English abstract).
      [9] Huang, T.D., 2005a. Formation of the Salt Lake and KNO3 Ore in the Kumishi Block-Falling Basin in Xinjiang. Hydrogeology & Engineering Geology, 32(6): 20-24 (in Chinese with English abstract).
      [10] Huang, T.D., 2005b. Formation of Wuyongbulake Salt Lake in Xinjiang and Characteristics of Potassium Nitrate Deposit. Xinjiang Geology, 23(1): 36-40 (in Chinese with English abstract). https://www.nature.com/articles/s41598-018-25993-6
      [11] Li, B.Y., Xiong, X.X., Liu, Z.M., et al., 2005. The Deposit Types Distribution and Prospect of Nitrate-Ores of Tulufan-Hami Area in Xinjiang. Geology of Chemical Minerals, 27(4): 193-200 (in Chinese with English abstract).
      [12] Li, C.Z., Cheng, H.D., Zhang, X.Y., et al., 2021. A Study of the Migration and Enrichment Regularity of Strontium Ions in Nitrate Type Salt Lakes in Kumishi Basin, Xinjiang. Acta Petrologica et Mineralogica, 40(1): 89-98 (in Chinese with English abstract).
      [13] Li, Z.Q., Zhang, Z.X., Cui, C.L., 1996. A Discussion on the Formation and Evolution of Kumishi Basin, South Tianshan. Journal of Chengdu University of Technology, 23(3): 96-100 (in Chinese with English abstract).
      [14] Liang, Q.S., 1999. Investigation of Salt-Forming Environments and Ages of Last Wuzunbulake Salt Lake in Xinjiang. Journal of Salt Lake Research, 7(2): 1-5 (in Chinese with English abstract).
      [15] Pérez-Fodich, A., Reich, M., Álvarez, F., et al., 2014. Climate Change and Tectonic Uplift Triggered the Formation of the Atacama Desert's Giant Nitrate Deposits. Geology, 42(3): 251-254. https://doi.org/10.1130/g34969.1
      [16] Qin, Y., 2010. Nitrogen, Oxygen Isotopes Characters and Genesis of Nitrate deposits of Turpan-Hami Area in Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [17] Qin, Y., Li, Y. H., Liu, F., et al., 2012. N and O Isotopes and the Ore-Forming Mechanism of Nitrate Deposits in the Turpan-Hami Basin, Xinjiang, China. Scientia Sinica Terrae, 42(7): 983-991 (in Chinese). doi: 10.1360/zd-2012-42-7-983
      [18] Song, J.G., Ma, X.H., Cheng, H.D., et al., 2020. Research on Mineral Sedimentary Characteristics of the Salt Crust in the Wuyongbulake Salt Lake of Xinjiang. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 509-516 (in Chinese with English abstract).
      [19] Wang, B.S., 1993. Nitrate-Type Sylvite Deposits in Kümüx Basin. Xinjiang Geology, 11(1): 74-79 (in Chinese with English abstract).
      [20] Wang, S.E., Ye, L.S., Guo, X.P., 2011. Jurassic Strata, Palaeoenvironment and Oil-Gas Resources in Tianshan Tectonic Belt, Xinjiang, China-Taking the Kümüx Basin as an Example. Geological Bulletin of China, 30(2-3): 410-417 (in Chinese with English abstract).
      [21] Wu, F.Q., 1999. Analysis of Kumishi Basin. Natural Gas Industry, 19(4): 103-104 (in Chinese).
      [22] Wu, S., 2014. Non-Destructive Flaw Detector. China Petrochemical Press, Beijing (in Chinese).
      [23] Wu, W.K., Jiang, C.Y., Xu, F.L., et al., 1990. A Preliminary Analysis on the Subdivision and Sedimentary Environment of Late Silurian in Kumishi, Xinjiang. Journal of Xi'an College of Geology, 12(2): 12-20 (in Chinese with English abstract).
      [24] Xiao, X.Z., 2010. Leak Detection Methods and Applications. Mechanical Industry Press, Beijing (in Chinese).
      [25] Yang, T.N., Wang, X.P., 2006. Geochronology, Petrochemistry and Tectonic Implications of Early Devonian Plutons in Kumux Area, Xinjiang. Acta Petrologica et Mineralogica, 25(5): 401-411 (in Chinese with English abstract).
      [26] Zhang, C.L., Zhou, D.W., Wang, J.L., et al., 2007. Geochronology, Geochemistry and Sr-Nd Isotopic Composition and Genesis Implications of Huangjianshishan Granite Intrusion in Kumishi Area of Southern Tianshan. Acta Petrologica Sinica, 23(8): 1821-1829 (in Chinese with English abstract).
      [27] Zhang, Y.M., Pan, K.Y., Zhao, X.S., et al., 2000. Xinjiang Nitrate Deposits. Xinjiang University Press, Urumqi (in Chinese).
      [28] Zhang, Z.M., Ma, H.F., Cai, G.Q., 2003. The Main Characteristics of Geological Tectonic Evolution in Kumish Basin. World Nuclear Geoscience, 20(4): 187-193 (in Chinese with English abstract).
      [29] Zheng, X.Y., 2000. Sedimentary Features of Sylvite Nitrate in Lake Wuzunbulake. Journal of Salt Lake Research, 8(1): 41-45, 52 (in Chinese with English abstract).
      [30] Zheng, X.Y., Zhang, M.G., Li, B.X., et al., 1995. Salt Lakes in Xinjiang. Geological Publishing House, Beijing (in Chinese).
      [31] 蔡克勤, 于友库, 云连涛, 等, 1991. 智利硝酸盐矿床地质概要. 化工地质, 13(Z1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC1991Z1005.htm
      [32] 陈超, 吕新彪, 曹晓峰, 等, 2013. 新疆库米什地区晚石炭世-早二叠世花岗岩年代学、地球化学及其地质意义. 地球科学, 38(2): 218-232. doi: 10.3799/dqkx.2013.023
      [33] 陈克造, 杨绍修, 郑喜玉, 1981. 青藏高原的盐湖. 地理学报, 36(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198101001.htm
      [34] 邓惠森, 1992. 地下水按化学成份分类及矿化度分级的探讨. 地下水, 14(2): 119-122, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199202021.htm
      [35] 地质矿产部地质辞典办公室, 2005. 地质大辞典. 北京: 地质出版社.
      [36] 傅献彩, 沈文霞, 姚天扬, 1990. 物理化学. 北京: 高等教育出版社.
      [37] 黄岗, 王新录, 张文峰, 等, 2011. 库米什地区二云母花岗岩锆石LA-ICP-MSU-Pb定年及岩石地球化学特征. 新疆地质, 29(3): 263-269. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201103005.htm
      [38] 黄铁栋, 2005a. 新疆库米什断陷盆地内盐湖及钾硝石矿的形成. 水文地质工程地质, 32(6): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200506005.htm
      [39] 黄铁栋, 2005b. 新疆乌勇布拉克盐湖的形成及硝酸钾矿床特征. 新疆地质, 23(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200501008.htm
      [40] 李博昀, 熊先孝, 刘振敏, 等, 2005. 新疆吐鲁番-哈密地区硝酸盐矿矿床类型、分布规律及找矿前景. 化工矿产地质, 27(4): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200504001.htm
      [41] 李长忠, 程怀德, 张西营, 等, 2021. 新疆库米什盆地硝酸盐型盐湖中锶离子迁移富集规律研究. 岩石矿物学杂志, 40(1): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202101011.htm
      [42] 李忠权, 张祖学, 崔春龙, 1996. 南天山库米什盆地形成演化探讨. 成都理工学院学报, 23(3): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG603.013.htm
      [43] 梁青生, 1999. 新疆乌尊布拉克东部干盐湖成盐环境和成盐年代的初步研究. 盐湖研究, 7(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ199902000.htm
      [44] 秦燕, 2010. 新疆吐-哈地区硝酸盐矿床氮、氧同位素研究及矿床成因(博士学位论文). 北京: 中国地质科学院.
      [45] 秦燕, 李延河, 刘锋, 等, 2012. 新疆吐-哈地区硝酸盐矿床氮、氧同位素组成特征及成矿机制. 中国科学: 地球科学, 42(7): 983-991. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207005.htm
      [46] 宋建国, 马学海, 程怀德, 等, 2020. 新疆乌勇布拉克盐湖盐壳层矿物沉积特征研究. 矿物岩石地球化学通报, 39(3): 509-516. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003010.htm
      [47] 王冰生, 1993. 库米什盆地的硝酸盐型钾盐矿床. 新疆地质, 11(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199301008.htm
      [48] 王思恩, 叶留生, 郭宪璞, 2011. 天山造山带中的侏罗纪地层、古环境与油气资源——以库米什盆地为例. 地质通报, 30(2-3): 410-417. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1030.htm
      [49] 吴富强, 1999. 库米什盆地浅析. 天然气工业, 19(4): 103-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG904.028.htm
      [50] 吴松, 2014. 无损探伤工. 北京: 中国石化出版社.
      [51] 吴文奎, 姜常义, 徐福留, 等, 1990. 新疆库米什地区晚志留世地层划分及沉积环境初步探讨. 西安地质学院学报, 12(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX199002001.htm
      [52] 新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社.
      [53] 肖祥正, 2010. 泄露检测方法与应用. 北京: 机械工业出版社.
      [54] 杨天南, 王小平, 2006. 新疆库米什早泥盆世侵入岩时代、地球化学及大地构造意义. 岩石矿物学杂志, 25(5): 401-411. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200605005.htm
      [55] 张成立, 周鼎武, 王居里, 等, 2007. 南天山库米什南黄尖石山岩体的年代学、地球化学和Sr、Nd同位素组成及其成因意义. 岩石学报, 23(8): 1821-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708003.htm
      [56] 张义民, 潘克耀, 赵兴森, 等, 2000. 新疆硝酸盐矿床. 乌鲁木齐: 新疆大学出版社.
      [57] 张子敏, 马汉峰, 蔡根庆, 2003. 库米什盆地地质构造演化主要特征. 世界核地质科学, 20(4): 187-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200304000.htm
      [58] 郑喜玉, 2000. 乌尊布拉克湖硝酸钾盐沉积特征. 盐湖研究, 8(1): 41-45, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200001005.htm
      [59] 郑喜玉, 张明刚, 李秉孝, 等, 1995. 新疆盐湖. 北京: 地质出版社.
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  311
    • HTML全文浏览量:  49
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-01-25
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回